On abnormal length minimizers in sub-Riemannian groups

Enrico Le Donne (Jyväskylä, Finland)

Journée McTAO Dijon, December 4-5, 2017

Enrico Le Donne Geodesics in SR groups

ヘロト ヘアト ヘビト ヘビト

ъ

From collaborations with

Hakavuori [Inventiones, 2016],

Montgomery, Ottazzi, Pansu, Vittone [Annales de l'IHP, 2016].

- geodesics in SR groups normal & abnormal curves.
- Sard-type problems abnormal varieties.
- Limits of geodesics blow-ups & blow-downs.

< 回 > < 回 > < 回 > -

1

## Sub-Riemannian geometry

- M manifold
- $\Delta$  bracket-generating subbundle of the tangent bundle of *M*
- $\|\cdot\|$  norm on  $\Delta$  coming from a smoothly varying scalar product

## The **SR distance** is $d_{SR}(p,q) = \inf \left\{ \int ||\dot{\gamma}|| \ | \ \gamma : [0,1] \xrightarrow{AC} M, \qquad p \rightsquigarrow q, \qquad \dot{\gamma} \in \Delta \right\}$

In this talk, the structure will be invariant under left translations with respect to a group structure.

▲御 → ▲ 注 → ▲ 注 → … 注

## Sub-Riemannian geometry

- M manifold
- $\Delta$  bracket-generating subbundle of the tangent bundle of *M*
- $\|\cdot\|$  norm on  $\Delta$  coming from a smoothly varying scalar product

## The **SR distance** is $d_{SR}(p,q) = \inf \left\{ \int ||\dot{\gamma}|| \ | \ \gamma : [0,1] \xrightarrow{AC} M, \qquad p \rightsquigarrow q, \qquad \dot{\gamma} \in \Delta \right\}$

In this talk, the structure will be invariant under left translations with respect to a group structure.

<週 > < 注 > < 注 > . 注

## Polarized groups

- G connected Lie group with Lie algebra  $\mathfrak{g}$ .
- $V \subseteq \mathfrak{g}$  linear subspace, called *polarization*.

For  $u \in L^2([0, 1], V)$ , let  $\gamma_u$  be the curve in *G* that solves

$$\frac{\mathrm{d}\,\gamma}{\mathrm{d}\,t}(t) = \left(\mathrm{d}\,L_{\gamma(t)}\right)_{1_G} u(t),\tag{ODE}$$

< 回 > < 回 > < 回 > … 回

with initial condition  $\gamma(0) = 1_G$ .

If  $\gamma : [0, 1] \rightarrow G$  is an AC curve that solves the ODE for some  $u \in L^2([0, 1], V)$ , then  $\gamma$  is said *horizontal* with respect to V and  $u = u_{\gamma}$  is its *control*.

 $\gamma$  is horizontal  $\iff$  the derivatives of  $\gamma$  lie in the left-invariant subbundle  $\Delta$  that coincides with V at the origin 1<sub>G</sub>.

## Polarized groups

- G connected Lie group with Lie algebra  $\mathfrak{g}$ .
- $V \subseteq \mathfrak{g}$  linear subspace, called *polarization*.

For  $u \in L^2([0, 1], V)$ , let  $\gamma_u$  be the curve in *G* that solves

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t}(t) = \left(\mathrm{d}L_{\gamma(t)}\right)_{1_G} u(t), \qquad (\mathsf{ODE})$$

(個) (日) (日) (日)

with initial condition  $\gamma(0) = 1_G$ .

If  $\gamma : [0, 1] \rightarrow G$  is an AC curve that solves the ODE for some  $u \in L^2([0, 1], V)$ , then  $\gamma$  is said *horizontal* with respect to V and  $u = u_{\gamma}$  is its *control*.

 $\gamma$  is horizontal  $\iff$  the derivatives of  $\gamma$  lie in the left-invariant subbundle  $\Delta$  that coincides with V at the origin 1<sub>G</sub>.

## Polarized groups

- G connected Lie group with Lie algebra  $\mathfrak{g}$ .
- $V \subseteq \mathfrak{g}$  linear subspace, called *polarization*.

For  $u \in L^2([0, 1], V)$ , let  $\gamma_u$  be the curve in *G* that solves

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t}(t) = \left(\mathrm{d}L_{\gamma(t)}\right)_{1_G} u(t), \qquad (\mathsf{ODE})$$

(画) (画) (画) (画)

with initial condition  $\gamma(0) = 1_G$ .

If  $\gamma : [0, 1] \rightarrow G$  is an AC curve that solves the ODE for some  $u \in L^2([0, 1], V)$ , then  $\gamma$  is said *horizontal* with respect to V and  $u = u_{\gamma}$  is its *control*.

