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OPTIMAL CONTROL PROBLEM

min / C(u (t))dt,
(x,u)eXxU

x(t) = g(u(t),x(t)), fora.e. te]0,ts],
s.t.
Other constraints...

(OCP)

Use of past data to learn how to control a system efficiently

“Model-based reinforcement learning” - [Recht, 2018]
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DYNAMICS ARE LEARNED FROM QAR DATA
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TRAJECTORY ACCEPTABILITY

min / C(u( (t))dt,
(x,u)eXxU

AOCP
s.t. { x(t) = g(u(t),x(t)), a.e tel0,tf], ( )

Other constraints...

= 2 = (X, 4) solution of (AOCP).

m Is Z inside the validity region of the dynamics model g 7
m Does it look like a real trajectory ?

Pilots acceptance  Air Traffic Control!
How can we quantify the closeness from the optimized
trajectory to the set of real flights?




OPTIMIZED TRAJECTORY LIKELIHOOD

Assumption: We suppose that the real flights are observations of
the same functional random variable Z = (Z;) valued in C(T, E),
with E compact subset of RY and T = [0, t¢].

How likely is it to draw the optimized trajectory from the law
of Z7?
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How TO APPLY THIS TO FUNCTIONAL DATA?

Problem: Computation of probability densities in infinite
dimensional space.

m Standard approach in Functional Data Analysis: use
Functional Principal Component Analysis to decompose the
data in a small number of coefficients

m Or: we can use the marginal densities

Real flights

—— Simulated trajectory
—— Marginal density
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m y new trajectory,

m f(y(t)) marginal likelihood of y at t, i.e. likelihood of
observing Z; = y(t).
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How DO WE AGGREGATE THE MARGINAL
LIKELIHOODS?

m f; marginal density of Z, i.e. probability density function of Z;,
m y new trajectory,

m f(y(t)) marginal likelihood of y at t, i.e. likelihood of
observing Z; = y(t).

MEAN MARGINAL LIKELIHOOD

MML(Z,y) = /‘wm, t)]dt,

where 9 : LY(E,R,) x R — [0;1] is a continuous scaling map,

because marginal densities may have really different shapes.



How DO WE AGGREGATE THE MARGINAL
LIKELIHOODS?

Possible scalings are the normalized density

fr(y (1))

f' Y
1212)

Y[fe, y ()] =



How DO WE AGGREGATE THE MARGINAL
LIKELIHOODS?

Possible scalings are the normalized density

fr(y (1))

f' )
1212)

Y[fe, y ()] =

or the confidence level

Ulfe, y(1)] :=P(f(Z:) < fe(y(1))) .

z-1l2)

Pt y(8): = P(fZ:) = Fiy(D))

fly(t)
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How DO WE DEAL WITH SAMPLED CURVES?

In practice, the m trajectories are sampled at variable discrete
times:

TP :={(t],2])} 1<j<n C T x E, zj = 2'(t),
1<r<m

V= {(f,y))}j-1 C T x E, y; = y(E).



How DO WE DEAL WITH SAMPLED CURVES?

In practice, the m trajectories are sampled at variable discrete

times:
TP = {(t},2])} 1zj<n CT X E, zj = 2'(t)),
1<r<m
Y = {(&,y)}j=1 C T x E, yi = y(t).

Hence, we approximate the MML using a Riemann sum which
aggregates consistent estimators ;" of the marginal densities fgj
J

1 s ne
j=1
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HOwW CAN WE ESTIMATE MARGINAL DENSITIES?

m In practice, the altitude plays the role of time, so we can't
assume the same sampling for each trajectory;

m Assume sampling times {tj’ j=1,....,mr=1,...,m} to be
i.i.d. observations of a r.v. T, indep. Z;

m Our problem can be seen as a conditional probability density
learning problem with (X, Y) = (T, Zt), where f; is the
density of Z; = (Z7|T =t) = (Y|X).

