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The PDE under study.

The equation under consideration
Sturm-Liouville operator in 1D on Ω = (0, 1).

A = −∂x(γ(x)∂x•) + q(x)•,

with γmin := infx∈Ω γ(x) > 0, γ ∈ C1(Ω), q ∈ C0(Ω), D(A) = H2(Ω) ∩H1
0 (Ω).

Let ω ⊂ Ω and {1} be the control zones.

0 1
ω

•

We control the parabolic equation
∂ty(t, x) +Ay(t, x) = 1ω(x)Vd(t, x) ∈ L2((0, T )× Ω), (t, x) ∈ (0, T )× Ω,

y(0, x) = y0 ∈ H−1(Ω),

y(t, 1) = Vb(t) ∈ L2(0, T ),

y(t, 0) = 0.
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Let ω ⊂ Ω and {1} be the control zones.

0 1
ω

•

... more precisely, a semi-discrete version of this PDE.

(AhU)j := −
1

h

(
γi+1/2

uj+1 − uj
h

− γi−1/2
uj − uj−1

h

)


∂ty
h(t) +Ahyh(t) = V hd (t)1ω , on (0, T ),

yh(0) = yh,0 ∈ RN ,

yh0 (t) = 0, on (0, T ),

yhN+1(t) = V hb (t), on (0, T ),
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The control problem

Null control problem

Find V hd ∈ L
2(0, T ;RN ) OR V hb ∈ L

2(0, T ;R):

yh(T ) = 0

V hd , V
h
b uniformly bounded w.r.t. h.

Bibliography
López and Zuazua, 1998

Ah = −∆h,

only boundary null-control problem,

uniform mesh,

Ω = (0, 1).

Boyer-Hubert-Le Rousseau, 2010

Ah : discretized general diffusion
operator,

only distributed control problem,

non uniform mesh,

in space dimension ≥ 1.

Our results
A., Boyer, Morancey, 2016

Ah : discretized general diffusion
operator,

distributed and boundary control
problem,

quasi-uniform meshes,

Ω = (0, 1),

Cascade systems of PDEs.

A., Boyer 2018

Same hypothesis and Ω is a
cylinder in N dimensions,

General framework.
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The null-control problem.

We consider the problem in one space dimension:

(P)


∂ty(t, x) +Ay(t, x) = Vd(t, x)1ω , on (0, T )× Ω = (0, 1),

y(0, x) = y0(x) ∈ H−1(Ω),

y(T, x) = 0,∀x ∈ Ω,

y(t, 0) = 0, on (0, T ),

y(t, 1) = Vb(t), on (0, T ),

Denote by ((λk)k≥1, (φk)k≥1) the eigenelements of A,

∫
Ω
φ2
k(x)dx = 1.
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y(0, x) = y0(x) ∈ H−1(Ω),

y(T, x) = 0,∀x ∈ Ω,

y(t, 0) = 0, on (0, T ),

y(t, 1) = Vb(t), on (0, T ),

Definition : Solution by transposition

Solution of (P): y ∈ C0([0, T ], H−1(Ω)) if and only if ∀k ≥ 1:

〈y(T, ·), φk〉 −
〈
y0, e

−λkTφk

〉
=


∫ T

0
e−λk(T−t)

∫
ω
Vd(t, x)φk(x)dxdt

−
∫ T

0
e−λk(T−t)Vb(t)(γφ′k)(1)dt,
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Biorthogonal family.

The null-control problem is: find Vd ∈ L2((0, T )× Ω) and Vb ∈ L2(0, T ) such that

∀k ≥ 1,−
〈
y0, e

−λkTφk

〉
=


∫
ω
φk(x)

∫ T

0
e−λk(T−t)Vd(t, x)dtdx

−(γφ′k)(1)

∫ T

0
e−λk(T−t)Vb(t)dt,

Definition: Biorthogonal family for (e−λkt)k≥1

∀k, j ≥ 1, qj ∈ L2(0, T ),

∫ T

0
e−λk(T−t)qj(t)dt = δk,j .

Now we have a possible formal expression for Vd and Vb.

1 Existence of (qk)k≥1 and estimates?
2 Convergence of the series and estimates on controls?
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A deep result about biorthogonal families.

