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Method
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Derivation of Controlled
Derivati D n ODE Equations of Motion
VLR ESTABILIIED r = * Pontryagin’s Minimum Principle
+ Newton’s Laws z="f(txu) e < P
 Hamilton’s Principle H=L+\'f
* Lagrange-d’Alembert’s Principle G= p+ fTO' + l/T’lL'

Hyy >0

DAE TPBVP
0=H] (t.x,\u)
@ = HJ (t,z, A u)
A=—HI (t,z,\u)

Uo
ODE TPBVP

w=m(t,x,\)

+ BCs @ = A (t,x,A)
A=-H]I (t,z,))
+ B.Cs

Numerical Solution of Controlled
Equations of Motion

SR x * Automatic Differentiation i — -
Costate A\ « Predictor-Corrector Path-Following Initial Solution

* Newton’s Method \ * Gradient Method
Control u = (t,x, A) + MIRK & Collocation ‘\ *  Direct Method

* Deferred Corrections &POFS=-ii




Indirect Method: Solvers

1. Use global instead of initial value method DAE/ODE TPBVP
solvers.

>

Global methods (i.e. MIRK & collocation) converge more
robustly than initial value methods (i.e. shooting).

2. Use ODE instead of DAE TPBVP solvers.

>

For path inequality constraints D (¢, x,u) < 0, the indirect
method yields a DAE TPBVP, whose solution requires
knowledge of the switching structure, which is very hard to
guess.

Even if the switching structure is known, global method DAE
TPBVP solvers are not readily available, especially in MATLAB.
However, global method ODE TPBVP solvers are readily
available, e.g. bvptwp and sbvp.

Enforce the path inequality constraints through penalty
functions in the integrand cost function L and assume
regularity Hy,, > 0, so that the indirect method yields an ODE
TPBVP.



Direct Method

1. Discretization:

Zf:l A pr(t)
Zf:l erpr (t)
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2. Transcription:

z="1f(t,z,u),
min J s.t. o(a,xz(a))=0
nla b ¥ (b,(b)) = 0.
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min F(z) s.t.
zERQ

3. NLP solvers: Knitro )ﬁ‘, IPOPT, and SNOPT.
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1<m<M

gL < g(z) < gu,
2z <z < zy.



Direct vs Indirect Methods

H Direct Indirect
Poor Initial State & Control Guess No Convergence
Initial Costate Guess Good Guess Required
Path Inequality Constraints Cannot Handle
Predictor-Corrector Path-Following Research

» A good initial guess must be supplied to the indirect method via
gradient descent or the direct method.
» Path inequality constraints can be handled by the indirect method as
soft constraints through penalty functions in the performance index.
» The direct and indirect methods only converge to a local minimum
solution near the initial solution guess.
» Predictor-corrector path-following is a technique to obtain a solution to
a difficult, nonconvex optimal control problem, starting from the
solution to an easy optimal control problem.




Predictor-Corrector Path-Following

(yj-l;hj-l)

(yj+11lj+1)

AL



Predictor-Corrector Path-Following

(¥y2.21) (V/q:}\yu)

~ (viA)

AP
3

T (v$.29)

olv jr‘h

Seek to construct solutions of A (y, ) = 0, where A/ is an operator
parameterized by \. Let C = {(y,\) : N (y,\) = 0}.
1. (yj,A;) is a solution on C.
2. Find a unit tangent (v;,7;) to C at (yj,A;) in order to construct a
predictor (y{, () < (v, A;) + o (v, ).
Ny (¥4, ) vi + Na(yj: A) 75 =0
(v, vi) +77 =1
3. Push the predictor (y{, A{) onto the next solution (y;t+1,Aj+1) on C
by Newton iteration.

Ny (¥5: Ap) 0y + N (v AR) 0A = =N (v, AR)
(vj,0y) + 7j6A =0

(Y511, A5p1) < (¥5, A + (Oy, 60



Trajectory Optimization

1. Initialize Construct an initial solution (e.g. via the gradient or
direct method) for which all path inequality constraints but
one are inactively satisfied, e.g. by using hard path inequality
constraints D (¢, x,u) < 0 or by using softly-weighted penalty
functions in L.

2. Clamp Enforce all the inactively satisfied path inequality
constraints via heavily-weighted penalty functions in L.

3. Wriggle Starting from the initial solution, use
predictor-corrector path-following to gradually enforce the
lone violated path inequality constraint, without violating the
inactively satisfied path inequality constraints.



