Shortest Dubins Paths through Three Points

Zheng Chen and Tal Shima

DEPARTMENT OF AEROSPACE ENGINEERING

Faculty of Aerospace Engineering
Technion - Israel Institute of Technology

Dubins vehicle and its kinematics

The Dubins vehicle moves only forward at a constant speed with a minimum turning radius.
(1) normalize the speed to one;
(2) consider the minimum turning radius to be $r \in \mathbb{R}_{+}$.

The state $\boldsymbol{x}:=(x, y, \theta) \in \mathbb{R}^{2} \times \mathbb{S}=: \mathscr{X}$, also called configuration, consists of a position vector $(x, y) \in \mathbb{R}^{2}$ and a heading orientation angle $\theta \in \mathbb{S}$.

The kinematics is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
x(t) \\
y(t) \\
\theta(t)
\end{array}\right)=\left(\begin{array}{c}
\cos \theta(t) \\
\sin \theta(t) \\
u(t) / r
\end{array}\right)
$$

Dubins car
where $u \in[-1,1]$ denotes the control.

Applications

Many nonholonomic vehicles can be modelled by the Dubins vehicle, such as fixed-wing unmanned aerial vehicles, unmanned ground vehicles, ships, etc.

Shortest Dubins path between two configurations

The shortest Dubins path between two configurations belongs to six types in two families [*]:

- $\mathrm{CCC}=\{$ RLR, LRL $\}$, and
- $\mathrm{CSC}=\{\mathrm{RSR}, \mathrm{RSL}, \mathrm{LSL}, \mathrm{LSR}\}$
where R (resp. L) denotes the corresponding circular arc with a right (resp.
L) turning direction.

RLR

LRL

CSC
[*] Dubins, L.E. (July 1957). "On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents". American Journal of Mathematics. 79 (3): 497-516.

3-Point Dubins Problem (3PDP)

3PDP

Given three different points $\boldsymbol{z}_{1}, \boldsymbol{z}_{m}$, and \boldsymbol{z}_{2} in \mathbb{R}^{2}, let θ_{1} and θ_{2} in $[0,2 \pi)$ be the fixed heading orientation angles at z_{1} and z_{2}, respectively. Then, the 3PDP consists of steering (Σ) by $u(\cdot) \in[-1,1]$ on $\left[0, t_{f}\right]$ from $\left(z_{1}, \theta_{1}\right)$, pathing through z_{m} at $t_{m} \in\left(0, t_{f}\right)$, to $\left(z_{2}, \theta_{2}\right)$ such that the final time $t_{f}>0$ is minimized.

As the speed of the Dubins vehicle is a constant, solving the 3PDP is equivalent to finding the shortest path.

Given any two configurations $\left(\boldsymbol{y}_{1}, \eta_{1}\right)$ and $\left(\boldsymbol{y}_{2}, \eta_{2}\right)$ in \mathscr{X}, denote by

$$
F: \mathscr{X}^{2} \rightarrow \mathbb{R},\left[\left(\boldsymbol{y}_{1}, \eta_{1}\right),\left(\boldsymbol{y}_{2}, \eta_{2}\right)\right] \mapsto F\left[\left(\boldsymbol{y}_{1}, \eta_{1}\right),\left(\boldsymbol{y}_{2}, \eta_{2}\right)\right]
$$

the length of the shortest Dubins path between them. As the heading orientation angles before and after \boldsymbol{z}_{m} are the same along the shortest path, we denote such a heading orientation angle by θ_{m}, i.e.,

$$
\theta_{m}:=\underset{\theta \in[0,2 \pi)}{\operatorname{argmin}} F\left[\left(z_{1}, \theta_{1}\right),\left(z_{m}, \theta\right)\right]+F\left[\left(z_{m}, \theta\right),\left(z_{2}, \theta_{2}\right)\right] .
$$

