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Monge Transport Problem

Let M be a manifold of dimension n > 2. Let p, v be two
probability measures compactly supported on M.

Definition 1 (Transport map)

A transport map between 4 and v is a measurable application
T : M — M such that Ty = v,

i.e. v(B)=pu(TYB)),VB C M measurable.

We consider the cost function given by c(x, y),Vx,y € M.

The Monge transport problem: Finding a transport map
T : M — M minimizing the following

/M c(x, T(x))dpu(x).
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Kantorovich transport problem

Definition 2 (Transport plan)

A transport plan between p and v is a probability measure «
on the product M x M such that

a(Ax M) =pu(A),YACM oM x B)=uv(B), VB C M.

M(u, v) is the set of transport plans between p and v.

The Kantorovich transport problem: Finding a transport
plan o € M(u, v) minimizing the following

/MXM c(x, y)da(x, y).
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Existence of optimal transport plans

Relaxation form

Let T : M — M be a transport map between i and v. The
measure « defined as

a = (id x T)yu

is a transport plan between p et v.

Let u,v be two probability measures compactly supported on
M. Assume that c is continuous on M x M. Then, there is at
least one optimal transport plan, solution of the Kantorovich
problem.
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Dual problem

Dual problem : Finding (¢, ¢°) € L*(u) x L'(v) such that

p(x) = SIEJAB{sOC(y)—C(X,y)}, VxeM
ply) = nf{p(x) +clxy)}y, VyeM
and (pc(y)_:&?g(xjy){ /M e (y)dv(y) — /M w(X)du(X)}

o (i, °) is called Kantorovich potentials

o I i={(ey) € Mox M| ¢5(y) = () = c(x.) |

Proposition
A transport plan o € M(p,v) is optimal < supp o C T,.
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Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

A sub-Riemannian structure on M of rank m is a pair
(A, g) where

@ A is a totally nonholonomic distribution of rank m
(m< n)on M, ie Vx € M, 3V, an open neighborhhood
of x and {X},..., X"} a local frame of A on V) s.t.

Lie{X},...,X"}y) = T,M,Vy € V,.

@ g is a smooth Riemannian metric on A.
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Minimizing geodesics

@ An absolutely continuous path 7 : [0,1] — M is said to
be horizontal if

’}/(Z’) € A’Y(t)7 ae te [0, 1]
@ Sub-Riemannian distance: Vx,y € M,
dsg(x,y) = inf {length(v)| ~ horizontal path joining x, y }
@ A minimizing geodesic is a minimizing horizontal path
with constant speed.

e Hopf-Rinow Theorem: Assume that (M, dsg) is
complete. Then, there is at least a minimizing geodesic
joining two points in M.
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The Monge quadratic sub-Riemannian problem

Let M be a manifold of dimension n equipped with a complete
sub-Riemmanian structure (A, g) of rank m (m < n).

Finding a transport map T : M — M minimizing the following
| elx. TG0Mn

with

c(x,y) = dig(x,y),¥(x,y) € M x M.
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Previous results

Several results of [AR'04], [AL'09] et [FR'10] proved existence
and uniqueness of solution for the Monge problem on
sub-Riemannian structures not admitting singular
minimizing geodesics.

A new technic [CH'14] solved the Monge problem on spaces
satisfying a measure contraction property.
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End-point map

Let k = n(m+ 1) and {X!,..., X*} a global frame of A such
that
Vx € M, A(x) = Span{X*(x),..., X" (x)}.

The End-point map End* at x € M is defined by:

End: L[2([0,1],R¥) — M
u = End*(u) = v,(1)

where 7, : [0,1] — M is the unique solution of the following
Cauchy problem

B0 = DX 0u(0)

W0) = x.



Sub-Riemannian Geometry
oooooe

Singular horizontal curves

Definition 4

Given x € M. An horizontal path ~, starting at x is said to be
singular if the control u associated to 7, is a critical point of
the End-point map End*. Otherwise, we say that ~, is regular.

dk >0; ||u— |2 <k |z—y|
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Mass Transportation on sub-Riemannian structures of rank 2
in dimension 4
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Existence and uniqueness of solutions

Theorem 5

Let M be an analytic manifold of dimension 4 and (A, g) be a
complete analytic sub-Riemannian structure on M of rank 2
such that

Vx € M, A(x) + [A, A} (x) is of dimension 3. (1)

Let u,v be two probability measures compactly supported on
M such that p is absolutely continuous with respect to the
Lebesgue measure.

Then, there is a unique transport map from p to v for the
sub-Riemannian quadratic cost dZs.
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Sketch of the proof

Let ¢ = d2; be the cost function. Let p,v be two probability
measures compactly supported on M.