Definition : class of sequences L(ρ,N )

Let ρ > 0 and let N : R+ → N. Denote by L(ρ,N ) the class of all sequences of
positive numbers Λ = (λk)k≥1 that satisfy the conditions:

∀k ≥ 1, λk+1 − λk ≥ ρ,

∀ε > 0,
∞∑

k=N (ε)

1

λk
≤ ε.

Theorem [Fattorini-Russel, 1974]

Let ρ > 0 and N : R+ → N as above.

Let ε > 0, there exists Kε > 0 such that for any sequence Λ in L(ρ,N ) , there

exists (qk)k≥1 a biorthogonal family for (e−λkt)k≥1 such that

∀k ≥ 1, ‖qk‖L2 ≤ Kε exp(ελk),

[Ammar Khodja - Benabdallah - González Burgos - de Teresa, 2011]
Let m ∈ N, we have the same results for the family (tje−λkt)m≥j≥0,k≥1.
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Spectral properties of A

∀(λk)k≥1 ∈ L(ρ,N ),


λk+1 − λk ≥ ρ,
∞∑

k=N(ε)

1

λk
≤ ε. =⇒

{
existence of (qk)k≥1,

‖qk‖L2 ≤ Kε exp(ελk).

Spectral properties of A = − ∂
∂x

(
γ ∂
∂x ·
)

+ q.

Theorem

There exists a constant C := C(q, γ) > 0 such that

1

2

Estimates:
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Spectral properties of A = − ∂
∂x

(
γ ∂
∂x ·
)

+ q.

Theorem

There exists a constant C := C(q, γ) > 0 such that

1 Gap : λk+1 − λk ≥ C
√
λk.

Asymptotics : ∃N : R∗+ → N such that ∀ε > 0,

∞∑
k=N(ε)

1

λk
≤ ε.

2 Normal derivative : |φ′k(1)| ≥ C
√
λk,

Localisation :
∫
ω
|φk(x)|2dx ≥ C|ω|, for any measurable open set ω ⊂ Ω.

Example: A = −∂2
x•, λk = k2π2, φk(x) =

√
1
2 sin(x

√
λk), φ′k(1) =

√
1
2

√
λk.

Estimates:
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∫
ω
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gives
the convergence of the series Vb and Vd. Estimates:
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1
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2 Normal derivative : |φ′k(1)| ≥ C
√
λk,

Localisation :
∫
ω
|φk(x)|2dx ≥ C|ω|, for any measurable open set ω ⊂ Ω.

The second point gives the convergence of the series Vb and Vd.

Vb(t) =
∑
k≥1

e
−λkT 〈y0, φk〉

(γφ′k)(1)
qk(t)

Estimates: ‖Vb‖L2(0,T ) ≤ C‖y
0‖L2(Ω).
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Spectral properties of A

∀(λk)k≥1 ∈ L(ρ,N ),


λk+1 − λk ≥ ρ,
∞∑

k=N(ε)

1

λk
≤ ε. =⇒

{
existence of (qk)k≥1,

‖qk‖L2 ≤ Kε exp(ελk).

Spectral properties of A = − ∂
∂x

(
γ ∂
∂x ·
)

+ q.

Theorem

There exists a constant C := C(q, γ) > 0 such that

1 Gap : λk+1 − λk ≥ C
√
λk.

Asymptotics : ∃N : R∗+ → N such that ∀ε > 0,

∞∑
k=N(ε)

1

λk
≤ ε.

2 Normal derivative : |φ′k(1)| ≥ C
√
λk,

Localisation :
∫
ω
|φk(x)|2dx ≥ C|ω|, for any measurable open set ω ⊂ Ω.

The second point gives the convergence of the series Vb and Vd.

Vd(t, x) =
∑
k≥1

e
−λkT −〈y0, φk〉∫

ω
φ2
k

φk(x)qk(t)

Estimates: ‖Vd‖L2(0,T ;L2(Ω)) ≤ C‖y
0‖L2(Ω)
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The moment method in the discrete setting.

Let (λhk , φ
h
k)k≥1 be the eigenvalues and eigenvectors of Ah.

The same method in the discrete setting gives:

V hd (t) =
N∑
j=1

−
(
yh,0, e−λ

h
j Tφhj

)
h

‖1ωφhj ‖2h
φhj q

h
j (t),

V hb (t) =
N∑
j=1

(
yh,0, e−λ

h
j Tφhj

)
h

γN+1/2

(
0−φh

j,N

h

) qhj (t).