Shortest path for 3PDP

According to Bellman's principle for optimality, the solution of 3PDP is the concatenation of the shortest Dubins paths between $\left(z_{1}, \theta_{1}\right)$ and $\left(z_{m}, \theta_{m}\right)$ and between $\left(z_{m}, \theta_{m}\right)$ and $\left(z_{2}, \theta_{2}\right)$. Hence, the solution path of 3PDP belongs to four families:

$$
C C C|C C C, C C C| C S C, C S C|C C C, C S C| C S C \text {, }
$$

where the notation "|" denotes \boldsymbol{z}_{m}.

$$
\text { Up to } 6 \times 6=36 \text { possibilities. }
$$

- Once θ_{m} is known, one needs to check 36 possibilities in order to solve the 3PDP.
- How to reduce the number of possibilities?
- How to compute θ_{m} ?

Characterization of the solution for 3PDP

1. Necessary conditions
2. Geometric properties
3. Common formula

Pontryagin Maximum Principle (PMP)

Denote by $\boldsymbol{p}=\left[p_{x}, p_{y}, p_{\theta}\right] \in T_{\boldsymbol{x}}^{*} \mathscr{X}$ the costate of $\boldsymbol{x}=[x, y, \theta] \in \mathscr{X}$. The Hamiltonian is $H\left(x, \boldsymbol{p}, u, p^{0}\right)=p_{x} \cos (\theta)+p_{y} \sin (\theta)+p_{\theta} u / r+p^{0}$.

Pontryagin maximum prinicple

Every minimizing trajectory $\boldsymbol{x}(\cdot)$ is the projection of an extremal $\left(\boldsymbol{x}(\cdot), \boldsymbol{p}(\cdot), p^{0}, u(\cdot)\right)$ solution of
Canonical equation: $\dot{x}(t)=\frac{\partial H}{\partial \boldsymbol{p}^{T}}, \quad \dot{\boldsymbol{p}}(t)=-\frac{\partial H}{\partial \boldsymbol{x}^{T}}$,
Maximum principle: $H\left(\boldsymbol{x}, \boldsymbol{p}, p^{0}, u\right)=\max _{\eta \in[-1,1]} H\left(\boldsymbol{x}, \boldsymbol{p}, p^{0}, \eta\right)$
Transversality: $0 \equiv H\left(x(t), \boldsymbol{p}(t), u(t), p^{0}\right)$,

$$
p_{x}\left(t_{m}^{+}\right)=p_{x}\left(t_{m}^{-}\right)+\lambda_{x}, \quad p_{y}\left(t_{m}^{+}\right)=p_{y}\left(t_{m}^{-}\right)+\lambda_{y}, \quad p_{\theta}\left(t_{m}^{+}\right)=p_{\theta}\left(t_{m}^{-}\right)
$$

An extremal is said normal if $p^{0} \neq 0$, and abnormal if $p^{0}=0$ (abnormal extremals have been ruled out by Sussmann and Tang (1994)).

In the normal case $\left(p^{0}=-1\right)$, the maximum Hamiltonian can be written as

$$
H(\boldsymbol{x}, \boldsymbol{p})=p_{x} \cos \theta+p_{y} \sin \theta+p_{\theta} u / r-1
$$

Pontryagin Maximum Principle

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
p_{x}(t) \\
p_{y}(t) \\
p_{\theta}(t)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
p_{x}(t) \sin [\theta(t)]-p_{y}(t) \cos [\theta(t)]
\end{array}\right), t \in\left[0, t_{f}\right] \backslash\left\{t_{m}\right\}
$$

This set of equations indicates p_{x} and p_{y} are piecewise constant. Hence, we have

$$
p_{\theta}=\left\{\begin{array}{l}
p_{x_{0}} y-p_{y_{0}} x+c_{1}, t \in\left(0, t_{m}\right), \\
\left(p_{x_{0}}+\lambda_{x}\right) y-\left(p_{y_{0}}+\lambda_{y}\right) x+c_{2}, t \in\left(t_{m}, t_{f}\right)
\end{array}\right.
$$

