Robust Bang-Bang Control through redundancy

T. Haberkorn¹, A. Olivier², E. Trélat²

¹IDP, Université d'Orléans ²LJLL, Sorbonne Université (Paris VI)

PGMO Days 2018 - Paris Saclay

November 21th 2018

T. Haberkorn, A. Olivier, E. Trélat

Dynamical Context

▷ Nonlinear control system in finite dimension

$$\dot{x}(t) = f(x(t), u(t))$$

with state $x \in \mathbb{R}^n$, control $u = (u_1, \cdots, u_m) \in \{0, 1\}^m \subset \mathbb{R}^m$ and dynamics $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$.

Attitude control constraint

The attitude control system can only apply on/off thrusts, *another way of saying the controls have to be bang-bang*.

T. Haberkorn, A. Olivier, E. Trélat

Initial trajectory

Solving an optimal control problem (minimum time, L^1 -norm of control...) can yield bang-bang trajectories (while getting rid of possible singular control).

> Such trajectories have a minimal number of switching times

[KS89] Krener, Schättler. 1989.

T. Haberkorn, A. Olivier, E. Trélat

- ▷ *u* a solution of optimal control problem $\dot{x}(t) = f(x(t), u(t))$ with $x(0) = x_0$ and $x(t_f) = x_f$
- When applied to corresponding real world system, modeling errors, perturbations...

▷ Bang-bang control completely characterised by (initial value,) switching times and switching index : $((i_1, t_1), ..., (i_N, t_N))$.

Reduced End-Point Mapping

Let $u = (t_1, \ldots, t_N)$ be a bang-bang control. The reduced end-point mapping associated to the switching times is :

$$E(t_1,\ldots,t_N,t_f)=x_u(t_f)$$

where $x_u(\cdot)$ is solution to $\dot{x}_u(t) = f(x_u(t), u(t))$, with $x_u(0) = x_0$.

T. Haberkorn, A. Olivier, E. Trélat

Aim at a perturbed target

Let $(\overline{t}_1, \ldots, \overline{t}_N)$ be a control s.t. $E(\overline{t}_1, \ldots, \overline{t}_N) = x_f$, and δx a perturbation. Find (t_1, \cdots, t_N) s.t. $E(t_1, \ldots, t_N) = x_f + \delta x$.

▷ Let $\delta t = (t_1, \cdots, t_N) - (\overline{t}_1, \cdots, \overline{t}_N)$. Formally, we are looking for δt s.t. :

$$E((\overline{t}_1, \cdots, \overline{t}_N) + \delta t) = x_f + \delta x$$
$$E(\overline{t}_1, \cdots, \overline{t}_N) + dE(\overline{t}_1, \cdots, \overline{t}_N) \cdot \delta t + o(\delta t) = x_f + \delta x$$
$$dE(\overline{t}_1, \cdots, \overline{t}_N) \cdot \delta t = \delta x \quad (\text{at order 1})$$

▷ Linear system with *n* equations and *N* unknowns.

T. Haberkorn, A. Olivier, E. Trélat

Aim at a perturbed target

Let $(\overline{t}_1, \ldots, \overline{t}_N)$ be a control s.t. $E(\overline{t}_1, \ldots, \overline{t}_N) = x_f$, and δx a perturbation. Find (t_1, \cdots, t_N) s.t. $E(t_1, \ldots, t_N) = x_f + \delta x$.

 \triangleright Let $\delta t = (t_1, \cdots, t_N) - (\overline{t}_1, \cdots, \overline{t}_N)$. Formally, we are looking for δt s.t. :

$$E((\overline{t}_1, \cdots, \overline{t}_N) + \delta t) = x_f + \delta x$$

$$E(\overline{t}_1, \cdots, \overline{t}_N) + dE(\overline{t}_1, \cdots, \overline{t}_N) \cdot \delta t + o(\delta t) = x_f + \delta x$$

$$dE(\overline{t}_1, \cdots, \overline{t}_N) \cdot \delta t = \delta x \text{ (at order 1)}$$

 \triangleright Linear system with *n* equations and *N* unknowns.