 $\gamma$  is horizontal  $\iff$  the derivatives of  $\gamma$  lie in the left-invariant subbundle  $\Delta$  that coincides with *V* at the origin 1<sub>*G*</sub>.

#### The endpoint map starting at $1_G$ with controls in V is the map

End: 
$$L^2([0,1], V) \rightarrow G$$
  
 $u \mapsto \gamma_u(1).$ 

・ロン・(理)・ ・ ヨン・

## Differential of Endpoint map and its image

#### Theorem

The endpoint map End :  $u \mapsto \gamma_u(1)$  is smooth and

$$\operatorname{dEnd}_{u} v = (\operatorname{d} R_{\gamma_{u}(1)})_{1_{G}} \int_{0}^{1} \operatorname{Ad}_{\gamma_{u}(t)} v(t) \operatorname{d} t, \quad \forall u, v \in L^{2}([0, 1], V),$$
where Ad  $x_{u} = x_{u}$  is Ad  $x_{u} = (C_{u})$ , with  $C_{u}$  is  $x_{u} = x_{u}$ .

where  $\operatorname{Ad}_g : \mathfrak{g} \to \mathfrak{g}$  is  $\operatorname{Ad}_g = (C_g)_*$  with  $C_g h = ghg^{-1}$ .

#### Corollary

$$\operatorname{Im}(\mathsf{d}\operatorname{End}_{u}) = (\mathsf{d} R_{\gamma_{u}(1)})_{1_{G}}(\operatorname{span}\{\operatorname{Ad}_{\gamma_{u}(t)} V : t \in [0,1]\}).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

#### Sketch of the proof

Easier in matrix groups, so  $Ad_B(A) = BAB^{-1}$ .

$$\sigma_{1}(t) := \frac{d}{d\epsilon} \gamma_{u+\epsilon v}(t)|_{\epsilon=0}$$
  
$$\sigma_{2}(t) := \int_{0}^{t} \operatorname{Ad}_{\gamma(s)}(v(s)) \, \mathrm{d} \, s \cdot \gamma(t)$$
  
$$\implies \sigma_{1} \text{ and } \sigma_{2} \text{ satisfy the ODE}$$

$$\frac{\mathrm{d}\,\sigma_i}{\mathrm{d}\,t}(t) = \gamma(t)\cdot\mathbf{v}(t) + \sigma_i(t)\cdot\mathbf{u}(t),$$

with the same initial condition.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

#### Sketch of the proof

Easier in matrix groups, so  $Ad_B(A) = BAB^{-1}$ .

$$\sigma_{1}(t) := \frac{d}{d\epsilon} \gamma_{u+\epsilon v}(t)|_{\epsilon=0}$$

$$\sigma_{2}(t) := \int_{0}^{t} \operatorname{Ad}_{\gamma(s)}(v(s)) \, \mathrm{d} \, s \cdot \gamma(t)$$

$$\implies \sigma_{1} \text{ and } \sigma_{2} \text{ satisfy the ODE}$$

$$\frac{\mathsf{d}\,\sigma_i}{\mathsf{d}\,t}(t) = \gamma(t)\cdot \mathbf{v}(t) + \sigma_i(t)\cdot \mathbf{u}(t),$$

with the same initial condition.

## Extended Endpoint map

Fix a Euclidean norm  $\|\cdot\|$  on *V*. Then  $\Omega := L^2([0, 1]; V)$  is normed:

$$||u|| := \left(\int_0^1 ||u(t)||^2 dt\right)^{\frac{1}{2}}.$$

The extended endpoint map is

$$\widetilde{\mathsf{End}}:\Omega o G imes\mathbb{R}$$
 $u\mapsto \left(\gamma_u(1),rac{1}{2}\|u\|^2
ight).$ 

We are interested in those curves that start from  $1_G$  and reach a given point  $p = \gamma_u(1)$  minimizing the *energy*  $\frac{1}{2} ||u||^2$ .

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

## Extended Endpoint map

Fix a Euclidean norm  $\|\cdot\|$  on *V*. Then  $\Omega := L^2([0, 1]; V)$  is normed:

$$||u|| := \left(\int_0^1 ||u(t)||^2 dt\right)^{\frac{1}{2}}$$

The extended endpoint map is

$$\widetilde{\mathsf{End}}:\Omega o G imes\mathbb{R}$$
  
 $u\mapsto \left(\gamma_u(1),rac{1}{2}\|u\|^2
ight).$ 

We are interested in those curves that start from 1<sub>*G*</sub> and reach a given point  $p = \gamma_u(1)$  minimizing the *energy*  $\frac{1}{2} ||u||^2$ .