If $p_{\theta} \equiv 0$ on $\left[t_{1}, t_{2}\right]$, the graph of $(x(\cdot), y(\cdot))$ on $\left[t_{1}, t_{2}\right]$ forms a straight line segment, along which $u \equiv 0$. Hence, we have

$$
u= \begin{cases}1, & p_{\theta}>0 \\ 0, & p_{\theta} \equiv 0 \\ -1, & p_{\theta}<0\end{cases}
$$

Geometric properties for the solution of 3PDP

Theorem

Let $C_{1} T_{2} C_{3} \mid C_{4} T_{5} C_{6}$ be the shortest path of 3PDP where $T \in\{S, C\}$. If none of its subarcs vanishes, then we have C_{3} and C_{4} have the same turning direction.

By contradition, assume C_{3} and C_{4} have different turning directions, indicating $p_{\theta}\left(t_{m}\right)=0$.

Any three points lie on a straight line if $p_{\theta}=0$ at the three points.
[*] X.-N. Bui, P. Souères, J.-D. Boissonnat, and J.-P. Laumond. Shortest path synthesis for Dubins non-holonomic robt. in 1994 IEEE international conference on Robotis and Automation, San Diego, CA, USA, May 1994.

$$
\beta=\gamma \in(\pi, 2 \pi) \text { and } \hat{\beta}=\hat{\gamma} \in(\pi, 2 \pi)
$$

Geometric properties for the solution of 3PDP

According to Bellman's principle for optimality, the solution path of 3PDP belongs to four families:

CCC|CCC CCC|CSC CSC|CCC CSC|CSC
 CCCCC CCCSC CSCCC CSCSC

Corollary

The shortest paths for 3PDP must be among 18 types in 4 families

$$
\mathscr{F}=:\{\operatorname{CCCCC}, \operatorname{CSCCC}, \operatorname{CCCSC}, \operatorname{CSCSC}\},
$$

where

- $C C C C C=\{R L R L R, L R L R L\}$,
- CCCSC $=\{R L R S R, R L R S L, L R L S L, L R L S R\}$,
- CSCCC $=\{R S R L R, L S R L R, R S L R L, L S L R L\}$,
- CSCSC $=\{R S R S R, L S R S R, R S R S L, L S R S L, L S L S L, R S L S L, L S L S R, R S L S R\}$.

Geometric properties for the solution of 3PDP

36 possibilities reduce to 18 .

- Once θ_{m} is known, one needs to check $18 \not 8 \mid 6 /{ }^{\prime}$ possibilities in order to solve the 3PDP.
- How to reduce the number of possibilities?
- How to compute θ_{m} ?

Common formula

Theorem

If the shortest path of $3 P D P$ is of type $C_{1} T_{2} C_{3} T_{4} C_{5}(T \in\{S, C\})$ such that none of its subarcs vanishes, then the angle $\theta_{m} \in[0,2 \pi)$ at z_{m} takes such a value that

$$
\frac{\cos \left(\theta_{m}-\phi_{1}\right)}{\cos \left(\alpha_{1} / 2\right)}=\frac{\cos \left(\theta_{m}-\phi_{2}\right)}{\cos \left(\alpha_{2} / 2\right)}
$$