Proposition : End-point mapping differential

 $E(\overline{t}_1 + \delta t_1, \cdots, \overline{t}_N) = E(\overline{t}_1, \cdots, \overline{t}_N) + \delta t_1 \cdot v_1(t_f) + o(\delta t_1)$, where v_1 is solution to the initial value problem

$$\dot{v}_1(t) = rac{\partial f}{\partial x}(\overline{x}(t),\overline{u}(t))v_1(t)$$

+ a given initial condition at t_1 .

Intermediary least-square problem

Let $(\overline{t}_1, \dots, \overline{t}_N)$ be a control s.t. $E(\overline{t}_1, \dots, \overline{t}_N) = x_f$, and δx a perturbation. Find (t_1, \dots, t_N) s.t. at the 1st order $E(t_1, \dots, t_N) = x_f + \delta x$

$$dE(\overline{t}_1,\cdots,\overline{t}_N)\cdot\delta t=\delta x,$$

or

$$\min_{\delta t \in \mathbb{R}^N} \| dE(\overline{t}_1, \cdots, \overline{t}_N) \cdot \delta t - \delta x \|^2.$$

Least-square solution - pseudo-inverse

The smallest norm solution is $\delta t = dE(\overline{t}_1, \cdots, \overline{t}_N)^{\dagger} \cdot \delta x$. With the estimate

 $\|\delta t\| \le \|\delta x\|/\sigma_{\min}$

where σ_{min} is the smallest singular value of $dE(\overline{t}_1, \cdots, \overline{t}_N)$.

Intermediary least-square problem

Let $(\overline{t}_1, \dots, \overline{t}_N)$ be a control s.t. $E(\overline{t}_1, \dots, \overline{t}_N) = x_f$, and δx a perturbation. Find (t_1, \dots, t_N) s.t. at the 1st order $E(t_1, \dots, t_N) = x_f + \delta x$

$$dE(\overline{t}_1,\cdots,\overline{t}_N)\cdot\delta t=\delta x,$$

or

$$\min_{\delta t \in \mathbb{R}^N} \| dE(\overline{t}_1, \cdots, \overline{t}_N) \cdot \delta t - \delta x \|^2.$$

Least-square solution - pseudo-inverse

The smallest norm solution is $\delta t = dE(\overline{t}_1, \cdots, \overline{t}_N)^{\dagger} \cdot \delta x$. With the estimate

 $\|\delta t\| \le \|\delta x\|/\sigma_{\min}$

where σ_{min} is the smallest singular value of $dE(\overline{t}_1, \cdots, \overline{t}_N)$.

T. Haberkorn, A. Olivier, E. Trélat

Retrograde end-point mapping

Let $u = (t_1, \cdots, t_N)$ be a bang-bang control and $t \in [0, t_f]$. The retrograde end-point mapping is defined as

$$\tilde{E}(t, t_1, \cdots, t_N) = \tilde{x}(t_f - t)$$

where $\tilde{x}(\cdot)$ solves the initial value problem

$$\dot{\tilde{x}}(t) = -f(\tilde{x}(t), u(t_f - t))$$
$$\tilde{x}(0) = x_f$$

▷ Let $t \in [0, t_f]$, and $\overline{x}(\cdot), (\overline{t}_1, \cdots, \overline{t}_N)$ be a reference trajectory. A perturbation $\delta x(t)$ is observed at time t.

Problem

How to change the switching times $(\overline{t}_1, \dots, \overline{t}_N)$ so as to correct the trajectory and aim at the target x_f ?

