Inverse Linear-Quadratic problem

Sofya Maslovskaya

ENSTA ParisTech

Joint work with Frédéric Jean (ENSTA ParisTech)

PGMO days November 21, 2018

1 Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

1 Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

1 Inverse optimal control

Motivation

- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

Modeling of human movements

- goal-oriented walking
- arm reaching movements

Assumption in physiology: humans movements are optimal

What do we minimize?

Inverse optimal control problem = to recover the cost which we minimize

1 Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

Inverse optimal control

(Direct) Optimal control problem

Given a dynamics $\dot{x} = f(x, u)$ and a cost $C(x_u)$: for any time T > 0 and pair of points x_0, x_T , find a trajectory x_{u^*} solution of

 $\inf\{C(x_u) : x_u \text{ sol. of } \dot{x} = f(x, u) \text{ s.t. } x_u(0) = x_0, x_u(T) = x_T\}.$

Optimal synthesis = the set of all optimal trajectories for all T, x_0, x_T .

Inverse optimal control problem

Given $\dot{x} = f(x, u)$ and a set Γ of trajectories: find a cost $C(x_u)$ such that every $\gamma \in \Gamma$ is solution of

 $\inf\{C(x_u) : x_u \text{ sol. of } \dot{x} = f(x, u) \text{ s.t. } x_u(0) = \gamma(0), x_u(T) = \gamma(T)\}.$

Is the cost C corresponding to Γ unique?

1 Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

Injectivity

Fix \mathcal{C} family of cost functions

Injectivity problem: is there a **unique** cost $C \in C$ corresponding to a given optimal synthesis?

Definition

 C_1, C_2 are **equivalent** if their optimal synthesis coincide

two costs C and $c \times C$ with constant c > 0 have always the same minimizers $\Rightarrow C$ and $c \times C$ are **trivially equivalent**

Injectivity of the inverse problem \iff no costs in C non-trivially equivalent

Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

Linear-quadratic (LQ) case

• Dynamics: controllable linear system on \mathbb{R}^n

$$\dot{x} = Ax + Bu, \qquad u \in \mathbb{R}^m$$

• Class \mathcal{L} : class of costs defined by quadratic Lagrangians L(x, u)

$$\int_0^T L(x,u) = \int_0^T x^{\mathsf{T}} Q x + 2x^{\mathsf{T}} S u + u^{\mathsf{T}} R u$$

- $\bullet \ Q = Q^{\scriptscriptstyle \top} \ge 0, \qquad R = R^{\scriptscriptstyle \top} > 0, \qquad Q S R^{-1} S^{\scriptscriptstyle \top} \ge 0$
- ${\scriptstyle \bullet}\,$ the Hamiltonian H has no pure imaginary eigenvalues

$$H = \begin{pmatrix} A - BR^{-1}S^{\mathsf{T}} & BR^{-1}B^{\mathsf{T}} \\ Q - SR^{-1}S^{\mathsf{T}} & -A^{\mathsf{T}} + SR^{-1}B^{\mathsf{T}} \end{pmatrix}$$

Inverse LQ: to determine (Q, R, S) from the given optimal synthesis

[Kalman 1964, Jameson-Kreindler 1973, Nori-Frezza 2004]

Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

Solution of the direct problem

For any triple T, x(0), x(T) there exists a unique optimal solution

Solution of direct LQ pb with fixed T, x(0), x(T) [Ferrante 2005] $x(t) = e^{t(A-BK_{+})}y_{+} + e^{t(A-BK_{-})}y_{-}, \quad t \in [0,T],$

K₊, K₋ det. uniquely by (Q, R, S) and (A, B) via algebraic Riccati eq.
y₊, y₋ linear functions of x(0), x(T)

Parameterization of the optimal synthesis

denote $A_+ = A - BK_+$ and $A_- = A - BK_-$

 \Rightarrow each optimal solution writes $x(t) = e^{tA_+}y_+ + e^{tA_-}y_-$

Theorem

Matrices (A_+, A_-) are uniquely determined by the optimal synthesis

Inverse problem: to determine (Q, R, S) from the given (A_+, A_-)

Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

Reduction to the canonical class of costs

Fix dynamics A, B

Definition (Canonical class of costs) $L_c(x, u) = (u + Kx)^{\top} \tilde{R} (u + Kx)$ • K is s.t. A - BK is stable • $\tilde{R} = \tilde{R}^{\top} > 0$ is s.t. $\det(\tilde{R}) = 1$ (normalization)

Each $x^{\top}Qx + 2x^{\top}Su + u^{\top}Ru$ is equivalent to $(u + Kx)^{\top}\tilde{R}(u + Kx)$ \rightarrow take $K = K_{+}$ and $\tilde{R} = \frac{1}{\det(R)}R$

Canonical LQ problem

Cost :
$$L_c(x, u) = (u + Kx)^{\top} R(u + Kx)$$

Dynamics : $\dot{x} = Ax + Bu$

Inverse problem: determine R, K from given A_+, A_-

 $A_+ \mapsto \text{unique } K = K_+$

 K_+ unique solution of $A_+ = A - BK_+$

Injectivity: is the matrix R corresponding to A_+, A_- unique?