< 回 > < 回 > < 回 > … 回

## Consequence of minimizing energy

u is a minimizer for the energy

- $\iff$  End not open at u
- $\implies$  [Open Mapping Theorem] d End is not surjective at u
- $\iff \exists (\xi, \xi_0) \in \left( \mathcal{T}_{\mathsf{End}(u)} G \right)^* \times \mathbb{R} \setminus \{ (0, 0) \}:$

$$\langle (\xi, \xi_0), d \, \widetilde{\mathsf{End}}_u(v) \rangle = 0, \quad \forall v \in \Omega.$$

Formula:

$$d\widetilde{\mathsf{End}}_{u}: \Omega \to T_{\widetilde{\mathsf{End}}(u)}(G \times \mathbb{R}) = T_{\mathsf{End}(u)}G \times \mathbb{R} = (dR_{\gamma_{u}(1)})_{1_{G}}\mathfrak{g} \times \mathbb{R}$$
$$v \mapsto \left( (dR_{\gamma_{u}(1)})_{1_{G}} \int_{0}^{1} \mathsf{Ad}_{\gamma_{u}(t)}(v(t))dt, \langle u, v \rangle \right).$$

< 回 > < 回 > < 回 > .

u is a minimizer for the energy

- $\iff$  End not open at u
- $\implies$  [Open Mapping Theorem] d End is not surjective at u
- $\iff \exists (\xi, \xi_0) \in (T_{\mathsf{End}(u)}G)^* \times \mathbb{R} \setminus \{(0, 0)\}:$

$$\langle (\xi, \xi_0), d \, \widetilde{\mathsf{End}}_u(v) \rangle = 0, \quad \forall v \in \Omega.$$

#### Formula:

$$d\widetilde{\mathsf{End}}_{u}: \Omega \to T_{\widetilde{\mathsf{End}}(u)}(G \times \mathbb{R}) = T_{\mathsf{End}(u)}G \times \mathbb{R} = (dR_{\gamma_{u}(1)})_{1_{G}}\mathfrak{g} \times \mathbb{R}$$
$$v \mapsto \left( \left( dR_{\gamma_{u}(1)} \right)_{1_{G}} \int_{0}^{1} \mathsf{Ad}_{\gamma_{u}(t)}(v(t))dt, \langle u, v \rangle \right).$$

(過) (ヨ) (ヨ)

## Consequence of minimizing energy

# u is a minimizer for the energy $\implies$

 $\exists \lambda \in \mathfrak{g}^* \text{ and } \xi_0 \in \mathbb{R} \text{ such that } (\lambda, \xi_0) \neq (0, 0) \text{ and }$ 

$$\lambda\left(\int_0^1 \operatorname{Ad}_{\gamma_u(t)} v(t) dt\right) = \xi_0 \langle u, v \rangle, \quad \forall v \in \Omega.$$
 (1)

Two cases

(1)  $\xi_0 \neq 0.$  normal curve (2)  $\xi_0 = 0.$  abnormal curve

#### u is a minimizer for the energy

 $\exists \lambda \in \mathfrak{g}^* \text{ and } \xi_0 \in \mathbb{R} \text{ such that } (\lambda, \xi_0) \neq (0, 0) \text{ and }$ 

$$\lambda\left(\int_0^1 \operatorname{Ad}_{\gamma_u(t)} v(t) dt\right) = \xi_0 \langle u, v \rangle, \quad \forall v \in \Omega.$$
 (1)

Two cases

 $\implies$ 

(1)  $\xi_0 \neq 0.$  normal curve (2)  $\xi_0 = 0.$  abnormal curve

(雪) (ヨ) (ヨ)

3

First case: May assume  $\xi_0 = 1$ .

$$\langle u, v \rangle = \lambda \left( \int_0^1 \operatorname{Ad}_{\gamma_u(t)} v(t) dt \right).$$

 $(e_1, \ldots, e_r)$  o.n. basis for  $(V, \|\cdot\|)$ . In this basis, the controls are

$$egin{aligned} & \mathcal{U}_i(t) = \langle u, \delta_t e_i 
angle \ & = \lambda \int_0^1 \operatorname{Ad}_{\gamma_u(s)}(\delta_t e_i) ds \ & = \lambda (\operatorname{Ad}_{\gamma_u(t)}(e_i)). \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

First case: May assume  $\xi_0 = 1$ .

$$\langle u, v \rangle = \lambda \left( \int_0^1 \operatorname{Ad}_{\gamma_u(t)} v(t) dt \right).$$

