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Experiments presentation
Experiments realized at CRO2 by M.Carré and her team
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Model

Equations {
ds
dt = ρs(1− s+mr

K )− αC(t)s
dr
dt = ρr(1− s+mr

K )− βsr

s number of sensitive cells
r number of resistant cells
C treatment concentration
K Petri well capacity
m size factor between s and r Represent different drug

dosages experiments
Design protocols that reduce
the tumoral charge
Optimize the treatment
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Optimal control problem

Optimization problem
Given s(0), r(0) and T , minimize the cost

s(T )2 + r(T )2 +
∫ T

0
(As2(t) + Br2(t))dt

over measurable functions C : [0,T ]→ [0,Cmax].

Pontryagin Minimum Principle
Necessary condition for C∗ to be optimal : it must minimize among
C : [0,T ]→ [0,Cmax] the Hamiltonian :

H(s∗, r∗, p∗
1 , p∗

2 ,C) = As∗2 + Br∗2 +
〈(

p∗
1

p∗
2

)
,

(
ρs∗(1 − s∗+mr∗

K ) − αCs∗

ρr∗(1 − s∗+mr∗

K ) − βs∗r∗

)〉
where (s∗, r∗) is the optimal trajectory and{

dp∗
1

dt = − ∂H
∂s (s∗, r∗, p∗

1 , p∗
2 ,C∗)

dp∗
2

dt = − ∂H
∂r (s∗, r∗, p∗

1 , p∗
2 ,C∗)

{
p∗

1 (T ) = 2s∗(T )
p∗

2 (T ) = 2r∗(T )
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Optimal control problem

Characterization of the optimal treatment

H(s∗, r∗, p∗
1 , p∗

2 ,C) = As∗2 + Br∗2 +
〈(

p∗
1

p∗
2

)
,

(
ρs∗(1 − s∗+mr∗

K )
ρr∗(1 − s∗+mr∗

K ) − βs∗r∗

)〉
−p∗

1αs∗C

The optimal treatment C∗ satisfies:
If p∗1 (t) > 0 then C∗(t) = Cmax

If p∗1 (t) < 0 then C∗(t) = 0
If p∗1 ≡ 0 on an interval,
C∗ = 1

αs∗

(
B
A r∗2( ρK + β) + s∗ρ(1− s∗+2mr∗

K )
)
.

Singular arcs may correspond to metronomic treatments: giving smaller
doses of drug on a longer period of time.

Could this problem generate singular arcs?



In vitro experiments Trajectories study Optimal control Dynamic programming Conclusion

Numerical results
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Numerical results

Objective: Minimizing the cost for regular cycling treatments
No drug → Metronomic treatment → Maximum Tolerated Dose
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Published in Journal of Theoretical Biology, 2017
Optimization of an in vitro chemotherapy to avoid resistant tumours
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Viability and Reachability problems

Viability Problem
Let Q > 0 be a size threshold. An initial tumour (s0, r0) is viable if there
exists a treatment C : [0,+∞)→ [0,Cmax] such that:

∀t > 0, s(t) + mr(t) ≤ Q

Determine the viability set NQ

Reachability Problem
Let (s0, r0) be an initial tumour, does there exist a treatment
C : [0,T ]→ [0,Cmax] such that

(s(T ), r(T )) ∈ NQ

and if so, minimize the time of entry tin:

∀t > tin, (s(t), r(t)) ∈ NQ
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Hamilton-Jacobi-Bellman framework

Definition: value function

VQ(s0, r0) = min
C :R+→[0,Cmax]

max
t≥0

e−λtgQ(sC (t), rC (t))

where gQ(s, r) < 0 ⇐⇒ s > 0, r > 0 and s + mr < Q gQ < 0

gQ > 0

Property
VQ satisfies the following:

(s, r) ∈ NQ ⇐⇒ VQ(s, r) ≤ 0

Theorem
VQ is a viscosity solution of

min(λVQ + H((s, r);∇VQ),VQ − gQ) = 0

where H(x ; p) = maxc∈[0,Cmax]〈−f (x , c) · p〉
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Hamilton-Jacobi-Bellman framework

Definition: value function

WQ(s0, r0; t) = min
C :[0,t]→[0,Cmax]

dists(sC (t), rC (t);NQ)

where dists(s, r ;NQ) is the signed distance to NQ .

Property
WQ satisfies the following:

∀h > 0, WQ(s0, r0; t + h) = min
C :[0,t]→[0,Cmax]

WQ(sC (h), rC (h); t)

−→ follow trajectories minimizing WQ to minimize time of entry

Theorem
WQ is a viscosity solution of

∂tW (s, r ; t) + H((s, r);∇W (s, r ; t)) = 0
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Numerical results

Simulations realized with Roc-HJ

Work in progress: article with Hasnaa Zidani, Dynamic programming of
chemotherapy for heterogeneous tumours
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Conclusions and Perspectives

Conclusions:
Importance of metronomic treatments
Experiments were done with optimal control solution
Framework for future work

Meanwhile, on the biological side:
Reason for resistant cells repression
Experiments on heterogeneous tumours encapsulated in sane tissue
Experiments on heterogeneous tumours in mice

Perspectives:
Adapt model to experiments
New models, taking into account sane cells, immune system...
Pareto fronts to take into account several objectives
Take into account partial information
Study mechanisms of resistance appearance
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Thank you for your attention
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