We consider o € IMN(u, ) an optimal transport plan and

(¢, ¢°) the Kantorovich potentials such that

supp(a) C Ty = {(x,¥)] ¥°(y) — ¢(x) = c(x, )}

Vx e M, Ty(x):={y e M| (x,y) e T,}.

Definition 6

The staticsetis S :={x € M | x € T,(x)}
The mobile set is M :={x € M | x ¢ I',(x)}
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Static set

Proposition 7(Figalli-Rifford '10)
p-a.e. x €S, we have I',(x) = {x}.

Sketch of the proof
e {X! X2} an orthonormal local frame of A.

o Vz € M, ¢(z) = sup{p(y) — diz(z,y)} locally
yeM

Lipschitz with respect to dsk.

e Pansu-Rademacher Theorem: ¢ is differentiable a.e.
with respect to X1, X2.

o x El,(x) = Vi=12 Xp(x)=0,ae x€ M.
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Mobile set

Let x € M and y € I,(x), we can find singular or regular
minimizing geodesics joining x and y.

Definition 8

M(x) = {y € I,(x)|3singular min. geo. joining x, y}

MR(x) = {y € I,(x)|3regular min. geo. joining x,y}

v

M?® = {x € M|'°(x) # 0} and MR := {x € M|TR(x) # 0}
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Regularity of dsg

Let x € MR and y € TR(x).
@ Jopen set B, in R* containing x and a function
&Y : By — R of class C? such that

¢*Y(2) > d3g(z,y),Vz € B, and equality for z = x.
o MR C U Wk
keN
ou
Wy = {x € M |3p, € R* |p,| < k and
2(x) < 9(2)~ (pex—2) 1k e 2P, vz € B(x.1/k)

@ We extend ¢ to a locally semiconcave function @ on an
open neighborhood O, of x.



o We set
7(2) = B(x) + dalx,y) — $(2), ¥z € O,
such that p*¥ is differentiable a.e. on O,, and
pY(z) < dg(z,y),Vz € O, and equality z = x.
@ 1 an open neighborhood V, of x such that
Y (2) < dig(z,y) < ¢*¥(2),Vz € V, and equality z = x.
Conclusion: there is a unique y € I'(x) such that
y = expy(di”) = expy(dip™”) = expi(—diP),

where exp, is the exponential map at x.
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Singular minimizing geodesics

We consider M = R%.

lemme 10

There is an open set H of full measure on M such that:
Vx € H, T.M=A(x)+ [A, A](x) + [A, [A, A]](x).

[emme 11

On H, there is a horizontal vector field X such that singular

horizontal paths are exactly the trajectories described by the
flow of X.

Moreover, for any compact K of M, 3C > 0;

divX| < CIX(x)], Vx € K.
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Vector field X and its properties

Vz € M, A(z) = Span{X*(z), X?(z)} such that
Vx € M, A(x)+ [A, A](x) is of dimension 3.

Characterization of singular curves: Let v, : [0,1] = M
be a singular horizontal curve associated to u € L([0, 1], R?).
In local coordinates, 3 p : [0,1] — (R*)*\{0} satisfying
Vi=1,2:

z’": ui(t D, X', a.e. t€[0,1]
p(t) X (7u(t)) = p(t).X2(1u(t)) = 0, Vt € [0,1]

X:CV1X1+CK2X2
VK C M compact, 3C > 0; |div, X| < C|X(x)|, Vx € K
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Contraction property

For e € {—1,+1} fixed, let (¢X) be the flow of X.
For any K C M compact,

Ke = X (K), YVt €[0,1] et Ko = K.

LA(K:) = /exp(/tdiv X(¢X(x)) ds)dx

/exp / | X (X (x |ds>

(K, K;) = sup/ IX(pX(x))| ds

xeK

For any K C M compact,

LHK,) > exp(—C I(K, K:))L4(K),Vt € [0, 1].
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What happen on H?

He = {x € M|A(x) + [A, Al(x) + [A, [A, A])(x) # TM}.

Let A be a compact of H such that £*(A) > 0. The set

{x € Al 3v:[0,1] — M singular with (1) € H}

is of Lebesgue measure zero.
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Sketch of the proof

ACH

AtHSCHC

t—o00

ﬁmgzad—a)ﬁMLWEMH
= L*(A) =0.

HEX =0
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Existence and uniqueness of solution on M?®

We set

E := {x € M>|*(x) is not a singleton} .

Vi=1,2,Vte[0,1],
EY = {of(x)| v§(x) € E, ¢X(x) € Ai}.
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LYE) = 6Ii_r)rg)supﬁ“(EE)
lim LYEM U E)
lim £%(E™) + LY(E[?)
lim —exp(—C I(E, E{"))LH(E)
+exp(—C I(E, EM))L*(E)

v

v

We can choose I(E, E]) > 0 sufficiently small,

exp(—C I(E, EN) >

N -

= L*(E)=0.
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What happen on M°> N MR?

