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Introduction  Generalised L1 optimal control problem

M n-dimensional smooth manifold, fy, f; smooth vector fields on M
VP : M — R smooth function (cost)
T>0,d0.9gr €M

T

minimiseJ [u(t)P(&(t))] dt (1)

0
under the constraints

Definition
An admissible pair (/E\, ) for (2) is a strong-local minimiser if there exists a
neighbourhood U in [0, T] X M ofthe graph of & such that

[ REW(ER))ldt < jo ()W (E(t))|dt
for every admISSIble pair (&, u) of (2) with graph{&} C U.
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Introduction  Generalised L1 optimal control problem

h(p,q,u): T*M x U — R control-dependent Hamiltonian
h(p, q,u) = {p. fo(q)) +ulp, f1(q)) + polub(q)|

Pontryagin Maximum Principle: if (E 1) is optimal, then % is the projection on
M of a solution (p(t), E(t)) (extremal) of the Hamiltonian system associated with
the Hamiltonian h.

Moreover (P(t), &(t)) satisfies the following conditions

(P(t).po) #(0,0) Vt, po <0 ©)

dp(t) _ dh dé(t)  dh
at aq|p(t LA qp $|p(t) Ewam et 4)
h(B(1), E(1), (1) ZTeaﬁh(ﬁ(t),E(t),u) aet (5)

In the following, Hmax (P, q) = maxycu h(p, q,u)
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Introduction  Generalised L1 optimal control problem

The normal' maximised Hamiltonian associated with (1)-(2) is

Hmax(p. q) = max Fo(p, q)+uFs(p, q) —hulhb(a)l,  Filp.q) = (p. fi(q)) (©)

Fi(p.q) —W¥(q) and F1(p, q) + P (q) are called switching functions and

determine the value of the control realising the maximum in (6).
We can distinguish three possible cases:
o if [F1(p, q)I > [W(q)l, then the maximising control is either 1 or —1 (bang).

o if [F1(p, q)| = [W(q)l, then the maximising control is not uniquely determined
by the PMP (singular).

Tie. po <0
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Introduction  Generalised L1 optimal control problem

The normal' maximised Hamiltonian associated with (1)-(2) is

Hmax(p. q) = max Fo(p, q)+uFs(p, q) —hulhb(a)l,  Filp.q) = (p. fi(q)) (©)

Fi(p.q) —W¥(q) and F1(p, q) + P (q) are called switching functions and

determine the value of the control realising the maximum in (6).
We can distinguish three possible cases:
o if [F1(p, q)I > [W(q)l, then the maximising control is either 1 or —1 (bang).

o if [F1(p, q)| = [W(q)l, then the maximising control is not uniquely determined
by the PMP (singular).

o if [F1(p, q)| < [W(q)l, the maximising control is O (inactivated).

Tie. po <0
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Introduction Hamiltonian methods

Establishing sufficient optimality condition via Hamiltonian methods for a
bang-inactivted-bang extremal with control of the form

up t € [0,71),
Ut)=+<0 t e (T1,72), ™)
us te (T, Tl

0< ’/f\l < :5\2 < T,ul,u3 6{1,—1}.

Working hypothesis (just for the talk):
U = 1,‘LL3 =-1
. ll)(z(t)) vanishes only once in [0, T1] and only once in [T, T]. In particular,

P >0 P <0 P <0 P >0

1 1
T T
~ ~ ~ ~

S1 T1 T2 S>
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Introduction

Hamiltonian methods

o General setting: ¢ is smooth,
Hinax = maxu (p, 4) — @(q, u) is
C2

o Define a Lagrangian submanifold
A C T*M such that

~

o (p(t),&(t) e AVEE0,T]

o the projectionon M is a
diffeomorphism from A to U

o pdq — Huu(p, q)dtis exact
on[0, T] x A

o for every admissible pair (&, u)

™M

such that the range of & isin U,
lift £(t) to some curve

(p(t), &(1)) € A
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Hamiltonian methods

o let
Y={tp), W) :te 0T} v={(tplt)&t):te[T0]}

andT=vyU¥y
Since I is a closed circuit in [0, T] x A, then

fﬁrpdq - Hmax(pv q)dt =0

. T o~
° smceJ @(E(t),ﬁ(t))dt:J pdq — Hmax(p, q)dt

0 %

pdq— h(p. g ult))dt > J pdq — Hoe(p, q)dt

v

jT@(a(tJ,u(tndtzj

0 Y

then [, @(&(t), T(t))dt < [o @(&(t), u(t))dt.
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Introduction Hamiltonian methods

