Osculating adjoints of fast variables remain small

Outline

1. Dynamical systems with slow & fast dynamics

2. Averaging the two-phase optimal control problem

3. Near identity transformation of the initial state

Are initial average states a good guess as is?

Near-identity transformation of the slow variables

Change of variables $X = Y + \epsilon u (Y, \phi)$

Formulation for the multi-phase problem

Original system $\dot{X} = \epsilon f(X, \phi, \epsilon)$ $\dot{\phi} = \epsilon g(X, \phi, \epsilon) + \omega(I)$ Averaged system

$$\dot{\mathbf{Y}} = \epsilon \overline{\mathbf{f}}(\mathbf{Y})$$
$$\overline{\mathbf{f}}(\mathbf{Y}) := \int_{\mathbb{T}^r} f(\mathbf{Y}, \boldsymbol{\phi}, 0) \, \mathrm{d}\boldsymbol{\phi}$$

Near identity transformation:

$$\boldsymbol{u}(\boldsymbol{Y},\boldsymbol{\phi}) = -i\sum_{0 < |\boldsymbol{k}| \le N} \frac{\Delta \boldsymbol{f}_{\boldsymbol{k}}}{\boldsymbol{k} \cdot \boldsymbol{\omega}(\boldsymbol{Y})} \exp\left(i\boldsymbol{k} \cdot \boldsymbol{\phi}\right)$$

Where Δf_k are Fourier coefficients of $\Delta f \doteq f(Y, \phi, \epsilon) - \overline{f}(Y)$

Interpretation: first-order matching of the time derivative

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{X} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\boldsymbol{Y} + \boldsymbol{\epsilon}\boldsymbol{u} \left(\boldsymbol{Y}, \boldsymbol{\phi}\right)\right) + O\left(\boldsymbol{\epsilon}^{2}\right)$$

The transformation yields zero-mean oscillations

The transformation greatly improves the estimation

But it is not yet enough when the perturbation is stronger

Drift disappears when the perturbation is smaller

Adjoints drift faster slow states