1 We can apply SOA conditional density estimation techniques,
such as LS-CDE [Sugiyama et al., 2010],

2 We can use a fine partitioning of the time domain.



PARTITION BASED MARGINAL DENSITY ESTIMATION
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Idea: to average in time the marginal densities over small bins by
applying classical multivariate density estimation techniques to
each subset.
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We denote by:
m O:S — LY(E,R,) multivariate density estimation statistic,
m S={(zx)), € EN: N € N*} set of finite sequences,
m m the number of random curves;

m 7" subset of data points whose sampling times fall in the bin
containing t;

m 7™ := O[T;™] estimator trained using 7;".
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CONSISTENCY

ASSUMPTION 1 - POSITIVE TIME DENSITY
v € L°(E,R;) density function of T, s.t.

vy = esssupv(t) < oo, v_ = essinfy(t) > 0.
teT teT

ASSUMPTION 2 - LIPSCHITZ IN TIME
Function (t,z) € T x E — f;(z) is continuous and

fn(z) — fi,(2)| < Lty — t2], L>0.

ASSUMPTION 3 - SHRINKING BINS
The homogeneous partition {B;"}/"; of [0; t¢], with binsize b, is
S.t.

lim b, =0, lim mb,, = .
m—00 m—00



CONSISTENCY

ASSUMPTION 4 - 1.1.D. CONSISTENCY

m G arbitrary family of probability density functions on E, p € G,

] S/’)V i.i.d sample of size N drawn from p valued in S.

The estimator obtained by applying © to SILV, denoted by
pN = o[s)] € L'(E,Ry),
is a (pointwise) consistent density estimator, uniformly in p:

Forall z€ E,e > 0,1 > 0, there is N, o, > 0 such that, for any p € G,
N>N.q =P (‘ﬁN(z) - p(z)’ < 5) >1— ;.
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CONSISTENCY

THEOREM 1
Under assumptions 1 to 4, forany z€ E and t € T, Q’,’n’(t)(z)

consistently approximates the marginal density f;(z) as the number
of curves m grows:

m—-00

ve>0, lim P(|f"(2) ~ f(z)| <) =1,
Note that:
mm—o0# N— oo,
m Number of samples = random,

m Training data not i.i.d.
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How GOOD IS IT COMPARED TO OTHER METHODS?

m Training set of m = 424 flights ~ 334 531 point observations,
m Test set of 150 flights

Optimized flights
Real Opt2
(50) (50)
with operational without operational
constraints constraints

m Discrimination power comparison with (gmm-)FPCA and
(integrated) LS-CDE:

VAR. ESTIMATED LIKELIHOODS Tr. TIME
REAL OpTl OpT2

MML 0.63 + 0.07 0.43 + 0.08 0.13 + 0.02 58

FPCA 0.16 & 0.12  6.4e-03 £ 3.86-03  3.6E-03 £ 5.4E-03 20s

LS-CDE  0.77 £ 0.05 0.68 £+ 0.04 0.49 £ 0.06 141
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MML PENALTY

The MML can be used not only to assess the optimization
solutions, but also to penalize the optimization itself:

min / C(u (t))dt — AMML(Z, x),
(x,u)eXxU

s.t. { x(t) = 8u(t). x(1)), ae. te 0t

Other constraints...

(MML-AOCP)

m )\ sets trade-off between a fuel minimization and a likelihood
maximization,



PENALTY EFFECT
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TRAJECTORY ACCEPTABILITY CONCLUSION

1 General probabilistic criterion using marginal densities to
quantify the closeness between a curve and a set of random
trajectories,

2 Class of consistent plug-in estimators, based on “histogram’
of multivariate density estimators,

3 Applicable to the case of aircraft climb trajectories,

m Competitive with other well-established SOA approaches,

4 Particular Adaptive Kernel and Gaussian mixture
implementation,
m Showed that it can be used in optimal control problems to
obtain solutions close to optimal, and still realistic.
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