 $(e_1, \ldots, e_r)$  o.n. basis for  $(V, \|\cdot\|)$ . In this basis, the controls are

$$egin{aligned} u_i(t) &= \langle u, \delta_t m{e}_i 
angle \ &= \lambda \int_0^1 \operatorname{Ad}_{\gamma_u(s)}(\delta_t m{e}_i) ds \ &= \lambda (\operatorname{Ad}_{\gamma_u(t)}(m{e}_i)). \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

 $\gamma$  is a normal curve  $\iff \gamma$  satisfies the *normal equation* (or geodesic equation):  $\exists \lambda \in \mathfrak{g}^*$ :

$$\dot{\gamma}(t) = \sum_{i=1}^{r} \lambda \left( \mathsf{Ad}_{\gamma_u(t)}(\boldsymbol{e}_i) \right) X_i(\gamma_u(t)), \tag{2}$$

for the left-invariant vector fields  $X_i(g) := (dL_g) e_i$ .

Facts:

\* Every normal curve is analytic & constant-speed param.

\* Every normal curve is locally energy minimizing.

The converse is not true.

<ロ> (四) (四) (三) (三) (三)

 $\gamma$  is a normal curve  $\iff \gamma$  satisfies the *normal equation* (or geodesic equation):  $\exists \lambda \in \mathfrak{g}^*$ :

$$\dot{\gamma}(t) = \sum_{i=1}^{r} \lambda \left( \mathsf{Ad}_{\gamma_u(t)}(\boldsymbol{e}_i) \right) X_i(\gamma_u(t)), \tag{2}$$

for the left-invariant vector fields  $X_i(g) := (dL_g) e_i$ .

Facts:

- \* Every normal curve is analytic & constant-speed param.
- \* Every normal curve is locally energy minimizing.

The converse is not true.

・ 同 ト ・ ヨ ト ・ ヨ ト …

#### Folk-conjectures:

- $\exists$  full-measure set  $A \subset G$ :  $\forall p \in A \exists$  normal energy-minimizing curve from 1<sub>G</sub> to p.
- Every energy-minimizing curve is differentiable (or even analytic!)

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Second case:  $\xi_0 = 0$ .  $\iff \gamma$  satisfies the *abnormal equation*:  $\exists \lambda \in \mathfrak{g}^* \setminus \{0\}$ :

$$\lambda\left(\int_0^1 \operatorname{\mathsf{Ad}}_{\gamma_u(t)} {oldsymbol v}(t) dt
ight) = {f 0}, \quad \forall {oldsymbol v} \in \Omega.$$

Equivalently,

$$\lambda \left( \mathsf{Ad}_{\gamma_u(t)} \, \mathbf{V} \right) = \{ \mathbf{0} \}. \tag{3}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ∽ � � �

## Abnormal curves & abnormal varieties

#### Corollary

- (G, V) polarized group,  $\gamma : [0, 1] \rightarrow G$  horizontal curve. TFAE
  - $\gamma$  is abnormal;
  - $\exists \lambda \in \mathfrak{g}^* \setminus \{\mathbf{0}\}: \lambda(\mathsf{Ad}_{\gamma(t)} \mathsf{V}) = \{\mathbf{0}\}, \forall t \in [0, 1];$
  - **③** ∃ right-invariant 1-form  $\alpha$  on G:  $\alpha(\Delta_{\gamma(t)}) = \{0\}, \forall t \in [0, 1], where \Delta$  is the left-invariant distribution induced by V.

Given  $\lambda \in \mathfrak{g}^* \setminus \{0\}$ , set  $Z^{\lambda} := \{g \in G : ((\operatorname{Ad}_g)^*\lambda)|_V = 0\}$ .  $Z^{\lambda}$  is a proper real analytic variety. If *G* is nilpotent, then  $Z^{\lambda}$  is a proper real algebraic variety.

#### Proposition

A horizontal curve  $\gamma$  is abnormal  $\iff \gamma$  is contained in  $Z^{\lambda}$  for some nonzero  $\lambda \in \mathfrak{g}^*$ 

・ロット (雪) ( ) ( ) ( ) ( )

э

## Abnormal curves & abnormal varieties

#### Corollary

- (G, V) polarized group,  $\gamma : [0, 1] \rightarrow G$  horizontal curve. TFAE
  - $\gamma$  is abnormal;
  - $\exists \lambda \in \mathfrak{g}^* \setminus \{\mathbf{0}\}: \lambda(\mathsf{Ad}_{\gamma(t)} \mathsf{V}) = \{\mathbf{0}\}, \forall t \in [0, 1];$
  - **③** ∃ right-invariant 1-form  $\alpha$  on G:  $\alpha(\Delta_{\gamma(t)}) = \{0\}, \forall t \in [0, 1], where \Delta$  is the left-invariant distribution induced by V.

