

Two-Frequency Averaging of Optimal Control Problems with Application to Time-Optimal Orbital Transfer

L. Dell'Elce, J.B. Caillau, and J.B. Pomet

McTAO Days, Dijon, 05/12/2017

Low-thrust transfer: a recent problem in astrodynamics

Fast motion of the satellite on a slowly-varying orbit

Orbital perturbations may introduce new frequencies

Challenges:Do adjoint variables introduce additional fast dynamics?Is simple averaging enough when resonances are crossed?

Outline

1. Dynamical systems with slow & fast dynamics

2. Averaging the two-phase optimal control problem

3. Near identity transformation of the initial state

Outline

1. Dynamical systems with slow & fast dynamics

2. Averaging the two-phase optimal control problem

3. Near identity transformation of the initial state

Averaging: an effective way to remove fast dynamics

f, g periodic in $\phi, \epsilon \ll 1$ Slow variables: $I \subset \mathbb{R}^n$ Fast variables: $\phi \subset \mathbb{T}^r$

Is averaging compatible with resonance crossing?

$$\dot{I}_1 = \epsilon, \ \dot{I}_2 = \epsilon \cos(\phi_2 - \phi_1), \ \dot{\phi}_1 = I_1, \ \dot{\phi}_2 = I_2$$

Is averaging compatible with resonance crossing?

$$\dot{I}_1 = \epsilon, \ \dot{I}_2 = \epsilon \cos(\phi_2 - \phi_1), \ \dot{\phi}_1 = I_1, \ \dot{\phi}_2 = I_2$$

Is averaging compatible with resonance crossing?

$$\dot{I}_1 = \epsilon, \ \dot{I}_2 = \epsilon \cos(\phi_2 - \phi_1), \ \dot{\phi}_1 = I_1, \ \dot{\phi}_2 = I_2$$

Rich literature quantifying "small" and "most"

Results for 2 phases:

Arnold theorem very restrictive assumptions

Neistadt theorem restrictive assumptions, optimal estimate

P. LOCHAK, C. MEUNIER Multiphase Averaging for Classical Systems, Springer, 1988.

Optimal estimate for two-phase problem (Neistadt)

Strong assumption

$$\begin{aligned} \omega_2(\boldsymbol{J}) &\geq 0 \qquad \forall \, \boldsymbol{J} \in \boldsymbol{K} \\ \left| \frac{\mathsf{d}\omega}{\mathsf{d}t} \left(\boldsymbol{J}(\boldsymbol{J}_0, \boldsymbol{\phi}_0, t, \epsilon) \right) \right| &\geq c_1 \epsilon \qquad \forall \, \left(\boldsymbol{J}_0, \boldsymbol{\phi}_0 \right) \in \boldsymbol{K}' \times \mathbb{T}^2, \, t \leq \frac{1}{\epsilon} \qquad \text{where } \omega := \frac{\omega_1(\boldsymbol{J})}{\omega_2(\boldsymbol{J})} \end{aligned}$$

Main result

for
$$\epsilon \to 0$$
, $\exists K'' \subseteq K'$, $\mu(K'' - K') < c\sqrt{\epsilon}$, such that $\forall (J_0, \phi_0, t) \in K'' \times \mathbb{T}^2$
$$\sup_{t \in [0, \epsilon^{-1}]} ||I(t) - J(t)|| < c\sqrt{\epsilon} \log \frac{1}{\epsilon}$$

Outline

1. Dynamical systems with slow & fast dynamics

2. Averaging the two-phase optimal control problem

3. Near identity transformation of the initial state

Minimum time low-thrust transfer

What about the dynamics of the control?

Necessary conditions: are adjoints slow or fast?

In the single-phase problem, p_I is slow. See:

A. BOMBRUN, A.; J.B. POMET, The averaged control system of fast oscillating control systems SIAM J. Control Optim., 2013.

J.B. CAILLAU, J.B. POMET, J. ROUOT, J. CNES contract report, 2015.

Adjoints remain slow in the multi-phase case

Main idea:

$$\omega(\mathbf{I}^*) \cdot \mathbf{p}_{\phi}^* = O(\epsilon) \quad \triangleright \quad \dot{\mathbf{p}}_{\mathbf{I}} = -\epsilon \frac{\partial K}{\partial \mathbf{I}} - \underbrace{\frac{\partial \omega}{\partial \mathbf{I}}}_{O(\epsilon)} \mathbf{p}_{\phi} = O(\epsilon)$$

Sketch of the proof:

Change of variables:
$$I, \phi \to L, \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 s.t. $L = I, \alpha = \frac{\omega \cdot \phi}{||\omega||}$ and $\beta = \frac{\omega^{\perp} \phi}{||\omega||}$
The Hamiltonian becomes: $\mathcal{H} = ||\omega(L)||p_{\alpha} + \epsilon K (L, \alpha, \beta, p_L, p_{\alpha}, p_{\beta}, \epsilon)$
By noting that $p_{\alpha}(0) = p_{\beta}(0) = 0$ and normalizing $||p_L(0)|| = 1$, we have $\mathcal{H} = \epsilon c$
Hence, p_{α} can be implicitly expressed as: $p_{\alpha} = \epsilon \frac{c - K(L, \alpha, \beta, p_L, p_{\alpha}, p_{\beta}, \epsilon)}{||\omega(L)||}$
Because $\frac{\partial \mathcal{H}}{\partial p_{\alpha}} = ||\omega(L)|| + O(\epsilon) > 0$, we have: $p_{\alpha} = -\epsilon h(L, \alpha, \beta, p_L, p_{\beta}, \epsilon)$
So that: $\dot{p}_L = -\epsilon \frac{\partial H}{\partial p_{\alpha}} \frac{\partial h}{\partial L} = O(\epsilon)$

Transfer to geostationary orbit

Averaged solution satisfies Neistadt's requirements

Averaged solution plugged in the original system

Enhanced precision by averaging Moon gravity

