In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion

Modelling tumoral heterogeneity for chemotherapy optimisation: optimal control, theoretical and numerical analysis

Cécile Carrère

I2M, Aix-Marseille Université

November 7th 2017

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

mutation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

mutation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2 Trajectories study
- Optimal control
 - Control problem
 - Numerical results
- Dynamic programming
 - Viability and Reachability problems
 - Numerical results

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 In vitro experiments

2 Trajectories study

3 Optimal control

- Control problem
- Numerical results

Oynamic programming

- Viability and Reachability problems
- Numerical results

		000	00000	
In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion

Experiments presentation

Experiments realized at CRO2 by M.Carré and her team

In vitro experiments	Trajectories study	Optimal control	Dynamic programming 00000	Conclusion
Experiments	presentation			

- Lung cancer cells A549
- Resistant clone A549 Epo50
- Drug : Epothilen B

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Resistant clone A549 Epo50
- Drug : Epothilen B

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト э

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion
Model				

Equations

$$\begin{cases} \frac{ds}{dt} = \rho s(1 - \frac{s+mr}{K}) - \alpha C(t)s \\ \frac{dr}{dt} = \rho r(1 - \frac{s+mr}{K}) - \beta sr \end{cases}$$

S	number of sensitive cells
r	number of resistant cells
С	treatment concentration
K	Petri well capacity
m	size factor between s and r

- Represent different drug dosages experiments
- Design protocols that reduce the tumoral charge

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Optimize the treatment

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2 Trajectories study

Optimal control

- Control problem
- Numerical results

Oynamic programming

- Viability and Reachability problems
- Numerical results

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion
Trajectorie	s study			

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion
Trajectories	s study			

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion
Trajectories	s study			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion
Trajectorie	s study			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion
Trajectorie	s study			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In vitro experiments

2 Trajectories study

Optimal control

- Control problem
- Numerical results

Oynamic programming

- Viability and Reachability problems
- Numerical results

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		0 0	00000	

Optimal control problem

Optimization problem

Given s(0), r(0) and T, minimize the cost

$$s(T)^{2} + r(T)^{2} + \int_{0}^{T} (As^{2}(t) + Br^{2}(t))dt$$

over measurable functions $C : [0, T] \rightarrow [0, C_{max}]$.

Pontryagin Minimum Principle

Necessary condition for C^* to be optimal : it must minimize among $C : [0, T] \rightarrow [0, C_{max}]$ the Hamiltonian :

$$H(s^*, r^*, p_1^*, p_2^*, C) = As^{*2} + Br^{*2} + \left\langle \begin{pmatrix} p_1^* \\ p_2^* \end{pmatrix}, \begin{pmatrix} \rho s^* (1 - \frac{s^* + mr^*}{K}) - \alpha Cs^* \\ \rho r^* (1 - \frac{s^* + mr^*}{K}) - \beta s^* r^* \end{pmatrix} \right\rangle$$

where (s^*, r^*) is the optimal trajectory and $\begin{cases}
\frac{dp_1^*}{dt} = -\frac{\partial H}{\partial s}(s^*, r^*, p_1^*, p_2^*, C^*) \\
\frac{dp_2^*}{dt} = -\frac{\partial H}{\partial r}(s^*, r^*, p_1^*, p_2^*, C^*)
\end{cases}
\begin{cases}
p_1^*(T) = 2s^*(T) \\
p_2^*(T) = 2r^*(T)
\end{cases}$

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	
Ontimal co	ntrol problem			

Optimal control problem

Characterization of the optimal treatment

$$H(s^*, r^*, p_1^*, p_2^*, C) = As^{*2} + Br^{*2} + \left\langle \begin{pmatrix} p_1^* \\ p_2^* \end{pmatrix}, \begin{pmatrix} \rho s^* (1 - \frac{s^* + mr^*}{K}) \\ \rho r^* (1 - \frac{s^* + mr^*}{K}) - \beta s^* r^* \end{pmatrix} \right\rangle$$
$$-p_1^* \alpha s^* C$$

The optimal treatment C^* satisfies:

- If $p_1^*(t) > 0$ then $C^*(t) = C_{\max}$
- If $p_1^*(t) < 0$ then $C^*(t) = 0$

• If
$$p_1^* \equiv 0$$
 on an interval,

$$C^* = \frac{1}{\alpha s^*} \left(\frac{B}{A} r^{*2} (\frac{\rho}{K} + \beta) + s^* \rho (1 - \frac{s^* + 2mr^*}{K}) \right).$$

Singular arcs may correspond to metronomic treatments: giving smaller doses of drug on a longer period of time.