Rolling Disk: Tracking a Sinusoidally-Modulated Linear
Path

Disk, Control Masses, and Control Rails Desired GC Path
in the Body Frame Translated to the GC L
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Rolling Disk: States, Controls, and Dynamics W‘E
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Rolling Disk: Initial and Final Boundary Conditions |-/

e(a) - Qa
_ | 6(a)—06, |
o(a,z(a)) = |: gb(a) Y ] =0
—T¢(a) - Za

Fa =T (¢(b) - ¢a) — Zp
—r$(b) — 2



Rolling Disk: Path Inequality Constraints ‘E

Magnitude of Normal Force:

N =mqg [g - ($C073 + <152C0,1) sin ¢ + (CECOJ - <152C0,3> cos ¢} —Fe3
Static Friction:

—fso=— {mo [7"¢ + (QgCo,s + 92)2C0,1> cos ¢ + <€£<0,1 - ¢.>2C0,3) sin ¢] + Fe,l} €1

1. GC Trajectory Tracking:
20— (¢ = da) =21 > (20— 1(¢—da) —2)* =0

2. No Detachment: 0 < N <« e < N

3. No Slip: fs < usN <= f2 < 2N?

4. Bounded Acceleration Magnitudes:

62¢7 +bic; 02¢7 + bi¢;

2

< M; — <M? 1<i<n




Rolling Disk: Endpoint Cost Function, Integrand Cost ‘E
Function, and Performance Index

p(a,z(a), b, =(b)) =0

Small Acceleration Magnitudes

n .
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GC Trajectory Tracking No Detachment
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No Slip
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b
J=p(a,®(a), b, ®(b)) +/ L (@, ) dt

Small Acceleration Magnitudes

GC Trajectory Tracking No Detachment
b n P "
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Rolling Disk: Endpoint Function and Hamiltonian

G (a,@(a),€,b,2(b),v) = p(a,2(a),b,z(b)) + &' o (a,2(a)) + v ¢ (b,z(b))

)

0(a) - (A@®) [3 Zimic.:0)]), = A
6(a) —

bla) -

= ET -+ l/T B(b) - éb
(a Za =7 (6(b) — ¢a) — 2
r¢(a) — Za —ré(b) — %
H(t,z,A\,u)=L(t,z,u) + ATf (t,z,u)

Small Acceleration Magnitudes
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GC Trajectory Tracking No Detachment
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n
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Direct Method
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Predictor-Corrector Path-Following in a« =0 7 390 ‘E

GC Path Magnitude of Normal Force
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Predictor-Corrector Path-Following in a« =0 7 390 ‘D
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Rolling Disk Trajectory Optimization

1. Initialize Set all the constraint weights to zero (i.e.
o= K] = Ky = K3 = kg = k5 = kg = 0) and use the direct
method (i.e. GPoPS-1I1I with IPOPT) to construct an initial
solution which violates the GC trajectory tracking constraint,
but which inactively satisfies the no detachment, no slip, and
bounded acceleration magnitude constraints.

Small Acceleration Magnitudes

. . 2
02¢Y + ;¢

11
L(t,z,u) = ZE




Rolling Disk Trajectory Optimization {2

2. Clamp Enforce the inactively satisfied no detachment, no slip,
and bounded acceleration magnitude constraints by setting
K1 = Ko = K3 = K4 = K5 = kg = 1el0.

Small Acceleration Magnitud
mall Acceleration Viagnituces GC Trajectory Tracking

——
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42 .11 il
07¢; +0:¢;

41
L(t,z,u)= ZE

i=1

2 o
+ 5 (20 =76 = ¢a) = za)® +

) 2

1
+ tetomax* {0, £2 — pIN?} 4+ 37 1e10 max® {(J_ 02¢! +d,¢!
i=1

No Sli
P Bounded Acceleration Magnitudes

3. Wriggle Starting from the direct method solution, use the
predictor-corrector path-following indirect method to gradually
increase the GC path weighting factor a from 0 up to 390 in
order to push the GC path towards the desired GC path.



