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Dubins vehicle and its kinematics

The Dubins vehicle moves only forward at a constant speed with a
minimum turning radius.

1 normalize the speed to one;

2 consider the minimum turning radius to be r ∈ R+.

The state x := (x ,y ,θ) ∈ R2×S =: X , also called
configuration, consists of a position vector
(x ,y) ∈ R2 and a heading orientation angle θ ∈ S.

The kinematics is

d
dt

 x(t)
y(t)
θ(t)

 =

 cosθ(t)
sinθ(t)
u(t)/r


where u ∈ [−1,1] denotes the control.

Dubins car
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Applications

Many nonholonomic vehicles can be modelled by the Dubins vehicle, such as
fixed-wing unmanned aerial vehicles, unmanned ground vehicles, ships, etc.
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Shortest Dubins path between two configurations

The shortest Dubins path between two configurations belongs to six types
in two families [*]:

CCC = {RLR, LRL}, and

CSC = {RSR, RSL, LSL, LSR}

where R (resp. L) denotes the corresponding circular arc with a right (resp.
L) turning direction.	

RLR

	

LRL

	

CSC

[*] Dubins, L.E. (July 1957). ”On Curves of Minimal Length with a Constraint
on Average Curvature, and with Prescribed Initial and Terminal Positions and
Tangents”. American Journal of Mathematics. 79 (3): 497–516.
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3-Point Dubins Problem (3PDP)

3PDP

Given three different points z1, zm, and z2 in R2, let θ1 and θ2 in [0,2π) be the fixed
heading orientation angles at z1 and z2, respectively. Then, the 3PDP consists of
steering (Σ) by u(·) ∈ [−1,1] on [0,tf ] from (z1,θ1), pathing through zm at tm ∈ (0,tf ),
to (z2,θ2) such that the final time tf > 0 is minimized.

As the speed of the Dubins vehicle is a constant, solving
the 3PDP is equivalent to finding the shortest path.

 

(z1,θ1)

zm

(z2,θ2)

Given any two configurations (y1,η1) and (y2,η2) in X , denote by

F : X 2→ R, [(y1,η1),(y2,η2)] 7→ F [(y1,η1),(y2,η2)]

the length of the shortest Dubins path between them. As the heading orientation angles
before and after zm are the same along the shortest path, we denote such a heading
orientation angle by θm, i.e.,

θm := argmin
θ∈[0,2π)

F [(z1,θ1),(zm,θ)] +F [(zm,θ),(z2,θ2)].
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Shortest path for 3PDP

According to Bellman’s principle for optimality, the solution of 3PDP is
the concatenation of the shortest Dubins paths between (z1,θ1) and
(zm,θm) and between (zm,θm) and (z2,θ2). Hence, the solution path of
3PDP belongs to four families:

CCC |CCC , CCC |CSC , CSC |CCC , CSC |CSC ,

where the notation “|” denotes zm.

Up to 6×6 = 36 possibilities.

Once θm is known, one needs to check 36 possibilities in order to solve
the 3PDP.

How to reduce the number of possibilities?

How to compute θm?
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Characterization of the solution for 3PDP

1. Necessary conditions

2. Geometric properties

3. Common formula
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Pontryagin Maximum Principle (PMP)

Denote by p = [px ,py ,pθ ] ∈ T ∗x X the costate of x = [x ,y ,θ ] ∈X . The
Hamiltonian is H(x ,p,u,p0) = px cos(θ) +py sin(θ) +pθu/r +p0.

Pontryagin maximum prinicple

Every minimizing trajectory x(·) is the projection of an extremal (x(·),p(·),p0,u(·))
solution of

Canonical equation: ẋ(t) = ∂H
∂pT , ṗ(t) =− ∂H

∂xT ,

Maximum principle: H(x ,p,p0,u) = max
η∈[−1,1]

H(x ,p,p0,η)

Transversality: 0≡ H(x(t),p(t),u(t),p0),

px (t+
m) = px (t−m) + λx , py (t+

m) = py (t−m) + λy , pθ (t+
m) = pθ (t−m)

An extremal is said normal if p0 6= 0, and abnormal if p0 = 0 (abnormal
extremals have been ruled out by Sussmann and Tang (1994)).

In the normal case (p0 =−1), the maximum Hamiltonian can be written as

H(x ,p) = px cosθ +py sinθ +pθu/r −1
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Pontryagin Maximum Principle

d
dt

 px (t)
py (t)
pθ (t)

 =

 0
0

px (t)sin[θ(t)]−py (t)cos[θ(t)]

 , t ∈ [0,tf ]\{tm}.

This set of equations indicates px and py are piecewise constant. Hence, we
have

pθ =

{
px0y −py0x + c1, t ∈ (0,tm),

(px0 + λx )y − (py0 + λy )x + c2, t ∈ (tm,tf ).