Given  $\lambda \in \mathfrak{g}^* \setminus \{0\}$ , set  $Z^{\lambda} := \{g \in G : ((\operatorname{Ad}_g)^* \lambda)_{|V} = 0\}$ .  $Z^{\lambda}$  is a proper real analytic variety. If *G* is nilpotent, then  $Z^{\lambda}$  is a proper real algebraic variety.

#### Proposition

A horizontal curve  $\gamma$  is abnormal  $\iff \gamma$  is contained in  $Z^{\lambda}$  for some nonzero  $\lambda \in \mathfrak{g}^*$ .

ヘロン 人間 とくほ とくほう

ъ

# How many abnormal curves are there?

Enrico Le Donne Geodesics in SR groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The *abnormal set* of (G, V) is the subset Abn  $\subset$  G of all singular values of the endpoint map. Equivalently, Abn is the union of all *abnormal curves* passing through 1<sub>G</sub>.

## Sub-Riemannian Sard Conjecture:

Abn has measure zero.

#### Theorem (LMOPV 2016)

*In the following polarized groups* Abn *is contained in a proper algebraic subvariety:* 

- Carnot groups of step 2;
- 2) The free-nilpotent group of rank 3 and step 3;
- The free-nilpotent group of rank 2 and step 4.

・ロン ・四 と ・ ヨ と ・ ヨ と …

The *abnormal set* of (G, V) is the subset  $Abn \subset G$  of all singular values of the endpoint map. Equivalently, Abn is the union of all *abnormal curves* passing through  $1_G$ .

#### Sub-Riemannian Sard Conjecture:

Abn has measure zero.

#### Theorem (LMOPV 2016)

In the following polarized groups Abn is contained in a proper algebraic subvariety:

- Carnot groups of step 2;
- Interpreter The State of the
- The free-nilpotent group of rank 2 and step 4.

ヘロト 人間 ト ヘヨト ヘヨト

#### Theorem (LMOPV 2016)

In every sub-Riemannian Carnot group G of step 3, the union of all locally length-minimizing abnormal curves passing through  $1_G$  is contained in a proper algebraic subvariety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

# **Regularity of geodesics**

Enrico Le Donne Geodesics in SR groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What is the regularity of SR energy minimizers?

(1) They are Lipschitz / AC. [Sussmann, 2014] They are analytic on an open dense set.

(2) All known examples are analytic. But, even corners were not excluded until 2016.

- In every (constant-rank, smooth) SR manifold, geodesics cannot have corners [HL2016].
- ... and among tangents we always have some line [Monti-Pigati-Vittone 2017].
- On SR Carnot groups, infinite geodesics blow down to lines [work-in-progress 2018].

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- In every (constant-rank, smooth) SR manifold, geodesics cannot have corners [HL2016].
- ... and among tangents we always have some line [Monti-Pigati-Vittone 2017].
- On SR Carnot groups, infinite geodesics blow down to lines [work-in-progress 2018].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- In every (constant-rank, smooth) SR manifold, geodesics cannot have corners [HL2016].
- ... and among tangents we always have some line [Monti-Pigati-Vittone 2017].
- On SR Carnot groups, infinite geodesics blow down to lines [work-in-progress 2018].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

## $(M, \Delta, \|\cdot\|)$ SR manifold (equiregular), $p \in M$ . $\implies \exists G$ SR group:

## $\lim_{\epsilon\to 0}^{\operatorname{GH}}(M,\Delta,\frac{1}{\epsilon}\|\cdot\|)=G.$

Moreover,  $\exists$  maps  $\delta_{\lambda} : M \to M$  that are isometries from  $(M, \Delta, \frac{1}{\epsilon} || \cdot ||, p)$  to  $(M, \Delta, \frac{\lambda}{\epsilon} || \cdot ||, p)$ . In the limit,  $\delta_{\lambda} : G \to G$  are dilations by  $\lambda$ .

・ロン ・聞 と ・ ヨ と ・ ヨ と

э.