where

- if $T_{2}=S$, then $\alpha_{1}=0$ and $\phi_{1} \in[0,2 \pi)$ is the orientation angle of the line segment T_{2} from its initial point to its final point;
- if $T_{2}=C$, then $\alpha_{1} \in(\pi, 2 \pi)$ is the radian of T_{2} such that $\cos ^{2}\left(\alpha_{1} / 2\right)=\frac{16 r^{2}-\left\|\boldsymbol{c}_{m}^{\mu}-\boldsymbol{c}_{1}^{\mu}\right\|^{2}}{16 r^{2}}$ and $\phi_{1} \in[0,2 \pi)$ is the orientation angle of the vector $c_{m}^{\mu}-c_{1}^{\mu}$ where $\mu=r$ if $T_{2}=R$ and $\mu=1$ otherwise;
- if $T_{4}=S$, then $\alpha_{2}=0$ and $\phi_{2} \in[0,2 \pi)$ is the orientation angle of the line segment T_{4} from its initial point to its final point; and
- if $T_{4}=C$, then $\alpha_{2} \in(\pi, 2 \pi)$ is the radian of T_{4} such that $\cos ^{2}\left(\alpha_{2} / 2\right)=\frac{16 r^{2}-\left\|\boldsymbol{c}_{m}^{\mu}-\boldsymbol{c}_{2}^{\mu}\right\|^{2}}{16 r^{2}}$ and $\phi_{2} \in[0,2 \pi)$ is the orientation angle of the vector $c_{2}^{\mu}-c_{m}^{\mu}$ where $\mu=r$ if $T_{4}=R$ and $\mu=I$ otherwise.

Common formula

LRLRL

Since $p_{\theta}=0$ at B_{1}, C_{1}, B_{2}, and C_{2}, from $H=p_{x} \cos \theta+p_{y} \sin \theta+p_{\theta} u / r-1=0$, we have

$$
\begin{aligned}
p_{x_{0}} \cos \theta+p_{y_{0}} \sin \theta-1 & =0, & & \theta \text { is the orientation at } B_{1} \text { and } C_{1}, \\
\left(p_{x_{0}}+\lambda_{x}\right) \cos \theta+\left(p_{y_{0}}+\lambda_{y}\right) \sin \theta-1 & =0, & & \theta \text { is the orientation at } B_{2} \text { and } C_{2} .
\end{aligned}
$$

Some results by common formula

The common formula reveals the relationship between θ_{m} and existing variables: $\boldsymbol{z}_{1}, \boldsymbol{z}_{m}, \boldsymbol{z}_{2}, \theta_{1}, \theta_{2}$, and r.

If the solution path is of type $C_{1} S_{2} C_{3} S_{4} C_{5}$, then we have

$$
\cos \left(\theta_{m}-\phi_{1}\right)=\cos \left(\theta_{m}-\phi_{2}\right)
$$

It means

- either the mid point z_{m} bisects C_{3},
- or the radian of C_{3} is 2π.

Polynomial-based solution

The common formula

$$
\frac{\cos \left(\theta_{m}-\phi_{1}\right)}{\cos \left(\alpha_{1} / 2\right)}=\frac{\cos \left(\theta_{m}-\phi_{2}\right)}{\cos \left(\alpha_{2} / 2\right)}
$$

is a multivariable polynomial in terms of $\cos \theta_{m}$ and $\sin \theta_{m}$.

$$
\sin \theta_{m}=\frac{2 \tan \left(\theta_{m} / 2\right)}{1+\tan ^{2}\left(\theta_{m} / 2\right)} \text { and } \cos \theta_{m}=\frac{1-\tan ^{2}\left(\theta_{m} / 2\right)}{1+\tan ^{2}\left(\theta_{m} / 2\right)}
$$

$\tan \left(\theta_{m} / 2\right)$ is a zero of some polynomials.
The degree of polynomial for each type in \mathscr{F}.

Degree	Type
4	LSLSL, RSRSR
6	RLRLR, LRLRL
8	$\{$ CSCSC $\} \backslash\{$ RSRSR,LSLSL\},
	RLRSR, RSRLR, LSLRL, LRLSL
20	RLRSL, LSRLR, LRLSR, RSLRL