If pθ ≡ 0 on [t1,t2], the graph of (x(·),y(·)) on [t1,t2] forms a straight line
segment, along which u ≡ 0. Hence, we have

u =


1, pθ > 0,

0, pθ ≡ 0,

−1, pθ < 0.
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Geometric properties for the solution of 3PDP

Theorem

Let C1T2C3|C4T5C6 be the shortest path of 3PDP where T ∈ {S ,C}. If none
of its subarcs vanishes, then we have C3 and C4 have the same turning
direction.

By contradition, assume C3

and C4 have different turning
directions, indicating
pθ (tm) = 0.

Any three points lie on a
straight line if pθ = 0 at the
three points.

According to Lemma 3 in [*], we have

β = γ ∈ (π,2π) and β̂ = γ̂ ∈ (π,2π).

[*] X.-N. Bui, P. Souères, J.-D. Boissonnat, and J.-P. Laumond. Shortest path
synthesis for Dubins non-holonomic robt. in 1994 IEEE international
conference on Robotis and Automation, San Diego, CA, USA, May 1994.
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Geometric properties for the solution of 3PDP

According to Bellman’s principle for optimality, the solution path of 3PDP
belongs to four families:

CCC|CCC CCC|CSC CSC|CCC CSC|CSC

CCCCC CCCSC CSCCC CSCSC

Corollary

The shortest paths for 3PDP must be among 18 types in 4 families

F =: {CCCCC ,CSCCC ,CCCSC ,CSCSC},

where

CCCCC={RLRLR,LRLRL},
CCCSC={RLRSR,RLRSL,LRLSL,LRLSR},
CSCCC={RSRLR,LSRLR,RSLRL,LSLRL},
CSCSC={RSRSR,LSRSR,RSRSL,LSRSL,LSLSL,RSLSL,LSLSR,RSLSR}.
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Geometric properties for the solution of 3PDP

36 possibilities reduce to 18.

Once θm is known, one needs to check 18 ///36 possibilities in order to solve
the 3PDP.

How to reduce the number of possibilities?

How to compute θm?
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Common formula

Theorem

If the shortest path of 3PDP is of type C1T2C3T4C5 (T ∈ {S ,C}) such that
none of its subarcs vanishes, then the angle θm ∈ [0,2π) at zm takes such a
value that

cos(θm−φ1)

cos(α1/2)
=

cos(θm−φ2)

cos(α2/2)
,

where

if T2 = S, then α1 = 0 and φ1 ∈ [0,2π) is the orientation angle of the line
segment T2 from its initial point to its final point;

if T2 = C, then α1 ∈ (π,2π) is the radian of T2 such that

cos2(α1/2) =
16r2−‖cµ

m−cµ

1 ‖2

16r2 and φ1 ∈ [0,2π) is the orientation angle of

the vector cµ
m−cµ

1 where µ = r if T2 = R and µ = l otherwise;

if T4 = S, then α2 = 0 and φ2 ∈ [0,2π) is the orientation angle of the line
segment T4 from its initial point to its final point; and

if T4 = C, then α2 ∈ (π,2π) is the radian of T4 such that

cos2(α2/2) =
16r2−‖cµ

m−cµ

2 ‖2

16r2 and φ2 ∈ [0,2π) is the orientation angle of

the vector cµ

2 −cµ
m where µ = r if T4 = R and µ = l otherwise.
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Common formula

LRLRL

Since pθ = 0 at B1, C1, B2, and C2, from H = px cosθ +py sinθ +pθu/r −1 = 0, we
have

px0 cosθ +py0 sinθ −1 = 0, θ is the orientation at B1 and C1,

(px0 + λx )cosθ + (py0 + λy )sinθ −1 = 0, θ is the orientation at B2 and C2.



Problem statement Solution characterization Polynomial solution Examples

Some results by common formula

The common formula reveals the relationship between θm and existing
variables: z1, zm, z2, θ1, θ2, and r .

If the solution path is of type C1S2C3S4C5, then we have

cos(θm−φ1) = cos(θm−φ2).

It means

either the mid point zm bisects C3,

or the radian of C3 is 2π.
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Polynomial-based solution

The common formula

cos(θm−φ1)

cos(α1/2)
=

cos(θm−φ2)

cos(α2/2)

is a multivariable polynomial in terms of cosθm and sinθm.

sinθm =
2tan(θm/2)

1 + tan2(θm/2)
and cosθm =

1− tan2(θm/2)

1 + tan2(θm/2)

tan(θm/2) is a zero of some polynomials.