 $(M, \Delta, \|\cdot\|)$  SR manifold (equiregular),  $p \in M$ .  $\implies \exists G$  SR group:

$$\lim_{\epsilon\to 0}^{\operatorname{GH}}(M,\Delta,\tfrac{1}{\epsilon}\|\cdot\|)=G.$$

Moreover,  $\exists \text{ maps } \delta_{\lambda} : M \to M$  that are isometries from  $(M, \Delta, \frac{1}{\epsilon} \| \cdot \|, p)$  to  $(M, \Delta, \frac{\lambda}{\epsilon} \| \cdot \|, p)$ . In the limit,  $\delta_{\lambda} : G \to G$  are dilations by  $\lambda$ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

## A group as blow-up space

We call G the tangent space (or blow-up) at p.

Extra property – *G* is a Carnot group:

 $\operatorname{Lie}(G) = V_1 \oplus \ldots \oplus V_s$ 

with

$$[V_1, V_j] = V_{j+1},$$

and

$$\delta_{\lambda}(v) = \lambda^{j} v, \qquad v \in V_{j}.$$

The polarization on G is given by  $V_1$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## A group as blow-up space

We call G the tangent space (or blow-up) at p.

Extra property -G is a Carnot group:

$$\operatorname{Lie}(G) = V_1 \oplus \ldots \oplus V_s$$

with

$$[V_1, V_j] = V_{j+1},$$

and

$$\delta_{\lambda}(\mathbf{v}) = \lambda^{j} \mathbf{v}, \qquad \mathbf{v} \in V_{j}.$$

The polarization on *G* is given by  $V_1$ .

▲□ → ▲ 三 → ▲ 三 → つく(~

#### *G* Carnot group, $\gamma : I \rightarrow G$ Lipschitz curve, $t \in I$

Blow-ups: **tangents** Tang( $\gamma$ ,  $t_0$ ) – set of all curves limits of  $\delta_{1/h}(\gamma(t_0 + ht))$ , as  $h \to 0$ .

Blow-downs: **asymptotes** Asymp( $\gamma$ ) – set of all curves limits of  $\delta_{1/h}(\gamma(t_0 + ht))$ , as  $h \to \infty$ .

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

*G* Carnot group,  $\gamma : I \rightarrow G$  Lipschitz curve,  $t \in I$ 

Blow-ups: **tangents** Tang( $\gamma$ ,  $t_0$ ) – set of all curves limits of  $\delta_{1/h}(\gamma(t_0 + ht))$ , as  $h \to 0$ .

Blow-downs: **asymptotes** Asymp( $\gamma$ ) – set of all curves limits of  $\delta_{1/h}(\gamma(t_0 + ht))$ , as  $h \to \infty$ .

◆□ → ◆ 三 → ◆ 三 → ◆ ○ ◆

#### Theorem (Hakavuori-L 2018)

*G* SR Carnot group.  $\gamma : \mathbb{R} \to G$  energy-minimizer.  $\Rightarrow \exists H < G$  proper Carnot subgroup such that  $Asymp(\gamma) \subseteq H$ .

#### Corollary

 $\gamma : \mathbb{R} \to G$  energy-minimizer in SR Carnot group.

 $\implies$  some element in Asymp( $\gamma$ ) is a line.

#### Corollary (already proved by MPV following HL)

 $\gamma : I \rightarrow G$  energy-minimizer in SR mfd,  $t_0 \in I$  $\implies$  some element in Tang $(\gamma, t_0)$  is a line.

イロト 不得 とくほ とくほ とう

#### Theorem (Hakavuori-L 2018)

G SR Carnot group.  $\gamma : \mathbb{R} \to G$  energy-minimizer.

 $\implies \exists H < G \text{ proper Carnot subgroup such that } \operatorname{Asymp}(\gamma) \subseteq H.$ 

#### Corollary

- $\gamma : \mathbb{R} \to G$  energy-minimizer in SR Carnot group.
  - $\implies$  some element in Asymp( $\gamma$ ) is a line.

#### Corollary (already proved by MPV following HL)

- $\gamma:\textbf{I}\rightarrow\textbf{G}$  energy-minimizer in SR mfd,  $\textbf{t}_{0}\in\textbf{I}$ 
  - $\implies$  some element in Tang( $\gamma$ ,  $t_0$ ) is a line.

イロン 不良 とくほう 不良 とうほ

#### Simpler version

*G* rank 2 SR Carnot group  $\gamma: I \rightarrow G$  energy-minimizer

 $\implies$  Asymp( $\gamma$ ) consists of a line.

#### Stronger claim

 $\pi_1 \circ \gamma: \mathbb{R} \to \mathcal{G}/\mathcal{G}^2 \simeq \mathbb{R}^2$  is at bounded distance from a line.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

## Sketch of the proof

- #. If not,  $\exists$  triples of points on  $\pi_1 \circ \gamma$  forming triangles with every height arbitrarily big.
- #.  $\pi_1 \circ \gamma$  is not a (Euclidean) geodesic. We may assume:
  - $\gamma$  is a geodesic, but

 $\sigma := \pi_{s-1} \circ \gamma$  is not a geodesic.

