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Plan

From collaborations with
Hakavuori [Inventiones, 2016],
Montgomery, Ottazzi, Pansu, Vittone [Annales de l’IHP, 2016].

geodesics in SR groups
normal & abnormal curves.

Sard-type problems
abnormal varieties.

Limits of geodesics
blow-ups & blow-downs.
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Sub-Riemannian geometry

M manifold
∆ bracket-generating subbundle of the tangent bundle of M
‖ · ‖ norm on ∆ coming from a smoothly varying scalar product

The SR distance is

dSR(p,q) = inf
{´
‖γ̇‖

∣∣ γ : [0,1]
AC→ M, p  q, γ̇ ∈ ∆

}

In this talk, the structure will be invariant under left translations
with respect to a group structure.
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Polarized groups

G connected Lie group with Lie algebra g.
V ⊆ g linear subspace, called polarization.

For u ∈ L2([0,1],V ), let γu be the curve in G that solves

d γ
d t

(t) =
(
d Lγ(t)

)
1G

u(t), (ODE)

with initial condition γ(0) = 1G.

If γ : [0,1]→ G is an AC curve that solves the ODE for some
u ∈ L2([0,1],V ), then γ is said horizontal with respect to V and
u = uγ is its control.

γ is horizontal ⇐⇒ the derivatives of γ lie in the left-invariant
subbundle ∆ that coincides with V at the origin 1G.
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Endpoint map

The endpoint map starting at 1G with controls in V is the map

End : L2([0,1],V ) → G
u 7→ γu(1).
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Differential of Endpoint map and its image

Theorem

The endpoint map End : u 7→ γu(1) is smooth and

d Endu v = (d Rγu(1))1G

ˆ 1

0
Adγu(t) v(t) d t , ∀u, v ∈ L2([0,1],V ),

where Adg : g→ g is Adg = (Cg)∗ with Cgh = ghg−1.

Corollary

Im(d Endu) = (d Rγu(1))1G (span{Adγu(t) V : t ∈ [0,1]}).
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Sketch of the proof
Easier in matrix groups, so AdB(A) = BAB−1.

σ1(t) := d
d εγu+εv (t)|ε=0

σ2(t) :=
´ t

0 Adγ(s)(v(s)) d s · γ(t)

=⇒ σ1 and σ2 satisfy the ODE

dσi

d t
(t) = γ(t) · v(t) + σi(t) · u(t),

with the same initial condition.
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Extended Endpoint map

Fix a Euclidean norm ‖·‖ on V .
Then Ω := L2([0,1]; V ) is normed:

‖u‖ :=

(ˆ 1

0
‖u(t)‖2dt

)1
2
.

The extended endpoint map is

Ẽnd : Ω→ G × R

u 7→
(
γu(1), 1

2‖u‖
2
)
.

We are interested in those curves that start from 1G and reach
a given point p = γu(1) minimizing the energy 1

2‖u‖
2.
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Consequence of minimizing energy

u is a minimizer for the energy
⇐⇒ Ẽnd not open at u
=⇒ [Open Mapping Theorem] d Ẽnd is not surjective at u
⇐⇒ ∃(ξ, ξ0) ∈

(
TEnd(u)G

)∗ × R \ {(0,0)}:

〈(ξ, ξ0),d Ẽndu(v)〉 = 0, ∀v ∈ Ω.

Formula:

d Ẽndu : Ω→ TẼnd(u)(G × R) = TEnd(u)G × R =
(
dRγu(1)

)
1G

g× R

v 7→

((
dRγu(1)

)
1G

ˆ 1

0
Adγu(t)(v(t))dt , 〈u, v〉

)
.
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Consequence of minimizing energy

u is a minimizer for the energy
=⇒
∃λ ∈ g∗ and ξ0 ∈ R such that (λ, ξ0) 6= (0,0) and

λ

(ˆ 1

0
Adγu(t) v(t)dt

)
= ξ0〈u, v〉, ∀v ∈ Ω. (1)

Two cases
(1) ξ0 6= 0. normal curve
(2) ξ0 = 0. abnormal curve
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Normal curves

First case: May assume ξ0 = 1.

〈u, v〉 = λ

(ˆ 1

0
Adγu(t) v(t)dt

)
.

(e1, . . . ,er ) o.n. basis for (V , ‖ · ‖).
In this basis, the controls are

ui(t) = 〈u, δtei〉

= λ

ˆ 1

0
Adγu(s)(δtei)ds

= λ(Adγu(t)(ei)).
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Normal curves

γ is a normal curve
⇐⇒ γ satisfies the normal equation (or geodesic equation):
∃λ ∈ g∗:

γ̇(t) =
r∑

i=1

λ
(
Adγu(t)(ei)

)
Xi(γu(t)), (2)

for the left-invariant vector fields Xi(g) :=
(
dLg

)
ei .

Facts:
* Every normal curve is analytic & constant-speed param.
* Every normal curve is locally energy minimizing.

The converse is not true.

Enrico Le Donne Geodesics in SR groups



Normal curves

γ is a normal curve
⇐⇒ γ satisfies the normal equation (or geodesic equation):
∃λ ∈ g∗:

γ̇(t) =
r∑

i=1

λ
(
Adγu(t)(ei)

)
Xi(γu(t)), (2)

for the left-invariant vector fields Xi(g) :=
(
dLg

)
ei .

