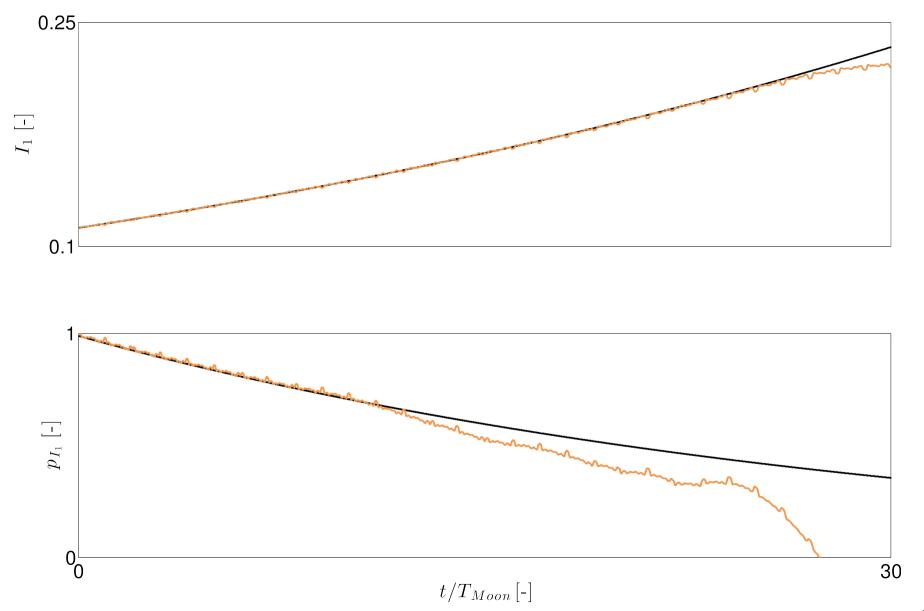
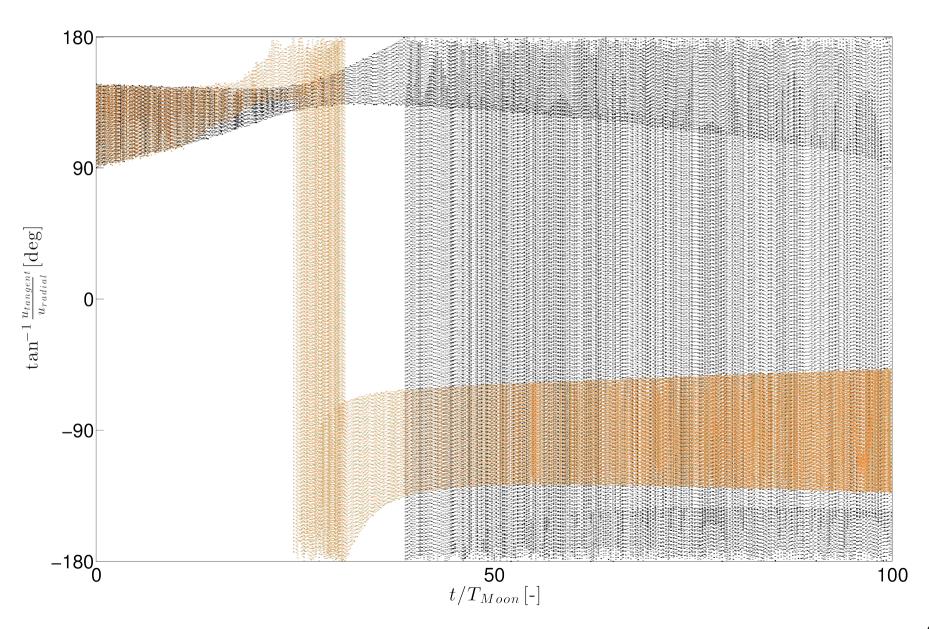
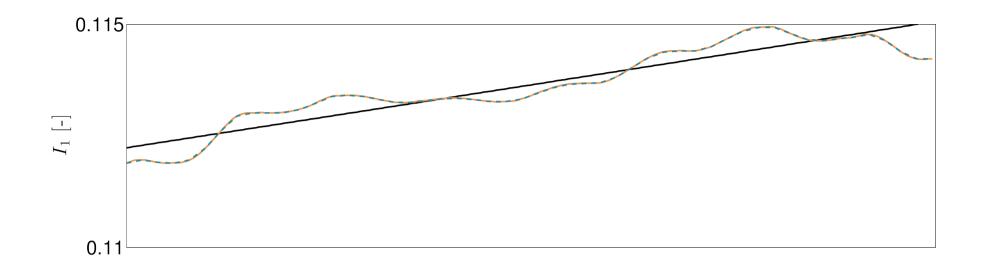
Adjoints drift faster slow states