Rolling Ball: Obstacle Avoidance

Ball, Control Masses, and Control Rails
in the Body Frame Translated to the GC
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Rolling Ball: States, Controls, and Dynamics

0
0
T=|q u=40
Q
z
o [ 0 ‘
7] u
= |q|=f(t,z,u) = 309
Q K (t, @, u)
. Qfg-1 b
z _([q g ><re3>12_



Rolling Ball: Initial and Final Boundary Conditions

0(a) — 0,
0(a) — 0,
o (@, 2(a) = | ala) —da | =0
Qa) — Q,
z(a) — z,4

([5G Sromicsonfao]) - a
¥ (b)) = b(b) -
Q) —
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Rolling Ball: Path Inequality Constraints

Magnitude of Normal Force:

=0

N= Mg+<imi [0 s+ Q0 x (R3¢ ¢ +20:¢1) + 62¢) + B¢ ,r>—Fe,3

Static Friction:

_fsa =

0

1. Obstacle Avoidance:
pi<lz—v| = p<lz—v” 1<j<K
2. No Detachment: 0 < N < e < N
3. No Slip: fs < usN <= f2 < 2N?
4. Bounded Acceleration Magnitudes:

07¢] +0:Ci| < M; = |07¢] + 0iC;

< M?

(A S m [ﬂ X s; + Q (n ¢+ 29;(;) 020+ 9;-4;] - F)

1< <n




Rolling Ball: Endpoint Cost Function, Integrand Cost
Function, and Performance Index

p(a,z(a),b,z(b)) =0

Small Acceleration Magnitudes Obstacle Avoidance
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Rolling Ball: Endpoint Function and Hamiltonian
G (a,2(a), & b,2(b),v) = p(a,2(a),b,z(0) + £ o (a,2(a)) + v 4 (b,2(b))

oga; o ([q(b) [ﬁ 2iso T’”Ci(@i(b))]ﬁ q(b)il] b) 12 — A
=¢" | q(a) - qa +ul 0(b) — 0,

Q(a) — Qb) —

z(a) — za z(b) — zp

H((t,z,\,u) = L(t,z,u) + ATe (t,z,u)

Small Acceleration Magnitudes Obstacle Avoidance
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Direct Method

GC Path Magnitude of Normal Force
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Predictor-Corrector Path-Following in hy = ho =0 7 5¢9
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Predictor-Corrector Path-Following in hy = hy =0 7 59
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Rolling Ball Trajectory Optimization

1. Initialize Set all the constraint weights to zero (i.e.
hi = hy = K1 = ke = k3 = k4 = k5 = 0) and use the direct
method (i.e. GPoPS—-1I with SNOPT) to construct an initial
solution which violates the obstacle avoidance constraint, but
which inactively satisfies the no detachment, no slip, and
bounded acceleration magnitude constraints.

Small Acceleration Magnitudes

. . 2
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L(t,z,u) = ZE




Rolling Ball Trajectory Optimization

2. Clamp Enforce the inactively satisfied no detachment, no slip,
and bounded acceleration magnitude constraints by setting
K1 = Ko = k3 = k4 = K5 = lel0.

Small Acceleration Magnitudes Obstacle Avoidance

3.1
L (t,x,u) = ZE

2
+ Z hj max? {OJ)f - ‘Z - vj‘z} +
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+ le,]l)nla‘x/1 {O‘ f;z — ;13/\"2} + Z le10 max” {l]_ ()/"(//’ +
i=1

No Slip

Bounded Acceleration Magnitudes

3. Wriggle Starting from the direct method solution, use the
predictor-corrector path-following indirect method to gradually
increase the obstacle heights hy = ho from 0 up to 59 in
order to push the GC path outside the obstacles.




Future Work

& In these numerical experiments, the predictor-corrector path-following
method evolves the continuation parameter monotonically.
& Are there scenarios which reveal turning points in the continuation
parameter?

& The predictor-corrector path-following method stagnates once the
boundary of a path inequality constraint, enforced via a heavily-weighted
penalty function, is encountered.

& s it possible to avoid or proceed beyond such obstacles?



vaTLAB Software Tools

» The ODE TPBVP solvers bvptwp and sbvp are used by the
indirect method.

& Both bvptwp and sbvp are 8"-order accurate and can
exploit vectorized ODE functions and ODE Jacobians.

& bvptwp uses mono-implicit Runge-Kutta (MIRK) or
collocation methods with deferred corrections and offers 4
non-continuation variants, twpbvp_m, twpbvpc_m,
twpbvp_1, and twpbvpc_1, and 2 monotonic continuation
variants, acdc and acdcc.

# sbvp uses collocation methods.

> GPOPS-IT is the direct method solver used.

#® GPOPS-I1I uses hp-adaptive mesh refinement and
pseudospectral collocation methods to approximate the states
and controls.

#® GPOPS-TIT provides estimates of the costates.

#® GPOPS-IT can exploit vectorized Jacobians and Hessians.

# GPOPS-IT uses IPOPT or SNOPT to solve the NLP

problems.

» ADiGator supplies 15t and 2"? vectorized forward mode
automatic derivatives to bvptwp, sbvp, and GPOPS—I1I:
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