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Slow-fast control system

Minimum time.

m
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Min. time Hamiltonian (Pontrjagin maximum principle):
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Slow-fast control system

Averaged Hamiltonian. One defines

K =Ho+Ko, Ho=/(pFo),

_ 1 2n m 5
Ko(l,pr) = %/0 \/’g"";(/,%f)/, ,€=0)do
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Smooth on Q :=CX where
S = {(l,p1,9) € T*M xS*| (Vi =1,m) : (p;, Fi(l,p,€ = 0))
@:T"MxSt— T*M.

=0},

Y = o(X) (closed),
One also defines the submanifold of M

Mp :=T1(2) (open and assumed to be connex).



Slow-fast control system

Assuming
(A1) rank{d/F;(I,p,e=0)/d¢/, i=1,....m, j>0}=n, (I,9) € M xS,
one has Kg: QC T*M =R

. 1 2 m
Ko(l,pr) = E/o \/Z(PhFi(/,(P,S =0))2dg,
i=1

positive definite (and 1-homogeneous): Ko defines a (symmetric) co-Finsler
norm.

Remark. Condition related to the controllability of the original system without
Fo. (Lie brackets of Fy,...,Fp with d/d¢.)



Finsler geometry

Finsler norm. F: TM — R smooth on TM\0 s.t.
(i) F(x,Av)=A4F(x,v), A >0 (symmetric if F(x,—v)= F(x,v))
(i) 92F?(x,v)/dv? >0 (tensor depending on v)
Metric. For x and y in M, set d(x,y) :=inf tf on all €1 curves ¥ s.t.
Y0)=x, tr)=y,
F(r(t), (1)) <1, te[0,t].

Geodesics. Constant speed curves whose short segments are length minimizing.



Finsler geometry

Co-Finsler norm. F*: T*M — R smooth on T*M\0 s.t.
(i) F*(x,Ap)=AF*(x,p), A >0
(i) 2(F)2(x,p)/3p* > 0

Legendre transform. If F* is a co-Finsler norm, then

F(x,v):= ma ,
(X V) ps.t F*()>(<,p)§1<p V>
defines a Finsler norm whose geodesics are integral curves of the Hamiltonian
F* restricted to the level {F* =1}.
One has F*(x,p) = F(x,v), v:=£5(p), where 05 : TiM — (T M)* ~ T, M is
the Legendre transform
" 1 9%(F*)?
Coipr ETJQ(X#’)(PM)



Slow-fast control system

K =Ho+Ko, Ho=(psFo),
Assuming
(A2) Ko(I,Fo(l)) <1, I € My (inverse Legendre transform of Fg),

one has K = Hg + Ky positive definite: K defines an asymmetric co-Finsler
norm,

o o o 1 2n m
Ho :=(p;,Fo), Ko(l,p1):= ﬂ/o \/Z<P/7Fi(/7¢78 =0))2de.
i=1

Remark. For small € > 0, this condition is related to the local controllability of
the original system, Fy included. (Ability of Fi,...,Fn, and their brackets with
d/d¢ to compensate for the drift Fyp.)



Slow-fast control system

Controllability, existence, convergence.

Proposition. For € > 0 small enough, controllability holds on M.

(A3) The metric is geodesically convex on Mp.

(A4) Compactness assumptions (related to singularities).

Proposition. Let ly and /¢ belong to My, Ir ¢ Cut(lp). For € >0 small enough,
there exist min. time trajectories connecting Iy to /.

Theorem. Let Iy and /¢ belong to My, Ir ¢ Cut(lp). Let (le, ®c,pie; Py, )e be a
family of minimizing extremals, and let ((€))e be the associated min. times.

Then (z¢ := (le, p1e)).
|ze— 2] = O(€)+ O(K(e) 1), eE(e) = dllo.]r), €0,

where Z is the lift of the minimizing geodesic between Iy and /r.



Application: J2 effect in orbit transfer

Controlled Kepler equation. Work with the French Space Agency (CNES)
and Thales Alenia Space. Due to super-integrability of the —1/|q| potential
(Kepler), the min. time system

. q u

=—U—=+4+—, |u] < Thax,

q ﬂ‘q|3 M [u] < Tinax
is a slow-fast control system with only one fast angle when restricted to
transfer of a spacecraft between elliptical orbits.
Averaging = Analysis of a symmetric Finsler metric in dimension five (no
drift)

J2 perturbation. Due to the Earth oblateness, one has to take into account a
small drift Fy on the slow variables (equinoctial elements | = (a,e,®,9Q,1)),
defined by the J, potential (1/|q/3)
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Application: J2 effect in orbit transfer

Reduction to one small parameter. The system has two small parameters
(depending on the initial conditions ly), one for the J, effect, one for the

control:
e 3_/ rg c ag Tmax
0=75h—5, &a=—7,—
2 ag um

re: Earth equatorial radius, ag: Initial semi-major axis, Tmax: Maximum thrust
level, M: Mass of the spacecraft
Write

d/

ar = gkFo(l, (P)-i-(‘:‘lzu,, ,0),

<7LFO(/([) +(1-2) i )7

with € := g9 +¢€; and A :=¢gy/(ep + €1).



Application: J2 effect in orbit transfer

Critical ratio. Two regimes depending on whether
(i) the Jy effect is small compared to the control (g9 < € and 4 — 0),
(i) the J effect dominates the control (g > & and A — 1).

In terms of the averaged system,
K=AHo+(1-1)Ko
is a metric if and only if A < Ac(/) with (cf. condition (A2))

1

)= k)

— Relevance of this critical ratio for the qualitative analysis of the original
system?



Application: J2 effect in orbit transfer

Qualitative analysis on the min. time. Curve A — 1¢(1), 7, = 0
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Example : a=30 Mm, e=0.5, @ =Q =0, i =51 deg (inclined medium orbit)



Application: J2 effect in orbit transfer

Qualitative analysis on the min. time. Curve A — 1¢(1), 7, = 0
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Application: J2 effect in orbit transfer
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Conclusion and ongoing work

» Well defined relevant limiting approximation: Asymmetric Finsler metric
Caillau, J.-B.; Pomet, J.-B.; Rouot, J. Metric approximation of
minimum time control systems. Preprint (2017).

» Complementary approaches (1/2): Filtering
Caillau, J.-B.; Dargent, T.; Nicolau, F. Approximation by filtering in
optimal control and applications. IFAC PapersOnLine 50 (2017),
no. 1, 1649-1654. Proceedings of the 20th IFAC world congress,
Toulouse, July 2017.

» Complementary approaches (2/2): Higher order averaging
Dargent, T.; Pomet, J.-B.; Nicolau, F. Periodic averaging with a
second order integral error. IFAC PapersOnLine 50 (2017), no. 1,
2892-2897. Proceedings of the 20th IFAC world congress, Toulouse,
July 2017.

» Ongoing work: Multi-phase averaging for min. time

Dell’Elce, L.; Caillau, J.-B.; Pomet, J.-B. Optimal low-thrust orbital
transfer by averaging multiple frequencies. 7th International Meeting
on Celestial Mechanics (CELMEC), San Martino, September 2017.
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