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Introduction Generalised L1 optimal control problem

The problem

Mn-dimensional smooth manifold, f0, f1 smooth vector fields onM
ψ :M→ R smooth function (cost)
T > 0, q0,qf ∈M

minimise

∫T
0

|u(t)ψ(ξ(t))| dt (1)

under the constraints  ξ̇ = (f0 + u(t)f1) ◦ ξ(t)
ξ(0) = q0, ξ(T) = qf
u(·) ∈ L∞([0, T ], [−1, 1]).

(2)

Definition

An admissible pair (ξ̂, û) for (2) is a strong-local minimiser if there exists a
neighbourhood U in [0, T ]×M of the graph of ξ̂ such that∫T
0 |û(t)ψ(ξ̂(t))|dt 6

∫T
0 |u(t)ψ(ξ(t))|dt

for every admissible pair (ξ,u) of (2) with graph{ξ} ⊂ U.
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Introduction Generalised L1 optimal control problem

Necessary Optimality Conditions: PMP

h(p,q,u) : T∗M×U→ R control-dependent Hamiltonian

h(p,q,u) = 〈p, f0(q)〉+ u〈p, f1(q)〉+ p0|uψ(q)|

Pontryagin Maximum Principle: if (ξ̂, û) is optimal, then ξ̂ is the projection on
M of a solution (p̂(t), ξ̂(t)) (extremal) of the Hamiltonian system associated with
the Hamiltonian h.
Moreover (p̂(t), ξ̂(t)) satisfies the following conditions

(p̂(t),p0) 6= (0, 0) ∀t, p0 6 0 (3)

dp̂(t)

dt
= −

∂h

∂q
|
p̂(t),ξ̂(t),û(t)

dξ̂(t)

dt
=
∂h

∂p
|
p̂(t),ξ̂(t),û(t) a.e.t (4)

h(p̂(t), ξ̂(t), û(t)) = max
u∈U

h(p̂(t), ξ̂(t),u) a.e.t (5)

In the following, Hmax(p,q) = maxu∈U h(p,q,u)
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Introduction Generalised L1 optimal control problem

Necessary Optimality Conditions: PMP (cont’d)

The normal1 maximised Hamiltonian associated with (1)-(2) is

Hmax(p,q) = max
u∈[−1,1]

F0(p,q)+uF1(p,q)− |u||ψ(q)|, Fi(p,q) = 〈p, fi(q)〉 (6)

F1(p,q) −ψ(q) and F1(p,q) +ψ(q) are called switching functions and
determine the value of the control realising the maximum in (6).

We can distinguish three possible cases:

if |F1(p,q)| > |ψ(q)|, then the maximising control is either 1 or −1 (bang).

if |F1(p,q)| = |ψ(q)|, then the maximising control is not uniquely determined
by the PMP (singular).

if |F1(p,q)| < |ψ(q)|, the maximising control is 0 (inactivated).

1i.e. p0 < 0
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Introduction Hamiltonian methods

Aim of the talk

Establishing su�icient optimality condition via Hamiltonian methods for a
bang-inactivted-bang extremal with control of the form

û(t) =


u1 t ∈ [0, τ̂1),

0 t ∈ (τ̂1, τ̂2),

u3 t ∈ (τ̂2, T ],

(7)

0 < τ̂1 < τ̂2 < T , u1,u3 ∈ {1,−1}.

Working hypothesis (just for the talk):

· u1 = 1,u3 = −1

· ψ(ξ̂(t)) vanishes only once in [0, τ̂1] and only once in [τ̂2, T ]. In particular,

ψ > 0

ŝ1

ψ < 0

τ̂1 τ̂2

ψ < 0

ŝ2

ψ > 0
0 T

F. C. Chi�aro (LIS) Optimality for generalised L1 optimal control problems 5 / 20



Introduction Hamiltonian methods

Hamiltonian methods: main ideas

General se�ing: ϕ is smooth,
Hmax = maxu〈p, q̇〉−ϕ(q,u) is
C2

Define a Lagrangian submanifold
Λ ⊂ T∗M such that

(p̂(t), ξ̂(t)) ∈ Λ ∀t ∈ [0, T ]
the projection onM is a
di�eomorphism from Λ to U

pdq−Hmax(p,q)dt is exact
on [0, T ]×Λ

for every admissible pair (ξ,u)
such that the range of ξ is in U,
li� ξ(t) to some curve
(p(t), ξ(t)) ∈ Λ.