Polynomial for RSRLR

If the path is of type $R S R L R$, we have $\alpha_{1}=0, \cos \left(\theta_{m}-\phi_{1}\right)= \pm \frac{\left(\cos \theta_{m}, \sin \theta_{m}\right)\left(\boldsymbol{c}_{m}^{r}-\boldsymbol{c}_{1}^{r}\right)}{\left\|\boldsymbol{c}_{m}^{r}-\boldsymbol{c}_{1}^{r}\right\|}$, and $\cos \left(\theta_{m}-\phi_{2}\right)= \pm \frac{\left(\cos \theta_{m}, \sin \theta_{m}\right)\left(\boldsymbol{c}_{2}^{r}-\boldsymbol{c}_{m}^{r}\right)}{\left\|\boldsymbol{c}_{2}^{r}-\boldsymbol{c}_{m}^{r}\right\|}$. Substituting these equations into

$$
\frac{\cos \left(\theta_{m}-\phi_{1}\right)}{\cos \left(\alpha_{1} / 2\right)}=\frac{\cos \left(\theta_{m}-\phi_{2}\right)}{\cos \left(\alpha_{2} / 2\right)}
$$

and squaring the result yield

$$
\frac{\left[\left(\cos \theta_{m}, \sin \theta_{m}\right)\left(\boldsymbol{c}_{m}^{r}-\boldsymbol{c}_{1}^{r}\right)\right]^{2}}{\left\|\boldsymbol{c}_{m}^{r}-\boldsymbol{c}_{1}^{r}\right\|^{2}}=\frac{\left[\left(\cos \theta_{m}, \sin \theta_{m}\right)\left(\boldsymbol{c}_{2}^{r}-\boldsymbol{c}_{m}^{r}\right)\right]^{2}}{\left\|\boldsymbol{c}_{2}^{r}-\boldsymbol{c}_{m}^{r}\right\|^{2} \cos ^{2}\left(\alpha_{2} / 2\right)}
$$

where $\cos ^{2}\left(\alpha_{2} / 2\right)=\left(\cos \alpha_{2}+1\right) / 2=\left(16 r^{2}-\left\|\boldsymbol{c}_{2}^{r}-\boldsymbol{c}_{m}^{r}\right\|^{2}\right) / 16 r^{2}$.

Polynomial for RSRLR

$$
\begin{aligned}
0 & =A_{1} \cos ^{4} \theta_{m}+A_{2} \cos ^{3} \theta_{m} \sin \theta_{m}+A_{3} \cos ^{3} \theta_{m}+A_{4} \cos ^{2} \theta_{m} \sin \theta_{m} \\
& +A_{5} \cos ^{2} \theta_{m}+A_{6} \cos \theta_{m} \sin \theta_{m}+A_{7} \cos \theta_{m}+A_{8} \sin \theta_{m}+A_{9}
\end{aligned}
$$

where $A_{1}-A_{9}$ are constant combinations of $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{z}_{m}, \theta_{1}, \theta_{m}$, and r.

$$
\sin \theta=\frac{2 \tan (\theta / 2)}{1+\tan ^{2}(\theta / 2)} \text { and } \cos \theta=\frac{1-\tan ^{2}(\theta / 2)}{1+\tan ^{2}(\theta / 2)}
$$

$$
\begin{aligned}
0 & =B_{1} \tan ^{8}\left(\theta_{m} / 2\right)+B_{2} \tan ^{7}\left(\theta_{m} / 2\right)+B_{3} \tan ^{6}\left(\theta_{m} / 2\right)+B_{4} \tan ^{5}\left(\theta_{m} / 2\right) \\
& +B_{5} \tan ^{4}\left(\theta_{m} / 2\right)+B_{6} \tan ^{3}\left(\theta_{m} / 2\right)+B_{7} \tan ^{2}\left(\theta_{m} / 2\right)+B_{8} \tan \left(\theta_{m} / 2\right)+B_{9}
\end{aligned}
$$

where $B_{1}-B_{9}$ are constant combinations of $A_{1}-A_{9}$.

$$
\theta_{m}=2 \arctan (\text { root })
$$

Numerical Simulations

Test of Polynomial-Based Method

Table: Normalizing the time of solving the Dubins problem between two configurations to one, this table shows the normalized time to solve polynomials with degrees in $\{4,6,8,20\}$.