- Here,  $\pi_j : G \to G/G^{j+1} \simeq V_1 \oplus \ldots \oplus V_j$ .
- #. Shorten  $\sigma$  in an interval [a, b], and lift it to  $\widetilde{\gamma}$  on G.
  - $\implies ~~\widetilde{\gamma}(t) = \gamma(t),$  for t < a, and

 $\widetilde{\gamma}(t) = \exp(Z)\gamma(t)$ , for t > b, for some  $Z \in V_s$ .

#. Take  $t_0, t_1, t_2 > b$  s.t.  $\pi_1 \circ \gamma(t_i)$  form a big triangle (in terms of *Z*). Find small  $Y_1, Y_2 \in V_{s-1}$  s.t.

## $[Y_1, \log((\gamma(t_0)^{-1}\gamma(t_1))] + [Y_2, \log(\gamma(t_1)^{-1}\gamma(t_2))] = Z.$

#. Let  $\alpha_i$  geodesics from 1 to exp( $Y_i$ ). Construct a curve shorter than  $\gamma$  with same endpoints. Contradiction.

イロン 不良 とくほう 不良 とうしょう

## Sketch of the proof

- #. If not,  $\exists$  triples of points on  $\pi_1 \circ \gamma$  forming triangles with every height arbitrarily big.
- #.  $\pi_1 \circ \gamma$  is not a (Euclidean) geodesic. We may assume:  $\gamma$  is a geodesic, but

 $\sigma := \pi_{s-1} \circ \gamma$  is not a geodesic.

Here,  $\pi_j: G \to G/G^{j+1} \simeq V_1 \oplus \ldots \oplus V_j$ .

#. Shorten  $\sigma$  in an interval [a, b], and lift it to  $\tilde{\gamma}$  on G.

$$\begin{array}{ll} \Longrightarrow & \widetilde{\gamma}(t)=\gamma(t), \, \text{for} \, t < a, \, \text{and} \\ & \widetilde{\gamma}(t)=\exp(Z)\gamma(t), \, \text{for} \, t > b, & \qquad \text{for some} \, Z \in V_s. \end{array}$$

#. Take  $t_0, t_1, t_2 > b$  s.t.  $\pi_1 \circ \gamma(t_i)$  form a big triangle (in terms of *Z*). Find small  $Y_1, Y_2 \in V_{s-1}$  s.t.

 $[Y_1, \log((\gamma(t_0)^{-1}\gamma(t_1))] + [Y_2, \log(\gamma(t_1)^{-1}\gamma(t_2))] = Z.$ 

#. Let  $\alpha_i$  geodesics from 1 to exp( $Y_i$ ). Construct a curve shorter than  $\gamma$  with same endpoints. Contradiction.

ヘロン 人間 とくほど くほとう

- #. If not,  $\exists$  triples of points on  $\pi_1 \circ \gamma$  forming triangles with every height arbitrarily big.
- #.  $\pi_1 \circ \gamma$  is not a (Euclidean) geodesic. We may assume:  $\gamma$  is a geodesic, but

 $\sigma := \pi_{s-1} \circ \gamma$  is not a geodesic.

Here,  $\pi_j: G \to G/G^{j+1} \simeq V_1 \oplus \ldots \oplus V_j$ .

#. Shorten  $\sigma$  in an interval [a, b], and lift it to  $\tilde{\gamma}$  on G.

$$\begin{array}{ll} \implies & \widetilde{\gamma}(t) = \gamma(t), \, \text{for } t < a, \, \text{and} \\ & \widetilde{\gamma}(t) = \exp(Z)\gamma(t), \, \text{for } t > b, \end{array} \qquad \qquad \text{for some } Z \in V_{s}. \end{array}$$

#. Take  $t_0, t_1, t_2 > b$  s.t.  $\pi_1 \circ \gamma(t_i)$  form a big triangle (in terms of Z). Find small  $Y_1, Y_2 \in V_{s-1}$  s.t.

$$[Y_1, \log((\gamma(t_0)^{-1}\gamma(t_1))] + [Y_2, \log(\gamma(t_1)^{-1}\gamma(t_2))] = Z.$$

#. Let  $\alpha_i$  geodesics from 1 to exp( $Y_i$ ). Construct a curve shorter than  $\gamma$  with same endpoints. Contradiction.