Λ

T∗M

M

U ξ̂

(p̂, ξ̂)
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Introduction Hamiltonian methods

Hamiltonian methods: main ideas (cont’d)

let

γ̂ = {(t, p̂(t), ξ̂(t)) : t ∈ [0, T ]} γ = {(t,p(t), ξ(t)) : t ∈ [T , 0]}

and Γ = γ ∪ γ̂
Since Γ is a closed circuit in [0, T ]×Λ, then∮

Γ

pdq−Hmax(p,q)dt = 0

since
∫T
0

ϕ(ξ̂(t), û(t))dt =

∫
γ̂

pdq−Hmax(p,q)dt∫T
0

ϕ(ξ(t),u(t))dt =

∫
γ

pdq− h(p,q,u(t))dt >
∫
γ

pdq−Hmax(p,q)dt

then
∫T
0 ϕ(ξ̂(t), û(t))dt 6

∫T
0 ϕ(ξ(t),u(t))dt.
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Introduction Hamiltonian methods

Hamiltonian methods for bang-inactivated-bang arcs

Main points for the application of Hamiltonian methods:

to ensure that maximised Hamiltonian of PMP is well defined, continuous and
piecewise smooth (in U), we need some regularity conditions

given any function α :M→ R with dα(ξ̂(0)) = p̂(0), its graph
Λ0 = {dα(x) : x ∈M} ⊂ T∗M is a Lagrangian submanifold with injective
projection ontoM.

let Λt be the image at the time t of Λ0 via the Hamiltonian flow; following
[ASZ98] 2 Λt projects injectively onto U as long as the second variation
associated with (1)-(2) is coercive
as for bang-bang extremals (see for instance [ASZ02,PS04] 3), the second
variation for (1)-(2) is finite-dimensional (only variations of the switching
times are considered)

2ASZ98 A. A. Agrachev, G. Stefani, P. Zezza Int. J Control 71 (5), 1998
3ASZ02 A.A. Agrachev, G. Stefani, P. Zezza, SIAM J CONTROL OPT, 41(4), 2002.
PS04 L. Poggiolini, G. Stefani, Syst Control Le�, 53(2), 2004.
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Results Assumptions

Regularity Assumptions

the reference trajectory satisfies PMP with p0 = −1 (normal extremal)

the function ψ does not vanish at the switching points: ψ(ξ̂(τ̂i)) 6= 0, i = 1, 2.

Lf0+û(t)f1ψ(ξ̂(t)) 6= 0 ∀t ∈ [0, T ]⇒ along the reference trajectories, ψ
annihilates at a finite number of points.

the switching functions have the following behaviour:

t

|ψ(ξ̂(t))|

ψ(ξ̂(t))

−|ψ(ξ̂(t))|

F1(p̂(t), ξ̂(t))

τ̂1 τ̂2ŝ1 ŝ2
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Results Assumptions

Regularity Assumptions (cont’d)

u1F1((p̂(t), ξ̂(t))) >
∣∣ψ(ξ̂(t))∣∣, t ∈ (0, τ̂1),∣∣F1((p̂(t), ξ̂(t)))∣∣ < ∣∣ψ(ξ̂(t))∣∣, t ∈ (τ̂1, τ̂2),

u3F1((p̂(t), ξ̂(t))) >
∣∣ψ(ξ̂(t))∣∣, t ∈ (τ̂2, T).

⇒ Along each arc the reference control is the only one that maximises over
u ∈ [−1, 1] the control-dependent Hamiltonian evaluated along λ̂.
d

dt

(
F1 − |ψ|

)
(p̂(t), ξ̂(t))|t=τ̂1 < 0

d

dt

(
F1 + |ψ|

)
(p̂(t), ξ̂(t))|t=τ̂2 > 0

Remark: in the equations here above, weak inequalities are a necessary condition for
the optimality of the reference extremal (PMP).
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Results Construction of the maximised Hamiltonian flow

Construction of the field of extremals

At the initial point of the reference extremal • = (p̂(0), ξ̂(0)), the maximised
Hamiltonian flow is given by

Ht(•) =



exp(t(~F0 +~F1 −Dψ))(•) t ∈ [0, ŝ1)

exp((t− ŝ1)(~F0 +~F1 +Dψ)) ◦Hŝ1(•) t ∈ (ŝ1, τ̂1)

exp((t− τ̂1)(~F0)) ◦Hτ̂1(•) t ∈ (τ̂1, τ̂2)

exp((t− τ̂2)(~F0 −~F1 −Dψ)) ◦Hτ̂2(•) t ∈ (τ̂2, ŝ2)

exp((t− ŝ2)(~F0 −~F1 +Dψ))) ◦Hŝ2(•) t ∈ (ŝ2, T ]

How to define Ht in a neighbourhood of • in T∗M?

Lemma
For (p,q) in a su�iciently small neighbourhood of •, the “switching times”
s1, s2, τ1, τ2 are smooth functions of (p,q).

Proof based on the Implicit Function Theorem and regularity assumptions
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Results Construction of the maximised Hamiltonian flow

Construction of the field of extremals (cont’d)

(p̂(0), ξ̂(0)) ξ̂

{ψ = 0} {F1 = |ψ|}

exp(s1(·)(~F0 +~F1 − ~ψ))(·)

exp(τ1(·)(~F0 +~F1 + ~ψ))(·)
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Results Construction of the maximised Hamiltonian flow

Construction of the field of extremals (cont’d)

For every (p,q) in a su�iciently small neighbourhood of •, the maximised
Hamiltonian flow is given by