Main points for the application of Hamiltonian methods:

@ to ensure that maximised Hamiltonian of PMP is well defined, continuous and
piecewise smooth (in U), we need some regularity conditions

~

@ given any function oc: M — R with doc(&,(0)) = p(0), its graph
Ao ={da(x) : x € M} C T*M is a Lagrangian submanifold with injective
projection onto M.

o let A¢ be the image at the time t of Ag via the Hamiltonian flow; following
[ASZ98] 2 A projects injectively onto U as long as the second variation
associated with (1)-(2) is coercive

@ as for bang-bang extremals (see for instance [ASZ02,PS04] %), the second
variation for (1)-(2) is finite-dimensional (only variations of the switching
times are considered)

2ASZ98 A. A. Agrachev, G. Stefani, P. Zezza Int. ] Control 71 (5), 1998
3ASZ02 A.A. Agrachev, G. Stefani, P. Zezza, SIAM ] CONTROL OPT, 41(4), 2002.
PS04 L. Poggiolini, G. Stefani, Syst Control Lett, 53(2), 2004.
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Results | Assumptions

o the reference trajectory satisfies PMP with pg = —1 (normal extremal)
o the function 1 does not vanish at the switching points: w(Z(’?i)) #0,i=1,2

° Lf0+ﬁ(t)f1¢(z(t)) # 0Vt € [0, T] = along the reference trajectories,
annihilates at a finite number of points.

o the switching functions have the following behaviour:

A F1(B(1), &(1))
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Results | Assumptions

wsF1((B(), &(1)) > [W(EM)], te (7, T).

= Along each arc the reference control is the only one that maximises over
u € [—1, 1] the control-dependent Hamiltonian evaluated along A.

,£m|wu)mmﬁ<0
o%mﬂwuymm%>0

Remark: in the equations here above, weak inequalities are a necessary condition for
the optimality of the reference extremal (PMP).
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Results Construction of the maximised Hamiltonian flow

At the initial point of the reference extremal @ = (ﬁ(O),z(O)), the maximised
Hamiltonian flow is given by

exp(t(Fo + F1 — D))(e) t € [0,51)
exp((t —51)(Fo + F1 + D)) 0 Hg, (0)  t€ (51,71)
He(o) = < exp((t —T1)(Fo)) 0 Hz, (o) te (T1,72)
exp((t — ) (Fo — F1 — D)) 0 Hy, (o)  t€ (T2,52)
exp((t—5,)(Fo — F1 + D)) 0 Hg, (o) te€ (5, T

How to define J{; in a neighbourhood of e in T*M?
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Results  Construction of the maximised Hamiltonian flow

At the initial point of the reference extremal @ = (ﬁ(O),E(O)), the maximised
Hamiltonian flow is given by

exp(t(Fo + F1 — D))(e) t € [0,51)
exp((t —51)(Fo + F1 + D)) 0 Hg, (0)  t€ (51,71)
He(o) = < exp((t —T1)(Fo)) 0 Hz, (o) te (T1,72)
exp((t — ) (Fo — F1 — D)) 0 Hy, (o)  t€ (T2,52)
exp((t—5,)(Fo — F1 + D)) 0 Hg, (o) te€ (5, T

How to define J{; in a neighbourhood of e in T*M?

For (p, q) in a sufficiently small neighbourhood of e, the “switching times”
81, S2, T1, T2 are smooth functions of (p, q).

Proof based on the Implicit Function Theorem and regularity assumptions
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Results Construction of the maximised Hamiltonian flow

exp(T1(-) (Fo + F1 + 1)) (")

b =0} {F1 = [l}

F. C. Chittaro (LIS) Optimality for generalised L* optimal control problems



Results Construction of the maximised Hamiltonian flow

For every (p, q) in a sufficiently small neighbourhood of e, the maximised
Hamiltonian flow is given by

exp(t(Fo + F1 — D)) (p, q) t € [0,s1(p, q))
eXP((t—Sl)(Fo-i-Fl-i-le))Ostl oP.q)  te(silp,q) Tilp. q)
Help. q) =} exp((t — 1) (F ))of}fﬁpm( q) te (tu(p,q), T2(p. q
exp((t —T2)(Fo — F1 — D)) 0 Hey(p.q) (P @) t € (T2(p, q), 52(p. g
exp((t — 52)(Fo — F1 + D)) 0 Hy,(p.qy (P q) t € (s2(p. q), T
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Results Invertibility of the flow

Consider a Lagrangian submanifold Ag C T * M containing (p(0), 2(0)) and with
injective projection onto M. Let Ay = H(((Ag), t > 0.
The following facts hold true:

@ the projection of At onto M is injective for every t € [0, T1); indeed,
(7t0 Hy)s = exp(t(fo + f1))
o att =Ty, wo H; has different left and right linearisation;

o if (710 Hy )4 is non-singular at t = T3, then the projection of A; onto M is
injective for every t € [0, T2);

o att =Ty, mo H; has different left and right linearisation;
o if (710 Hy )4 is non-singular at t = Ty, then the projection of A onto M is
injective for every t € [0, T].