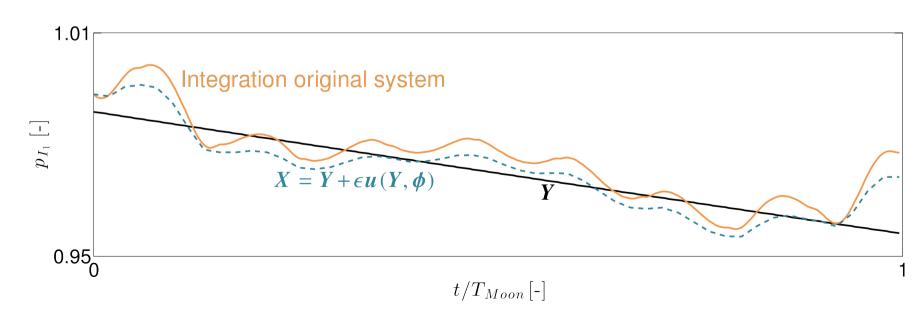


The perturbation is the trigger, the control yields the drift



The near-identity transformation of p_I is not adequate





The term $\omega'(I)p_{\phi}$ has to be included in the transformation

Previous transformation:

$$u(\mathbf{Y}, \boldsymbol{\phi}) = -i \sum_{0 < |\mathbf{k}| \le N} \frac{\Delta f_{\mathbf{k}}}{\mathbf{k} \cdot \boldsymbol{\omega}(\mathbf{Y})} \exp(i\mathbf{k} \cdot \boldsymbol{\phi})$$

Where Δf_k are Fourier coefficients of $\Delta f \doteqdot f(Y, \phi, \epsilon) - \overline{f}(Y)$ and $Y = \{J, p_J, p_\alpha = 0, p_\beta\}$

The term $\omega'(I)p_{\phi}$ has to be included in the transformation

Previous transformation:

$$\boldsymbol{u}\left(\boldsymbol{Y},\boldsymbol{\phi}\right) = -i\sum_{0<|\boldsymbol{k}|\leq N} \frac{\Delta f_{\boldsymbol{k}}}{\boldsymbol{k}\cdot\boldsymbol{\omega}(\boldsymbol{Y})} \exp\left(i\boldsymbol{k}\cdot\boldsymbol{\phi}\right)$$

Where Δf_k are Fourier coefficients of $\Delta f \doteqdot f(Y, \phi, \epsilon) - \overline{f}(Y)$ and $Y = \{J, p_J, p_\alpha = 0, p_\beta\}$

The differential equation of p_I is:

$$\dot{p}_{I} = -\epsilon \frac{\partial K}{\partial I} - \underbrace{\frac{\partial |\omega|}{\partial I} p_{\alpha}}_{O(\epsilon)}$$

The term $\omega'(I)p_{\phi}$ has to be included in the transformation

Previous transformation:

$$u(Y, \phi) = -i \sum_{0 < |\mathbf{k}| \le N} \frac{\Delta f_{\mathbf{k}}}{\mathbf{k} \cdot \omega(Y)} \exp(i\mathbf{k} \cdot \phi)$$

Where Δf_k are Fourier coefficients of $\Delta f \doteqdot f(Y, \phi, \epsilon) - \overline{f}(Y)$ and $Y = \{J, p_J, p_\alpha = 0, p_\beta\}$