The degree of polynomial for each type in F .
Degree Type

4 LSLSL, RSRSR

6 RLRLR, LRLRL

8
{CSCSC}\{RSRSR,LSLSL},

RLRSR, RSRLR, LSLRL, LRLSL

20 RLRSL, LSRLR, LRLSR, RSLRL
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Polynomial for RSRLR

If the path is of type RSRLR, we have α1 = 0, cos(θm−φ1) =± (cosθm,sinθm)(c r
m−c r

1)
‖c r

m−c r
1‖

,

and cos(θm−φ2) =± (cosθm ,sinθm)(c r
2−c r

m)
‖c r

2−c r
m‖

. Substituting these equations into

cos(θm−φ1)

cos(α1/2)
=

cos(θm−φ2)

cos(α2/2)

and squaring the result yield

[(cosθm,sinθm)(c rm−c r1)]2

‖c rm−c r1‖2
=

[(cosθm,sinθm)(c r2−c rm)]2

‖c r2−c rm‖2 cos2(α2/2)
,

where cos2(α2/2) = (cosα2 + 1)/2 = (16r2−‖c r2−c rm‖2)/16r2.

 

z1

c r
1

c r
m c r

2

z2
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Polynomial for RSRLR

0 = A1 cos4
θm +A2 cos3

θm sinθm +A3 cos3
θm +A4 cos2

θm sinθm

+ A5 cos2
θm +A6 cosθm sinθm +A7 cosθm +A8 sinθm +A9,

where A1–A9 are constant combinations of z1, z2, zm, θ1, θm, and r .

sinθ =
2tan(θ/2)

1 + tan2(θ/2)
and cosθ =

1− tan2(θ/2)

1 + tan2(θ/2)

0 = B1 tan8(θm/2) +B2 tan7(θm/2) +B3 tan6(θm/2) +B4 tan5(θm/2)

+ B5 tan4(θm/2) +B6 tan3(θm/2) +B7 tan2(θm/2) +B8 tan(θm/2) +B9,

where B1–B9 are constant combinations of A1–A9.

θm = 2arctan(root)
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Numerical Simulations

——Test of Polynomial-Based Method

Table: Normalizing the time of solving the Dubins problem between two
configurations to one, this table shows the normalized time to solve
polynomials with degrees in {4,6,8,20}.

Degree 4 6 8 20

Normalized Time 1/11.16 1/9.19 1/7.99 1/2.94

Discretized method

θm = argmin
θ∈Φ

F [(z1,θ1),(zm,θ)] +F [(zm,θ),(z2,θ2)]

where Φ = {2(i −1)π/l : i = 1, . . . , l} and l ∈ N is the discretization level.

Table: The improvement factors of time consumption of PBM compared
to discretised method with l = 360.

dm > 4r = 3r = 2r = r < r

Factor 45.69 24.36 27.19 32.66 36.98
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Numerical Example

——Solving Curvature-Constrained Shortest-Path Problem (CCSPP)

CCSPP

Given a sequence of waypoints (z1,z2, . . . ,zn) with the order fixed, let the
heading orientation angles at z1 and zn be fixed at θ1 and θn, respectively.
Then, the CCSPP consists of finding the shortest Dubins path starting from
(z1,θ1), passing through z i in order, finally reaching (zn,θn).

CCSPP : min
(θ2,...,θn−1)∈[0,2π]n−2

n−1

∑
i=1

F [(z i ,θi ),(z i+1,θi+1)]
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Coordinate Descent Algorithm (CDA)

What is the CDA?

Given an objective function f : Rn→ R, x 7→ f (x), the CDA works as:

starting with initial variable values x0 = (x0
1 , . . . ,x

0
n ),

round k + 1 defines xk+1 from xk by iteratively solving the single variable
optimization problems

xk+1
i = argmin

y∈R
f (xk+1

1 , . . . ,xk+1
i−1 ,y ,xki+1, . . . ,x

k
n )

for each variable xi of x , for i from 1 to n.
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Numerical example

Given the 100 random targets, this table shows the lengths of the paths generated by AA, SVA,
LAA, and CDA.

Algorithms
Radius, r

1 2 3 4 5 6 7

AA 963.58 1143.35 1489.33 1849.38 2344.17 2668.66 3186.98
SVA 952.04 1166.95 1483.71 1940.22 2431.62 3024.21 3617.90
LAA 874.23 957.96 1068.12 1305.00 1615.74 1953.80 2296.52
CDA 870.81 938.05 1048.42 1276.28 1544.23 1832.88 2123.03

8 9 10 15 20 30 40

AA 3403.61 3978.35 4426.86 6539.55 8683.31 13369.95 16401.86
SVA 4196.64 4884.91 5319.43 8685.27 11672.90 18130.99 24426.06
LAA 2579.38 2954.04 3351.87 5074.41 6865.72 10388.09 13703.96
CDA 2451.60 2858.30 3190.46 4974.17 6685.20 10319.27 13625.59
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Conclusions

The solution of 3PDP is synthesized:

1 Reduce 36 possibilities to 18;

2 A common formula is established for the 18 types;

3 A polynomial-based method is proposed to solve the 3PDP;

4 The result allows to use gradient-free CDA.

Future work includes:

exploring the properties of the 18 types so that less possibilities are
checked in order to solve the 3PDP, and

application to motion planning.
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Thanks! & Questions?

Email: zheng.chen@technion.ac.il
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