Here, no convergence problem ! But we would like:

∃CT > 0, ∀h > 0,

{
‖V hd ‖L2(0,T ;RN ) ≤ CT ‖y

h,0‖,

‖V hb ‖L2(0,T ;R) ≤ CT ‖y
h,0‖.

(1)

In practice, we use the HUM method to compute controls.
Minimize the functional
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The moment method in the discrete setting.

Let (λhk , φ
h
k)k≥1 be the eigenvalues and eigenvectors of Ah.

The same method in the discrete setting gives:

V hd (t) =
N∑
j=1

−
(
yh,0, e−λ

h
j Tφhj

)
h

‖1ωφhj ‖2h
φhj q

h
j (t),

V hb (t) =
N∑
j=1

(
yh,0, e−λ

h
j Tφhj

)
h

γN+1/2

(
0−φh

j,N

h

) qhj (t).

Here, no convergence problem ! But we would like:

∃CT > 0, ∀h > 0,

{
‖V hd ‖L2(0,T ;RN ) ≤ CT ‖y

h,0‖,

‖V hb ‖L2(0,T ;R) ≤ CT ‖y
h,0‖.

(1)

In practice, we use the HUM method to compute controls.
Minimize the functional

Fε(V
h
d ) =

1

2

∫ T

0
‖V hd ‖

2
L2(0,T ;RN )

dt+
1

2ε
‖y(T )‖2
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The moment method in the discrete setting.

Let (λhk , φ
h
k)k≥1 be the eigenvalues and eigenvectors of Ah.

The same method in the discrete setting gives:

V hd (t) =
N∑
j=1

−
(
yh,0, e−λ

h
j Tφhj

)
h

‖1ωφhj ‖2h
φhj q

h
j (t),

V hb (t) =
N∑
j=1

(
yh,0, e−λ

h
j Tφhj

)
h

γN+1/2

(
0−φh

j,N

h

) qhj (t).

Here, no convergence problem ! But we would like:

∃CT > 0, ∀h > 0,

{
‖V hd ‖L2(0,T ;RN ) ≤ CT ‖y

h,0‖,

‖V hb ‖L2(0,T ;R) ≤ CT ‖y
h,0‖.

(1)

In practice, we use the HUM method to compute controls.
Minimize the functional

Fε(V
h
b ) =

1

2

∫ T

0
‖V hb ‖

2
L2(0,T )

dt+
1

2ε
‖y(T )‖2

(1)⇒ uniform observability ineq.⇒ existence + uniform bounds of HUM controls.
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The HUM method, application.


∂ty(t, x)−∆y(t, x)− 1.1π2y = 0, (t, x) ∈ (0, T )× Ω

y(0, x) = y0(x), on Ω,

y(t, 0) = 0, on (0, T ),

y(t, 1) = Vb(t), on (0, T ),

(2)

D. Allonsius and M. Morancey, F. Boyer . Discrete control on parabolic equations.
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Discrete spectral analysis

Basic approach: One could have tried to use numerical analysis λhk ≈ λk.

λhk ≈ λk =⇒ Discrete Gap property only for a portion of the spectrum.

0 20 40 60 80 100
0

2

4

6

8

·104

λk

λhk
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Discrete spectral analysis

Basic approach: One could have tried to use numerical analysis λhk ≈ λk.

λhk ≈ λk =⇒ Discrete Gap property only for a portion of the spectrum.

0 20 40 60 80 100
0

2

4

6

8

·104

λN − λhN = CN2

λk ≈ λhk

λk

λhk

We developed a new method to prove the gap property λhk+1 − λ
h
k and lower

bounds for ‖1ωφhj ‖2h and

(
0−φhj,N

h

)
.
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Numerical Simulations

Main problem
Uniform mesh, γ(x) = 1 + cos(x) and q(x) = 0.

0 50 100 150 200

10−11

10−7

10−3

101

105

λhk <
4
h2 γmin

Gap k 7→ λhk+1 − λ
h
k

The discrete gap property does not hold

The null controllability strategy with the moments method fails

Kavian : The discretization of the heat equation on a uniform mesh is not
null controllable in 2D.

⇒We introduce a new kind of controllability, more adapted to the discrete setting.
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Partial controlability result.