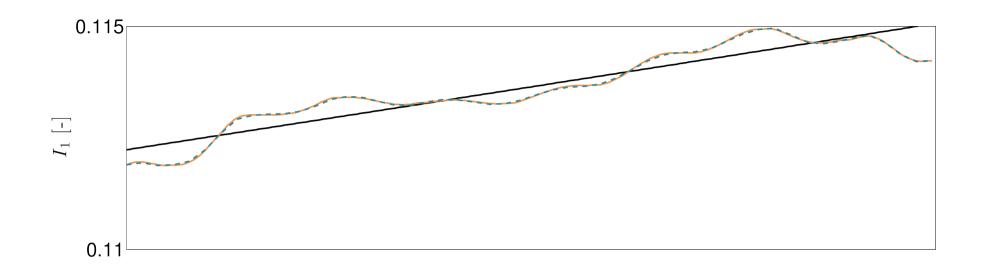
The differential equation of p_I is:

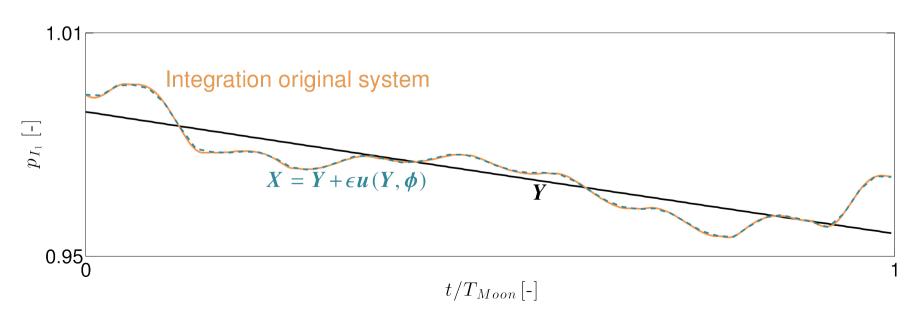
$$\dot{\mathbf{p}_{I}} = -\epsilon \frac{\partial K}{\partial \mathbf{I}} - \underbrace{\frac{\partial |\boldsymbol{\omega}|}{\partial \mathbf{I}} p_{\alpha}}_{O(\epsilon)}$$

The expansion should be carried out by using:

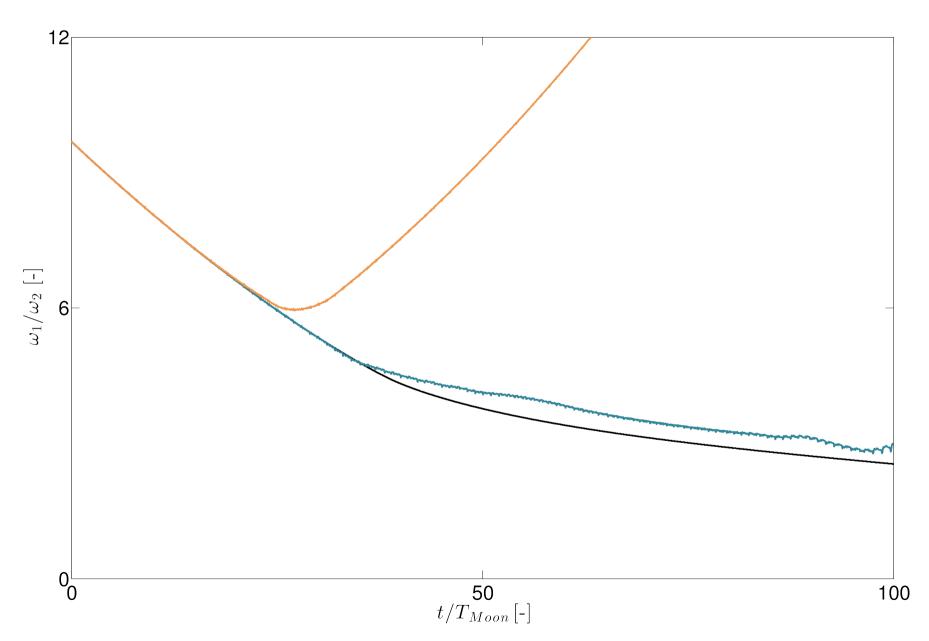
$$\dot{p_I} = -\epsilon \left(\frac{\partial K}{\partial I} - \frac{\partial |\omega|}{\partial I} h(J, p_J, \beta, \phi) \right)$$