Inverse optimal control

- Motivation
- Definition
- Injectivity

2 Linear-Quadratic case

- Direct LQ problem
- Inverse LQ problem

\bullet Injectivity

• Reconstruction

Intermediate reduction

Canonical LQ problem

Cost :
$$L_c(x, u) = (u + K_+ x)^\top R(u + K_+ x)$$

Dynamics : $\dot{x} = Ax + Bu$

 $v=u-K_+x~\rightarrow$ new reduced LQ problem:

Reduced LQ problem

Cost :
$$L_R(u) = u^{\mathsf{T}} R u$$

Dynamics : $\dot{x} = (A - BK_+)x + Bu = A_+x + Bu$

Is the reduced LQ problem injective?

Example of equivalent costs

Product structure of reduced LQ problem (with 2 elements) (x_1, x_2) separation of variable $x \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and (u_1, u_2) of $u \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$

Let the dynamics be:
$$\begin{cases} \dot{x}_1 = A_1 x_1 + B_1 u_1, \\ \dot{x}_2 = A_2 x_2 + B_2 u_2. \end{cases}$$

• Let R_1, R_2 be positive-definite, s.t. $det(R_1) = det(R_2) = 1$

• For an arbitrary $\alpha > 0$ consider R^{α} :

$$u^{\mathsf{T}}R^{\alpha}u = \alpha u_1^{\mathsf{T}}R_1u_1 + \frac{1}{\alpha}u_2^{\mathsf{T}}R_2u_2,$$

• $u = (u_1, u_2)$ minimizes $u^{\mathsf{T}} R^{\alpha} u \iff u_1 \text{ min. } u_1^{\mathsf{T}} R_1 u_1 \text{ and } u_2 \text{ min. } u_2^{\mathsf{T}} R_2 u_2$ minimizing traj. $\gamma = (\gamma_1, \gamma_2)$ does not depend on α

 \Rightarrow For any $\alpha \neq \beta$, R^{α} and R^{β} are equivalent

Structure of non-injective case

Theorem

R admits an equivalent cost \iff the reduced LQ problem admits product str.

Ideas of the proof:

- Pontryagin extremals of equivalent costs project to the same trajectories
- there exists a diffeomorphism between extremals of equivalent costs
- the diffeomorphism is a constant linear map
- its characteristic spaces determine decomposition in the reduced LQ pb

Injectivity criterion

Theorem

Reduced LQ problem admits product structure with N components \iff in some coordinates A_+, A_- have respective block-diagonal forms with N blocks

 \Rightarrow injectivity condition reposes on matrices A_+, A_-

Corollary

The LQ problem on the canonical class of costs is injective \iff there is no coordinates in which A_+, A_- have respective block-diagonal forms

Inverse optimal control

- Motivation
- Definition
- Injectivity

- Direct LQ problem
- Inverse LQ problem
- Injectivity
- Reconstruction

Reconstruction of R

Injective case: R is the unique $R = R^{\top} > 0$ and det(R) = 1 satisfying

$$X = \int_0^\infty e^{tA_+} B R^{-1} B^{\top} e^{t(A_+)^{\top}} dt$$

(A_- - A_+) X = B R^{-1} B^{\top} and A_+ X = -X A_-^{\top}

Non-injective case?

Non-injective case: $A_+, A_- \rightarrow N$ respective blocks $(A_+^1, A_-^1), \ldots, (A_+^N, A_-^N)$

Product structure of non-injective case

$$\begin{split} u^{\mathsf{T}} R u &= u_1^{\mathsf{T}} R_1 u_1 + \dots + u_N^{\mathsf{T}} R_N u_N \\ \begin{cases} \dot{x}_1 &= A_+^1 x_1 + B_1 u_1 \\ \vdots \\ \dot{x}_N &= A_+^N x_N + B_N u_N \end{cases} \end{split}$$

 \Rightarrow the inverse problem on R can be reduced to N injective problems

Recover unique R_i from A_+^i, A_-^i Cost : $L_i = u_i^{\mathsf{T}} R_i u_i$ Dynamics : $\dot{x}_i = A_+^i x_i + B_i u_i$

Canonical cost reconstruction

- Given data: (A, B) and Γ (set of traj.)
- Output: canonical cost $L_c(x, u) = (u + Kx)^{\mathsf{T}} R(u + Kx)$

Steps of the reconstruction:

- recover unique A_+, A_- from Γ ;
- 2 recover unique $K = K_+$ from $A_+ = A BK_+$;
- **③** check from A_+, A_- if the inverse problem is injective
 - in the injective case: find R as the unique solution of alg. equations
 - ▶ in the non-injective case: the pb is reduced to several injective problems

Thank you for your attention!