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Motivation - Optimal Control

ẋ(t) = g(u(t), x(t)) + ε(t)

Optimal Control Problem

Use of past data to learn how to control a system efficiently

“Model-based reinforcement learning” - [Recht, 2018]
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Flight optimization
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Dynamics are learned from QAR data

Black box

Recorded flights = functional data
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Trajectory acceptability

min
(x,u)∈X×U

∫ tf

0
C (u(t), x(t))dt,

s.t.

{
ẋ(t) = ĝ(u(t), x(t)), a.e. t ∈ [0, tf ],
Other constraints...

(AOCP)

⇒ ẑ = (x̂ , û) solution of (AOCP).

Is ẑ inside the validity region of the dynamics model ĝ ?
Does it look like a real trajectory ?

Pilots acceptance Air Traffic Control1

How can we quantify the closeness from the optimized
trajectory to the set of real flights?

1NATS UK air traffic control
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⇒ ẑ = (x̂ , û) solution of (AOCP).
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Optimized trajectory likelihood

Assumption: We suppose that the real flights are observations of
the same functional random variable Z = (Zt) valued in C(T,E ),
with E compact subset of Rd and T = [0, tf ].

How likely is it to draw the optimized trajectory from the law
of Z ?
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How to apply this to functional data?

Problem: Computation of probability densities in infinite
dimensional space.

Standard approach in Functional Data Analysis: use
Functional Principal Component Analysis to decompose the
data in a small number of coefficients
Or: we can use the marginal densities
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How do we aggregate the marginal
likelihoods?

ft marginal density of Z , i.e. probability density function of Zt ,

y new trajectory,

ft(y(t)) marginal likelihood of y at t, i.e. likelihood of
observing Zt = y(t).

Mean marginal likelihood

MML(Z , y) =
1

tf

∫ tf

0
ψ[ft , y(t)]dt,

where ψ : L1(E ,R+)× R→ [0; 1] is a continuous scaling map,

because marginal densities may have really different shapes.
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How do we aggregate the marginal
likelihoods?

Possible scalings are the normalized density

ψ[ft , y(t)] :=
ft(y(t))

max
z∈E

ft(z)
,

or the confidence level

ψ[ft , y(t)] := P (ft(Zt) ≤ ft(y(t))) .
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How do we deal with sampled curves?

In practice, the m trajectories are sampled at variable discrete
times:

T D := {(trj , z rj )} 1≤j≤n
1≤r≤m

⊂ T× E , z rj := z r (trj ),

Y := {(t̃j , yj)}ñj=1 ⊂ T× E , yj := y(t̃j).

Hence, we approximate the MML using a Riemann sum which
aggregates consistent estimators f̂ m

t̃j
of the marginal densities ft̃j :

EMMLm(T D ,Y) :=
1

tf

ñ∑
j=1

ψ[f̂ mt̃j , yj ]∆t̃j .
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How can we estimate marginal densities?

In practice, the altitude plays the role of time, so we can’t
assume the same sampling for each trajectory;

Assume sampling times {trj : j = 1, . . . , n; r = 1, . . . ,m} to be
i.i.d. observations of a r.v. T , indep. Z ;

Our problem can be seen as a conditional probability density
learning problem with (X ,Y ) = (T ,ZT ), where ft is the
density of Zt = (ZT |T = t) = (Y |X ).

1 We can apply SOA conditional density estimation techniques,
such as LS-CDE [Sugiyama et al., 2010],

2 We can use a fine partitioning of the time domain.
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Partition based marginal density estimation

Idea: to average in time the marginal densities over small bins by
applying classical multivariate density estimation techniques to
each subset.
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Consistency

We denote by:

Θ : S → L1(E ,R+) multivariate density estimation statistic,

S = {(zk)Nk=1 ∈ EN : N ∈ N∗} set of finite sequences,

m the number of random curves;

T m
t subset of data points whose sampling times fall in the bin

containing t;

f̂ mt := Θ[T m
t ] estimator trained using T m

t .
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Consistency

Assumption 1 - Positive time density
ν ∈ L∞(E ,R+) density function of T , s.t.

ν+ := ess sup
t∈T

ν(t) <∞, ν− := ess inf
t∈T

ν(t) > 0.

Assumption 2 - Lipschitz in time
Function (t, z) ∈ T× E 7→ ft(z) is continuous and

|ft1(z)− ft2(z)| ≤ L|t1 − t2|, L > 0.

Assumption 3 - Shrinking bins
The homogeneous partition {Bm

` }
qm
`=1 of [0; tf ], with binsize bm, is

s.t.
lim

m→∞
bm = 0, lim

m→∞
mbm =∞.
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Consistency

Assumption 4 - i.i.d. consistency

G arbitrary family of probability density functions on E , ρ ∈ G,

SN
ρ i.i.d sample of size N drawn from ρ valued in S.

The estimator obtained by applying Θ to SN
ρ , denoted by

ρ̂N := Θ[SN
ρ ] ∈ L1(E ,R+),

is a (pointwise) consistent density estimator, uniformly in ρ:

For all z ∈ E , ε > 0, α1 > 0, there is Nε,α1 > 0 such that, for any ρ ∈ G,

N ≥ Nε,α1 ⇒ P
(∣∣∣ρ̂N(z)− ρ(z)

∣∣∣ < ε
)
> 1− α1.
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Consistency

Theorem 1
Under assumptions 1 to 4, for any z ∈ E and t ∈ T, f̂ m`m(t)(z)

consistently approximates the marginal density ft(z) as the number
of curves m grows:

∀ε > 0, lim
m→∞

P
(
|f̂ mt (z)− ft(z)| < ε

)
= 1.

Note that:

m→∞ 6= N →∞,

Number of samples = random,

Training data not i.i.d.
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Marginal density estimation results
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How good is it compared to other methods?

Training set of m = 424 flights ' 334 531 point observations,

Test set of 150 flights

Discrimination power comparison with (gmm-)FPCA and
(integrated) LS-CDE:

Var. Estimated Likelihoods

Tr. Time

Real Opt1 Opt2
MML 0.63 ± 0.07 0.43 ± 0.08 0.13 ± 0.02

5s

FPCA 0.16 ± 0.12 6.4e-03 ± 3.8e-03 3.6e-03 ± 5.4e-03

20s

LS-CDE 0.77 ± 0.05 0.68 ± 0.04 0.49 ± 0.06

14h
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MML penalty

The MML can be used not only to assess the optimization
solutions, but also to penalize the optimization itself:

min
(x,u)∈X×U

∫ tf

0
C (u(t), x(t))dt − λMML(Z , x),

s.t.

{
ẋ(t) = ĝ(u(t), x(t)), a.e. t ∈ [0, tf ],
Other constraints...

(MML-AOCP)

λ sets trade-off between a fuel minimization and a likelihood
maximization,
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Penalty effect
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Trajectory acceptability conclusion

1 General probabilistic criterion using marginal densities to
quantify the closeness between a curve and a set of random
trajectories,

2 Class of consistent plug-in estimators, based on “histogram”
of multivariate density estimators,

3 Applicable to the case of aircraft climb trajectories,

Competitive with other well-established SOA approaches,

4 Particular Adaptive Kernel and Gaussian mixture
implementation,

Showed that it can be used in optimal control problems to
obtain solutions close to optimal, and still realistic.
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