Ht(p,q) =



exp(t(~F0 +~F1 −Dψ))(p,q) t ∈ [0, s1(p,q))

exp((t− s1)(~F0 +~F1 +Dψ)) ◦Hs1(p,q)(p,q) t ∈ (s1(p,q), τ1(p,q))

exp((t− τ1)(~F0)) ◦Hτ1(p,q)(p,q) t ∈ (τ1(p,q), τ2(p,q))

exp((t− τ2)(~F0 −~F1 −Dψ)) ◦Hτ2(p,q)(p,q) t ∈ (τ2(p,q), s2(p,q))

exp((t− s2)(~F0 −~F1 +Dψ))) ◦Hs2(p,q)(p,q) t ∈ (s2(p,q), T ]
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Results Invertibility of the flow

Invertibility of the flow

Consider a Lagrangian submanifold Λ0 ⊂ T ∗M containing (p̂(0), ξ̂(0)) and with
injective projection ontoM. Let Λt = Ht(Λ0), t > 0.
The following facts hold true:

the projection of Λt ontoM is injective for every t ∈ [0, τ̂1); indeed,
(π ◦Ht)∗ = exp(t(f0 + f1))

at t = τ̂1, π ◦Ht has di�erent le� and right linearisation;

if (π ◦Ht)∗ is non-singular at t = τ̂1, then the projection of Λt ontoM is
injective for every t ∈ [0, τ̂2);

at t = τ̂2, π ◦Ht has di�erent le� and right linearisation;

if (π ◦Ht)∗ is non-singular at t = τ̂2, then the projection of Λt ontoM is
injective for every t ∈ [0, T ].

⇒ To ensure the bijectivity of the projection of Λt ontoM, it is su�icient to check
the non-singularity of (π ◦Ht)∗ at the switching times.
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Results Invertibility of the flow

The second variation - construction

Consider a finite-dimensional sub-problem of the original one (1)-(2):
ξ̇ =


(f0 + f1) ◦ ξ(t) t ∈ [0, τ1)

(f0) ◦ ξ(t) t ∈ [τ1, τ2)

(f0 − f1) ◦ ξ(t) t ∈ [τ2, T ]

ξ(0) = q0, ξ(T) = qf
0 < τ1 < τ2 < T

(8)

for every candidate trajectory satisfying (8), perform a piecewise-a�ine
time-reparametrization ϕ

τ1 τ2

0 T

τ̂1 τ̂2

0 T

ϕ̇ = 1+ θ1

τ̂1
ϕ̇ = 1+ θ2

τ̂2−τ̂1
ϕ̇ = 1+ θ3

T−τ̂2

ϕ

θi = τ̂i − τ̂i−1 − τi − τi−1
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Results Invertibility of the flow

The second variation - construction

the OCP can be then wri�en as

min
x,θ

J(x,θ)

J(x,θ) = α(x) + β̂(ζT (x,θ)) +

∫
[0,τ̂1]∪[τ̂2,T ]

ϕ̇θ(t)
∣∣ψ̂t(ζt(x,θ))∣∣ dt.

where
ζt(x,θ) is the pullback of ξ(·) with respect to the reference flow
α and β are some smooth functions satisfying dα(q0) = p0, dβ̂(q0) = −pT
ψ̂t is ψ composed with the reference flow at the time t

the second variation is just the Hessian of J(x,θ) finite-dimensional problem!
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Results Invertibility of the flow

The second variation

Following ASZ02, it is possible to define a two dimensional subspace
V0 ⊂ Tq0

M× R3 and quadratic form J ′′ : Tq0
M× R3 → R such that J ′′|V0

is the
second variation of the problem (2)-(1). (details in the paper)

Theorem
If J ′′|V0

is coercive, then the flow π ◦Ht is invertible for every t ∈ [0, T ]

Remarks:

the coercivity of the second variation implies the invertibility at the switching
points (need of some non-smooth inversion function Theorem)

checking the coercivity is rather simple, since the variation space is
two-dimensional

even if the second variation is constructed taking into account only the
variations in the switching time, the optimality condition holds for all the
admissible trajectories in a C0-neighbourhood of the reference one.
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Results Main Result

Main Result

Theorem (F.C.C. - L. Poggiolini, 2018)

Let ξ̂ : [0, T ]→M be an admissible trajectory for the control system (2)-(1) that
satisfies the regularity assumptions and such that its second variation J ′′|V0

is coercive.
Then the trajectory ξ̂ is a strict strong-local minimiser for the OCP.
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An example

Example

Consider the optimal control problem

min
|u(·)|61

∫T
0

|u(t)x2(t)| dt
ẋ1 = x2

ẋ2 = u− αx2 α > 0

x1(0) = 0, x2(0) = 0

x1(T) = X > 0, x2(T) = 0.

Theorem (N. Boizot-O. Oukacha, 2016)
For every X,α there exist times time 0 < τ̂1 6 τ̂2 < Tlim such that, if Tmin < T 6 Tlima,
then the bang-inactivated-bang trajectory with switching times τ̂1, τ̂2 is optimal.

aTmin is the minimum time needed to reach X from 0

τ̂1 6= τ̂2, then V0 is the trivial linear space, and the second variation is coercive
by definition.
if τ̂1 = τ̂2, the reference trajectory satisfies the PMP in the abnormal form.
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