Could this problem generate singular arcs?

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In vitro experiments

2 Trajectories study

Optimal control
 Control problem

Numerical results

Dynamic programming

- Viability and Reachability problems
- Numerical results

In vitro experiments Trajectories study Optimal control Dynamic programming Conclusion 000 •000

Viability and Reachability problems

Viability Problem

Let Q > 0 be a size threshold. An initial tumour (s_0, r_0) is viable if there exists a treatment $C : [0, +\infty) \rightarrow [0, C_{max}]$ such that:

$$\forall t > 0, \, s(t) + mr(t) \leq Q$$

Determine the viability set \mathcal{N}_Q

Reachability Problem

Let (s_0, r_0) be an initial tumour, does there exist a treatment $C : [0, T] \rightarrow [0, C_{max}]$ such that

 $(s(T), r(T)) \in \mathcal{N}_Q$

and if so, minimize the time of entry t_{in} :

 $\forall t > t_{in}, (s(t), r(t)) \in \mathcal{N}_Q$

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming O●OOO	Conclusion
x /. x				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming O●OOO	Conclusion
x /. x				

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming O●OOO	Conclusion
x /. x				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming O●OOO	Conclusion

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

In vitro experiments Trajectories study Optimal control **Dynamic programming** Conclusio

Hamilton-Jacobi-Bellman framework

Definition: value function

$$V_Q(s_0, r_0) = \min_{C: \mathbb{R}^+ \to [0, C_{\max}]} \max_{t \ge 0} e^{-\lambda t} g_Q(s^C(t), r^C(t))$$

where $g_Q(s,r) < 0 \iff s > 0, r > 0$ and s + mr < Q

Property

 V_Q satisfies the following:

$$(s,r)\in\mathcal{N}_Q\iff V_Q(s,r)\leq 0$$

Theorem

 V_Q is a viscosity solution of

$$\min(\lambda V_Q + H((s, r); \nabla V_Q), V_Q - g_Q) = 0$$

where $H(x; p) = \max_{c \in [0, C_{max}]} \langle -f(x, c) \cdot p \rangle$

In vitro experiments Trajectories study Optimal control Dynamic programming Conclusion 000 00000

Hamilton-Jacobi-Bellman framework

Definition: value function

$$W_{Q}(s_{0}, r_{0}; t) = \min_{C:[0, t] \to [0, C_{max}]} dist^{s}(s^{C}(t), r^{C}(t); \mathcal{N}_{Q})$$

where $dist^{s}(s, r; \mathcal{N}_{Q})$ is the signed distance to \mathcal{N}_{Q} .

Property

 W_Q satisfies the following:

$$\forall h > 0, W_Q(s_0, r_0; t+h) = \min_{C:[0,t] \to [0, C_{\max}]} W_Q(s^C(h), r^C(h); t)$$

 \longrightarrow follow trajectories minimizing W_Q to minimize time of entry

Theorem

 W_Q is a viscosity solution of

 $\partial_t W(s,r;t) + H((s,r);\nabla W(s,r;t)) = 0$

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming ○○○○●	Conclusion
Numerical re	sults			

Simulations realized with Roc-HJ

Work in progress: article with Hasnaa Zidani, *Dynamic programming of chemotherapy for heterogeneous tumours*

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming ○○○○●	Conclusion
Numerical res	sults			

Simulations realized with Roc-HJ

Work in progress: article with Hasnaa Zidani, *Dynamic programming of chemotherapy for heterogeneous tumours*

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In vitro experiments

2 Trajectories study

3 Optimal control

- Control problem
- Numerical results

Oynamic programming

- Viability and Reachability problems
- Numerical results

In vitro experiments	Trajectories study	Optimal control 000	Dynamic programming 00000	Conclusion
Conclusions	and Perspec	ctives		

Conclusions:

- Importance of metronomic treatments
- Experiments were done with optimal control solution
- Framework for future work

Meanwhile, on the biological side:

- Reason for resistant cells repression
- Experiments on heterogeneous tumours encapsulated in sane tissue
- Experiments on heterogeneous tumours in mice

Perspectives:

- Adapt model to experiments
- New models, taking into account sane cells, immune system...

- Pareto fronts to take into account several objectives
- Take into account partial information
- Study mechanisms of resistance appearance

In vitro experiments	Trajectories study	Optimal control	Dynamic programming	Conclusion
		000	00000	

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?