With the previous notations, it writes as

$$\begin{split} \tilde{E}(t,(t_1,\cdots,t_N)) &= \overline{x}(t) + \delta x(t) \\ \text{That is} \quad \tilde{E}(t,(\overline{t}_1,\cdots,\overline{t}_N) + \delta t) &= \overline{x}(t) + \delta x(t) \\ \text{So} \quad \delta t &= d\tilde{E}(t,\overline{t}_1,\cdots,\overline{t}_N)^{\dagger} \cdot \delta x(t) \\ \text{With the norm estimate} \quad \|\delta t\| \leq \|\delta x(t)\| / \sigma_{\min}(t) \end{split}$$

▷ Let $t \in [0, t_f]$, and $\overline{x}(\cdot), (\overline{t}_1, \cdots, \overline{t}_N)$ be a reference trajectory. A perturbation $\delta x(t)$ is observed at time t.

Problem

How to change the switching times $(\overline{t}_1, \dots, \overline{t}_N)$ so as to correct the trajectory and aim at the target x_f ?

With the previous notations, it writes as

$$\begin{split} \tilde{E}(t,(t_1,\cdots,t_N)) &= \overline{x}(t) + \delta x(t) \\ \text{That is} \quad \tilde{E}(t,(\overline{t}_1,\cdots,\overline{t}_N) + \delta t) &= \overline{x}(t) + \delta x(t) \\ \text{So} \quad \delta t &= d\tilde{E}(t,\overline{t}_1,\cdots,\overline{t}_N)^{\dagger} \cdot \delta x(t) \\ \text{With the norm estimate} \quad \|\delta t\| \leq \|\delta x(t)\|/\sigma_{\min}(t) \end{split}$$

10/18

Algorithm

Choose a subdivision (τ_1, \cdots, τ_x) of $[0, t_f]$.

 \triangleright Mesure the perturbation $\delta x(\tau_i)$.

 \triangleright Apply the correction $\delta t = d\tilde{E}(\tau_i, \bar{t}_1, \cdots, \bar{t}_N)^{\dagger} \cdot \delta x(\tau_i)$, for which we have :

 $\|\delta t_i\| \leq \|\delta x(\tau_i)\|/\sigma_{\min}(\tau_i)$

- ▷ The singular values of $d\tilde{E}(\tau, \bar{t}_1, \cdots, \bar{t}_N)$ at time τ directly depend on the number of t_i s.t. $t_i > \tau$.
- Idea 1 : add switching times in order to make the control more robust...
- ▷ Idea 2 : so that the correction size δt is *controlled* (in particular does not change the switching times order)

Algorithm

Choose a subdivision (τ_1, \cdots, τ_x) of $[0, t_f]$.

- ▷ Mesure the perturbation $\delta x(\tau_i)$.
- \triangleright Apply the correction $\delta t = d\tilde{E}(\tau_i, \bar{t}_1, \cdots, \bar{t}_N)^{\dagger} \cdot \delta x(\tau_i)$, for which we have :

 $\|\delta t_i\| \leq \|\delta x(\tau_i)\|/\sigma_{\min}(\tau_i)$

- ▷ The singular values of $d\tilde{E}(\tau, \bar{t}_1, \cdots, \bar{t}_N)$ at time τ directly depend on the number of t_i s.t. $t_i > \tau$.
- ▷ Idea 1 : add switching times in order to make the control more robust...
- ▷ Idea 2 : so that the correction size δt is *controlled* (in particular does not change the switching times order)

Algorithm

Choose a subdivision (τ_1, \cdots, τ_x) of $[0, t_f]$.

▷ Mesure the perturbation $\delta x(\tau_i)$.

 \triangleright Apply the correction $\delta t = d\tilde{E}(\tau_i, \bar{t}_1, \cdots, \bar{t}_N)^{\dagger} \cdot \delta x(\tau_i)$, for which we have :

 $\|\delta t_i\| \leq \|\delta x(\tau_i)\|/\sigma_{\min}(\tau_i)$

- ▷ The singular values of $d\tilde{E}(\tau, \bar{t}_1, \cdots, \bar{t}_N)$ at time τ directly depend on the number of t_i s.t. $t_i > \tau$.
- ▷ Idea 1 : add switching times in order to make the control more robust...
- \triangleright Idea 2 : so that the correction size δt is *controlled* (in particular does not change the switching times order)