= To ensure the bijectivity of the projection of A onto M, it is sufficient to check
the non-singularity of (7 o Hy). at the switching times.
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Results Invertibility of the flow

o Consider a finite-dimensional sub-problem of the original one (1)-(2):

. (fo + fl) o E,(t) te [0, Tl)
& =4 (fo) 0 &(t) t € [t1,12)
(fo—f1) o &(t) telt,Tl ®)

E0)=qo, &(T)=gq¢
O<Ti<T<T

o for every candidate trajectory satisfying (8), perform a piecewise-affine
time-reparametrization ¢

— " —

0 oo | T
T1 To

p=1+9% p=1+ % D=1+ -9

® T » E—— ¢ T
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Results Invertibility of the flow

@ the OCP can be then written as

min J(x, )

J(x,0) = alx) + Bler(x,0)) + | G0 B)[Be(eu(x 0] dt.
(0,71]U[72,T]
where
o (i(x, 0) is the pullback of &(-) with respect to the reference flow
o acand B are some smooth functions satisfying det(qo) = po, d(qo) = —pr
° $t is p composed with the reference flow at the time t

o the second variation is just the Hessian of J(x, ©) finite-dimensional problem!
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Results Invertibility of the flow

Following ASZ02, it is possible to define a two dimensional subspace
Vo C TqoM x R3 and quadratic form J” : Tq,M x R® — R such that ]”|y, is the
second variation of the problem (2)-(1). (details in the paper)

If]"|v, is coercive, then the flow 7t o Hy is invertible for every t € [0, T]
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Results Invertibility of the flow

Following ASZ02, it is possible to define a two dimensional subspace
Vo C TqoM x R3 and quadratic form J” : Tq,M x R® — R such that ]”|y, is the
second variation of the problem (2)-(1). (details in the paper)

If]"|v, is coercive, then the flow 7t o Hy is invertible for every t € [0, T]

Remarks:

o the coercivity of the second variation implies the invertibility at the switching
points (need of some non-smooth inversion function Theorem)

o checking the coercivity is rather simple, since the variation space is
two-dimensional

@ even if the second variation is constructed taking into account only the
variations in the switching time, the optimality condition holds for all the
admissible trajectories in a C%-neighbourhood of the reference one.
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Results Main Result

Theorem (F.C.C. - L. Poggiolini, 2018)

LetE: [0, TI — M be an admissible trajectory for the control system (2)(1) that
satisfies the regularity assumptions and such that its second variation |" |y, is coercive.
Then the trajectory &, is a strict strong-local minimiser for the OCP.
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An example

Consider the optimal control problem

.
min J h(t)xa(t)] dt

lu(-)I<1 Jo
).(1 = X2
Xo = U — 0Xp x>0

Xl(O) = O, Xz(O) =0
x1(T) =X >0, xo(T) =0.

Theorem (N. Boizot-O. Oukacha, 2016)

For every X, o there exist times time 0 < Ty < Ta < Tjim such that, if Tnin < T < Tim4,
then the bang-inactivated-bang trajectory with switching times T1, Ty is optimal.

T min is the minimum time needed to reach X from 0
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An example

Consider the optimal control problem

.
min J h(t)xa(t)] dt

lu(-)I<1 Jo
).(1 = X2
Xo = U — 0Xp x>0

Xl(O) = O, Xz(O) =0
x1(T) =X >0, xo(T) =0.

Theorem (N. Boizot-O. Oukacha, 2016)

For every X, o there exist times time 0 < Ty < Ta < Tjim such that, if Tnin < T < Tim4,
then the bang-inactivated-bang trajectory with switching times T1, Ty is optimal.

T min is the minimum time needed to reach X from 0

® Tj # To, then Vj is the trivial linear space, and the second variation is coercive
by definition.
o if Ty = Ty, the reference trajectory satisfies the PMP in the abnormal form.
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