With the same methods we expect that one might prove:

- 1. Every tangent is a line
- 2. Differentiability of geodesics

We don't expect to go beyond  $C^{1,\alpha}$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

JYVÄSKYLÄ, FINLAND 19<sup>TH</sup> – 23<sup>RD</sup> FEBRUARY 2018

#### CONFERENCE

#### SUBRIEMANNIAN GEOMETRY AND BEYOND



#### SPEAKERS

ACADEMY OF FINLAND

Andrei Agrachev - ussk, heuse Uge Boscain - cess unver, puis Emmanuel Breuillard" - canonge Luca Capogna" - wri Michael Cowling - ussk, skew Marianna Csörnyel" - cauge Sylvestre Firisson-Bique - uca Katrin Fässler - heuser Luis Guijarro - uwk-ExAfr. Madel Jesus Jaramillo - camptense, Madel Sean Li - consectant Tony Liimatainen - Haani Andrea Malchiodi - sus, Pisa Daniele Morbielli - susgas Alessandro Ottazzi - utwas, Suskay Pierre Pansi - Haris sus, Orany Ludovic Rifford - Cate Atau, Nes Rifford - Cate Ata

#### \* to be confirmed

More info on www.jyu.fi/geomeg Young researchers are encouraged to apply for support erc.geomeg@gmail.com

erc

European Raseanth Council

Organizers Enrico Le Donne – Jyväskylä Sebastiano Nicolussi Golo – Birmingham Tapio Rajala – Jyväskylä Francesca Tripaldi – Jyväskylä

INVASENTAN MUDRISTO

Enrico Le Donne

#### Geodesics in SR groups

Merci

Thanks

Enrico Le Donne Geodesics in SR groups

## Definition of Carnot group

 $\mathfrak{g}$  stratified Lie algebra  $\mathfrak{g} = V_1 \oplus \ldots \oplus V_s$ . *G* simpl. conn. Lie group with  $\text{Lie}(G) = \mathfrak{g}$ .  $\|\cdot\|$  norm in  $V_1$ .

The CC distance is  $d_{cc}(p,q) = \inf \left\{ \int \|\dot{\gamma}\| : \begin{array}{cc} \gamma: [0,1] \stackrel{AC}{\to} G, & x \to y \\ \dot{\gamma} \in V_1 & \dot{\gamma} \in V_1 \end{array} \right\}$ 

 $(G, d_{cc})$  is a (subFinsler) Carnot group.

#### Theorem

Carnot groups are the only metric spaces that are

- locally compact,
- *geodesic,*
- homogeneous,
- admit a dilation.

ヘロト ヘアト ヘビト ヘビト

э

## Definition of Carnot group

 $\mathfrak{g}$  stratified Lie algebra  $\mathfrak{g} = V_1 \oplus \ldots \oplus V_s$ . *G* simpl. conn. Lie group with  $\text{Lie}(G) = \mathfrak{g}$ .  $\|\cdot\|$  norm in  $V_1$ .

The CC distance is  $d_{cc}(p,q) = \inf \left\{ \int \|\dot{\gamma}\| : \begin{array}{cc} \gamma: [0,1] \stackrel{AC}{\to} G, & x \rightarrow y \\ \dot{\gamma} \in V_1 & \dot{\gamma} \in V_1 \end{array} \right\}$ 

 $(G, d_{cc})$  is a (subFinsler) Carnot group.

#### Theorem

Carnot groups are the only metric spaces that are

- locally compact,
- geodesic,
- homogeneous,
- admit a dilation.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

## SubRiemannian Heisenberg group

In 
$$\mathbb{R}^3$$
,  $X = \partial_1 - \frac{y}{2}\partial_3 = (1, 0, -\frac{y}{2})$   
 $Y = \partial_2 + \frac{x}{2}\partial_3 = (0, 1, \frac{x}{2})$  vector fields

Consider PW*C*<sup>∞</sup>/AC curves  $\gamma : [0, 1] \rightarrow \mathbb{R}^3$  s.t.  $\forall$  almost t $\dot{\gamma}(t) = a(t)X \circ \gamma(t) + b(t)Y \circ \gamma(t)$ . Call these curves *horizontal*, and set  $\|\dot{\gamma}\| = \sqrt{a^2 + b^2}$ . Set  $d(p,q) = \inf\{\int \|\dot{\gamma}\| : \gamma \text{ horizontal}, x \rightsquigarrow y\}$  $= \inf\left\{\int \|(\dot{\gamma}_1, \dot{\gamma}_2)\|_{\ell^2} : \dot{\gamma}_3 = \frac{1}{2}(\gamma_1\dot{\gamma}_2 - \gamma_2\dot{\gamma}_1)\right\}$ 

< 回 > < 回 > < 回 > … 回