The term $\omega'(I)p_\phi$ has to be included in the transformation





Beneficial effect of the enhanced transformation of p_I



Conclusions

Simple averaging is sufficient for real-life problems in astrodynamics, e.g., orbit raising

Initial conditions should undergo a near-identity transformation to reduce the drift

Key role of the transformation of the adjoints of slow variables

Effects of main resonances cannot be neglected in relevant astrodynamics applications

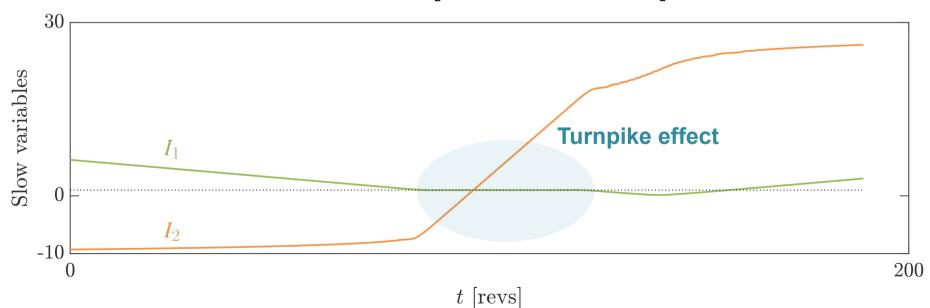
The averaged system might be enriched by using a composite expansion

Way forward: exploitation of resonances

$$\min_{\substack{||\boldsymbol{u}||\leq 1}} t_f \quad \text{subject to}$$

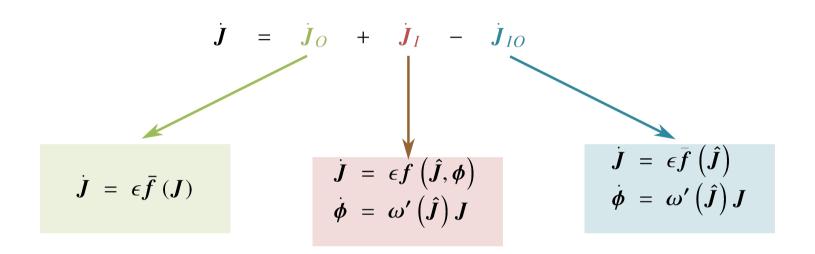
$$\begin{array}{rcl} \dot{\boldsymbol{I}}_1 &=& \epsilon \, u_1 \\ \dot{\boldsymbol{I}}_2 &=& \epsilon \, f(\phi_1,\phi_2) \, u_2 \\ \dot{\phi}_1 &=& \boldsymbol{I}_1 \\ \dot{\phi}_2 &=& 1 \end{array}$$

where
$$f(\phi_1, \phi_2) = \left[0.1 + \left(\frac{\cos \phi_1 + \cos \phi_2}{2}\right)^2\right]^{-1}$$



39

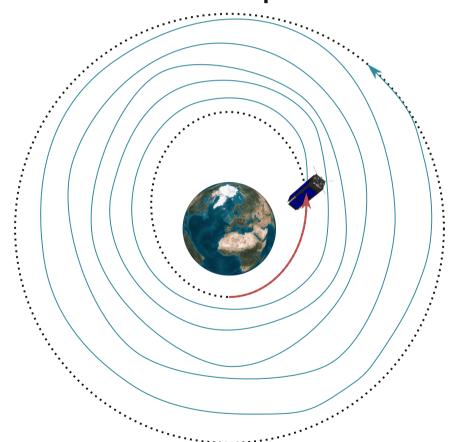
Way forward: composite expansion to model captures



 $\exists \mathbf{k} \in \mathbb{Z}^0$ such that $\mathbf{k} \cdot \hat{\mathbf{J}} = 0$

J.A. SANDERS, F. VERHULST, J. MURDOCK, *Averaging Methods in Nonlinear Dynamical Systems*, Springer, 2007.

Two-Frequency Averaging of Optimal Control Problems with Application to Time-Optimal Orbital Transfer



L. Dell'Elce, J.B. Caillau, and J.B. Pomet