Robustness criterion

We define the cost to mesure the bang-bang trajectory as

$$C_r(u) = \int_0^{t_N} \frac{1}{\sigma_{\min}(t)^2} \, dt$$

Robustification problem

Starting from a control $u = (t_1, ..., t_N)$, for instance solution of a minimum L^1 -norm, add switching times $(s_1, ..., s_\ell)$ solution to the optimization problem :

$$\min_{s.t. E(t_1,\cdots,t_N,s_1,\cdots,s_\ell)=x_f} C_r(t_1,\cdots,t_N,s_1,\cdots,s_\ell) + \int_0^{t_f} \|u\|_1 dt$$

12/18

PGMO Days 2018

T. Haberkorn, A. Olivier, E. Trélat

Robustness criterion

We define the cost to mesure the bang-bang trajectory as

$$C_r(u) = \int_0^{t_N} \frac{1}{\sigma_{\min}(t)^2} \, dt$$

Robustification problem

Starting from a control $u = (t_1, ..., t_N)$, for instance solution of a minimum L^1 -norm, add switching times $(s_1, ..., s_\ell)$ solution to the optimization problem :

$$\min_{s.t. E(t_1,\cdots,t_N,s_1,\cdots,s_\ell)=x_f} C_r(t_1,\cdots,t_N,s_1,\cdots,s_\ell) + \int_0^{t_f} \|u\|_1 dt$$

T. Haberkorn, A. Olivier, E. Trélat

▷ Application to the equations of the angular velocity $\vec{\omega} = (p, q, r)$.

Simplified equations for the angular velocities

$$\dot{p}(t) = a_1 q(t) r(t) + \sum_{k=1}^{m} b_1^k u_k(t)$$

 $\dot{q}(t) = a_2 p(t) r(t) + \sum_{k=1}^{m} b_2^k u_k(t)$
 $\dot{r}(t) = a_3 p(t) q(t) + \sum_{k=1}^{m} b_3^k u_k(t)$

▷ Perturbations introduced with $a_{1,2,3}^{\varepsilon}(t) = a_{1,2,3} + \varepsilon h_i(t)$ with periodic $\|h_i\|_{\infty} = 1$.

13/18

PGMO Days 2018

T. Haberkorn, A. Olivier, E. Trélat

▷ Exemple for 4 thrusters, i.e., 4 controls.

Figure – Initial Control

Figure – Robustified Control

Figure – Corrected Trajectory. Relative error : $||x_{per} - x_f|| / ||x_f|| = 1.3 \times 10^{-1}$, $||x_{cor} - x_f|| / ||x_f|| = 5.5 \times 10^{-3}$.

Figure – Maximum absorbed perturbation ε w.r.t. robustness criterion.

 \triangleright Tracking fails = correction breaks original switching times order is POISSON

Redundancy \Rightarrow Robustness

16/18

Conclusion

Redundancy made off-line to maximize criterion for robustness. Feedback control stays bang-bang. Not yet adapted to large system.

Prospect

Need to *guess* the number of switching times to add. Could be extended to multi (more than 2) valued controls

[A018] Éric Bourgeois, Thomas Haberkorn, David-Alexis Handschuh, A. Olivier and Emmanuel Trélat Redundancy implies robustness for bang-bang control strategy. Optimal Control Appl. Methods. Sept. 2018

17/18

PGMO Days 2018

Conclusion

Redundancy made off-line to maximize criterion for robustness.

Feedback control stays bang-bang.

Not yet adapted to large system.

Prospect

Need to *guess* the number of switching times to add. Could be extended to multi (more than 2) valued controls.

[A018] Éric Bourgeois, Thomas Haberkorn, David-Alexis Handschuh, A. Olivier and Emmanuel Trélat Redundancy implies robustness for bang-bang control strategy. Optimal Control Appl. Methods. Sept. 2018

Thank you for your attention.

T. Haberkorn, A. Olivier, E. Trélat

 $\mathsf{Redundancy} \Rightarrow \mathsf{Robustness}$

PGMO Days 2018 18 / 18