Degree	4	6	8	20
Normalized Time	$1 / 11.16$	$1 / 9.19$	$1 / 7.99$	$1 / 2.94$

Discretized method

$$
\theta_{m}=\underset{\theta \in \Phi}{\operatorname{argmin}} F\left[\left(z_{1}, \theta_{1}\right),\left(z_{m}, \theta\right)\right]+F\left[\left(z_{m}, \theta\right),\left(z_{2}, \theta_{2}\right)\right]
$$

where $\Phi=\{2(i-1) \pi / I: i=1, \ldots, I\}$ and $I \in \mathbb{N}$ is the discretization level.

Table: The improvement factors of time consumption of PBM compared to discretised method with $I=360$.

d_{m}	$>4 r$	$=3 r$	$=2 r$	$=r$	$<r$
Factor	45.69	24.36	27.19	32.66	36.98

Numerical Example

_-Solving Curvature-Constrained Shortest-Path Problem (CCSPP)

CCSPP

Given a sequence of waypoints $\left(\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \ldots, \boldsymbol{z}_{n}\right)$ with the order fixed, let the heading orientation angles at z_{1} and z_{n} be fixed at θ_{1} and θ_{n}, respectively. Then, the CCSPP consists of finding the shortest Dubins path starting from $\left(z_{1}, \theta_{1}\right)$, passing through z_{i} in order, finally reaching $\left(z_{n}, \theta_{n}\right)$.

CCSPP : $\min _{\left(\theta_{2}, \ldots, \theta_{n-1}\right) \in[0,2 \pi]^{n-2}} \sum_{i=1}^{n-1} F\left[\left(z_{i}, \theta_{i}\right),\left(\boldsymbol{z}_{i+1}, \theta_{i+1}\right)\right]$

Coordinate Descent Algorithm (CDA)

What is the CDA?

Given an objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \boldsymbol{x} \mapsto f(\boldsymbol{x})$, the CDA works as:

- starting with initial variable values $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$,
- round $k+1$ defines x^{k+1} from x^{k} by iteratively solving the single variable optimization problems

$$
x_{i}^{k+1}=\underset{y \in \mathbb{R}}{\operatorname{argmin}} f\left(x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}, y, x_{i+1}^{k}, \ldots, x_{n}^{k}\right)
$$

for each variable x_{i} of \boldsymbol{x}, for i from 1 to n.

Numerical example

Given the 100 random targets, this table shows the lengths of the paths generated by AA, SVA, LAA, and CDA.

Algorithms	Radius, r													
	1	2								3	4	5	6	7
AA	963.58	1143.35	1489.33	1849.38	2344.17	2668.66	3186.98							
SVA	952.04	1166.95	1483.71	1940.22	2431.62	3024.21	3617.90							
LAA	874.23	957.96	1068.12	1305.00	1615.74	1953.80	2296.52							
CDA	870.81	938.05	1048.42	1276.28	1544.23	1832.88	2123.03							
	8	9	10	15	20		30							
AA	3403.61	3978.35	4426.86	6539.55	8683.31	13369.95	16401.86							
	SVA	4196.64	4884.91	5319.43	8685.27	11672.90	18130.99							
LAA	2579.38	2954.04	3351.87	5074.41	6865.72	10388.09	13703.06							
CDA	2451.60	2858.30	3190.46	4974.17	6685.20	10319.27	13625.59							

Conclusions

The solution of 3PDP is synthesized:
(1) Reduce 36 possibilities to 18 ;
(2) A common formula is established for the 18 types;
(3) A polynomial-based method is proposed to solve the 3PDP;

4 The result allows to use gradient-free CDA.

Future work includes:

- exploring the properties of the 18 types so that less possibilities are checked in order to solve the 3PDP, and
- application to motion planning.

Thanks! \& Questions?