Theorem [A.-Boyer-Morancey, 2016]

The discrete parabolic PDE is φ(h)-null controllable if :

∀h > 0, ‖V hd ‖ ≤ C‖y
h,0‖ (or ‖V hb ‖ ≤ C‖y

h,0‖)

and
∀h > 0, ‖yh(T )‖2 ≤ φ(h)‖yh,0‖2.

Let any function φ : R∗+ → R∗+ such that

lim inf
h→0

[h2 log(φ(h))] > −8γminT,

Then, on a uniform mesh the discrete parabolic PDE is φ(h)-null controllable.

Remarks

The solution satisfies in fact: ∀h > 0, ‖yh(T )‖ ≤ ‖yh,0‖C1e
−C2T

h2 .
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Partial controlability result.

Theorem [A.-Boyer-Morancey, 2016]

The discrete parabolic PDE is φ(h)-null controllable if :

∀h > 0, ‖V hd ‖ ≤ C‖y
h,0‖ (or ‖V hb ‖ ≤ C‖y

h,0‖)

and
∀h > 0, ‖yh(T )‖2 ≤ φ(h)‖yh,0‖2.

Let any function φ : R∗+ → R∗+ such that

lim inf
h→0

[h
2
5 log(φ(h))] > −αT,

Then, on a quasi-uniform mesh the discrete parabolic PDE is φ(h)-null
controllable.

Remarks

The solution satisfies in fact: ∀h > 0, ‖yh(T )‖ ≤ ‖yh,0‖C1e
−C2T

h2 .
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Conclusion

SUM UP

We have built an elementary approach:

to solve the φ(h)-null controllability control problem for a large class of
parabolic equations,

which applies on quasi-uniform meshes,

which applies on parabolic cascade systems,

(with fewer controls than equations)

only valid in 1D.

Limitation of the moment method
If dimension D ≥ 2, ∑

k≥1

1

λk
= +∞

because of Weyl’s formula
λk ∼ Ck2/D
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A tensorized space

We adapt the ideas of A. Benabdallah, F. Boyer, M. Gonzlez-Burgos, and G.
Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic
systems and application to the n- dimensional boundary null controllability in
cylindrical domains at the semi discrete level.

Now Ω := Ω1 × Ω2

ω2

Ω1 = (0, a)

Ω2

Main idea

Apply the moments method on the 1D domain Ω1,

Apply the Lebeau and Robbiano’s method on the multi dimensional domain
Ω2.
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Lebeau and Robbiano’s procedure

Let Eµk := Span(φΩ2
j , λΩ2

j ≤ µk).

Rough description of the Lebeau and Robbiano’s procedure
Use a spectral inequality (the Lebeau-Robbiano inequality)

‖Ψ‖L2(Ω) ≤ Ce
C
√
µ‖Ψ‖L2(ω), ∀Ψ ∈ Eµ

Take (0, T ) =
⋃

(Tk, Tk+1). Iterative method: between Tk and Tk+1,

1 Control the µ first frequencies: the norm of the solutions increases by a factor
eC
√
µk .

2 Turn the control to zero and use the parabolic dissipation : the norm of the

solution decreases by a factor e−C
′µkTk .

Tune Tk and µk to have µkTk >
√
µk.

t

‖yh(t)‖

0

‖y0,h‖•

T
•
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low
freq.

Do nothing

Control low
frequencies
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φ(h) null control result on the boarder of a cylinder

Theorem [A.-Boyer, 2018]

Hypothesis on Ω1 Suppose that ‖V
h
b ‖L2(0,T ) ≤ CT ‖y

0,h‖

‖yh(T )‖ ≤ CT e−C1/h
2
‖y0,h‖

Hypothesis on Ω2 Suppose that

‖Ψ‖ ≤ eC
√
µ‖1ωΨ‖, ∀Ψ ∈ Eµh , with µh :=

C2

h2

Conclusion There exists a universal constant C > 0 such that

‖y(T )‖ ≤ CT e−Cmin(C1,C2)T/h2

and the time dependence of the control cost is of the form eC(T+1/T ).

This gives the φ(h) null controllability for systems of PDEs in cascade form in
a multi dimensional cylinder Ω, controlled at the border.

Actually, we built a more general framework which applies even in the
continous setting.
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Numerical Illustration

In two dimensions

ω2

ω2

ω2

h1

h2

For numerical simulations, we still use the HUM approach.
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Thank you for your attention !
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