MR N M? has Lebesgue measure zero. \

Sketch of the proof
Assume that there is A of MR N M? of positive measure.

o AR := {~,(t)] 7 regular with x € Aand vf(1) € TR(x)},
— measure contraction property
o A := oX(A).
— measure contraction property
As the geodesics are ANALYTICS, there is t €]0, 1] such that

ARNAS =0, Vs €]t 1[and A:= ARN A2 #£ ()
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Study of h-semiconcavity and MCP on Carnot groups
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Carnot groups

@ Let G be a Carnot group of dimension n of step r such
thatg=Vi+---+ V,.

@ We consider V; of dimension m and
Vi = Span{X*,..., X™}.

@ We define the exponential map exp : g — G and its

£ G — g

g — &g)=¢&(g)+ - +&(g)

suchthat & : G — V, fori=1,...,r.

@ For A > 0, family of dilations

inverse

or(g) =expoAyoexpi(g), Vg €G

where Ay : g — g is defined by
A(i+- 4 Vv.)=Avy+ -+ Nv,.
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h-semiconcavity on Carnot groups

oVgeG H,={g €G: g =ghwith heexp(V1)}.
o VgeG Vg €ty Ae[0,1] — g'dn(g1g’) € H,
horizontal segment between g, g’.

Definition 14

We say that a function f : G — R is h-semiconcave on G if it
is semiconcave on every horizontal segment, that is, there
exists C > 0 such that

M(g) + (1= M)f(g)
< f(gor(g'g") + M1 - N Cla(e) - &(g)l

Vg € G,Vg' € Mg, VA e[0,1].
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Properties of h-semiconcave functions

Let f : G — R be an h-semiconcave function with C as
h-semiconcavity constant.

Theorem 15

o f is Lipschitz with respect to dsg.
Pansu-Rademacher Theorem: f is differentiable a.e.

with respect to X',i =1,...,m.
o f is twice differentiable a.e. with respect to
Xi=1...m.

Proposition 16

XIXIf + XIX'f
For any g € G, (V31)"(g) i= [~ =—(g)] < Cln

where /,, denotes the identity matrix m x m




Let G be a Carnot group of dimension n whose first layer V4
has dimension m such that V; = Span{X*,... X™}.

Definition 17

We say that a sub-Riemannian structure is h-ideal if it is
complete and the sub-Riemannian distance dsr is
h-semiconcave on G x G outside the diagonal.

Up to a change of coordinates, we may assume that
n

X!'=9,, and X' =0, + Z oz{@xj,‘v’i:l...,m

j=m+1

with of € C>(M).
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MCP on Carnot groups

Proposition 18

Let G be a Carnot group whose first layer is h-ideal and
satisfles ASSUMPTION 1. Then, there is N > 0 such that for
every k € N and for every measurable set

1 1
AC BSR(O, y)\BSR(Oy W)

with 0 < L"(A) < 400, we have
L"(As) > sVL"(A), Vs € [0,1]
where

As = {fy(s)] 7 :[0,1] — G min. geo., y(0) = 0,7v(1) € A}.
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Sketch of the proof

We may assume that G = R".
e Vg e g, f(g):=dsr(0,g) and Z(g) := —Vf(g).
@ Fore >0, . = ¢. x f smooth and h-semiconcave
functions on G\{0}.
e For g € G, we define Z.(g) := —Vf(g).
e For A C Bsg(0,1)\Bsg(0,1/2), we denote by

A = e (A), Vs € [1/2,1]
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divZ.(g) =

—E-Y" % X(ahout — Y X'f(g) div X(g)

i=2 I=m+1 i—1
where E is given in terms of (V,f.)*(g).

e 3C>0,
divZ.(g) > C,a.e. g € A.

d
- n c > - = — n € .
dt{c (Al_t)} > /%ZE(A) Cdx = —CL"(A_,)



e Gronwall Theorem: there is N > 0 such that
LA ) > tNL(A), Vi € [1/2,1].
e ¢ —0,
L"(A1_) > tNL(A), Vi € [1/2,1].
e By dilations properties, for every k € N, we have
d2¢(A) C Bsr(0,1)\Bsr(0,1/2)

(52k(A5) = (52k(A))S, Vs € [0, ].]

e For any A C Bsg(0,1/2%)\Bsg(0,1/2%1), IN > 0 such
that
L"(A) > sNL(A), Vs € [0,1]
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Perspectives

e Examples of h-ideal sub-Riemannian structures on Carnot
groups 77

@ Proof of the MCP property on more general
sub-Riemannian structures 77
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Thank you for your attention !!
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