Facts:
* Every normal curve is analytic & constant-speed param.
* Every normal curve is locally energy minimizing.

The converse is not true.

Enrico Le Donne Geodesics in SR groups



Expectations

Folk-conjectures:

1 ∃ full-measure set A ⊂ G:
∀p ∈ A ∃ normal energy-minimizing curve from 1G to p.

2 Every energy-minimizing curve is differentiable
(or even analytic!)
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Abnormal curves

Second case: ξ0 = 0.
⇐⇒ γ satisfies the abnormal equation:
∃λ ∈ g∗ \ {0}:

λ

(ˆ 1

0
Adγu(t) v(t)dt

)
= 0, ∀v ∈ Ω.

Equivalently,
λ
(
Adγu(t) V

)
= {0}. (3)
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Abnormal curves & abnormal varieties

Corollary

(G,V ) polarized group, γ : [0,1]→ G horizontal curve. TFAE
1 γ is abnormal;
2 ∃λ ∈ g∗ \ {0}: λ(Adγ(t) V ) = {0}, ∀t ∈ [0,1];
3 ∃ right-invariant 1-form α on G: α(∆γ(t)) = {0}, ∀t ∈ [0,1],

where ∆ is the left-invariant distribution induced by V .

Given λ ∈ g∗ \ {0}, set Zλ := {g ∈ G : ((Adg)∗λ)|V = 0}.
Zλ is a proper real analytic variety.
If G is nilpotent, then Zλ is a proper real algebraic variety.

Proposition

A horizontal curve γ is abnormal ⇐⇒
γ is contained in Zλ for some nonzero λ ∈ g∗.
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How many abnormal
curves are there?
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Size of abnormal set

The abnormal set of (G,V ) is the subset Abn ⊂ G of all
singular values of the endpoint map. Equivalently, Abn is the
union of all abnormal curves passing through 1G.

Sub-Riemannian Sard Conjecture:
Abn has measure zero.

Theorem (LMOPV 2016)

In the following polarized groups Abn is contained in a proper
algebraic subvariety:

1 Carnot groups of step 2;
2 The free-nilpotent group of rank 3 and step 3;
3 The free-nilpotent group of rank 2 and step 4.
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Theorem (LMOPV 2016)

In every sub-Riemannian Carnot group G of step 3,
the union of all locally length-minimizing abnormal curves
passing through 1G is contained in a proper algebraic
subvariety.
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Regularity of geodesics
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Regularity of geodesics

What is the regularity of SR energy minimizers?

(1) They are Lipschitz / AC.
[Sussmann, 2014] They are analytic on an open dense set.

(2) All known examples are analytic.
But, even corners were not excluded until 2016.
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Recent results

1 In every (constant-rank, smooth) SR manifold, geodesics
cannot have corners [HL2016].

2 ... and among tangents we always have some line
[Monti-Pigati-Vittone 2017].

3 On SR Carnot groups, infinite geodesics blow down to
lines [work-in-progress 2018].
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Setting & tangents

(M,∆, ‖ · ‖) SR manifold (equiregular), p ∈ M.
=⇒ ∃G SR group:

lim
ε→0

GH(M,∆, 1
ε ‖ · ‖) = G.

Moreover, ∃ maps δλ : M → M that are
isometries from (M,∆, 1

ε ‖ · ‖,p) to (M,∆, λε ‖ · ‖,p).
In the limit, δλ : G→ G are dilations by λ.
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A group as blow-up space

We call G the tangent space (or blow-up) at p.

Extra property – G is a Carnot group:

Lie(G) = V1 ⊕ . . .⊕ Vs

with
[V1,Vj ] = Vj+1,

and
δλ(v) = λjv , v ∈ Vj .

The polarization on G is given by V1.
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Blow-ups and blow-downs of curves

G Carnot group, γ : I → G Lipschitz curve, t ∈ I

Blow-ups: tangents
Tang(γ, t0) – set of all curves limits of δ1/h(γ(t0 + ht)), as h→ 0.

Blow-downs: asymptotes
Asymp(γ) – set of all curves limits of δ1/h(γ(t0 + ht)), as h→∞.
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Results

Theorem (Hakavuori-L 2018)
G SR Carnot group. γ : R→ G energy-minimizer.
=⇒ ∃H < G proper Carnot subgroup such that Asymp(γ) ⊆ H.

Corollary
γ : R→ G energy-minimizer in SR Carnot group.
=⇒ some element in Asymp(γ) is a line.

Corollary (already proved by MPV following HL)

γ : I → G energy-minimizer in SR mfd, t0 ∈ I
=⇒ some element in Tang(γ, t0) is a line.
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Simpler version – For you today

Simpler version
G rank 2 SR Carnot group γ : I → G energy-minimizer
=⇒ Asymp(γ) consists of a line.

Stronger claim

π1 ◦ γ : R→ G/G2 ' R2

is at bounded distance from a line.
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Sketch of the proof

#. If not, ∃ triples of points on π1 ◦ γ forming triangles with every
height arbitrarily big.

#. π1 ◦ γ is not a (Euclidean) geodesic. We may assume:
γ is a geodesic, but
σ := πs−1 ◦ γ is not a geodesic.
Here, πj : G→ G/Gj+1 ' V1 ⊕ . . .⊕ Vj .

#. Shorten σ in an interval [a,b], and lift it to γ̃ on G.
=⇒ γ̃(t) = γ(t), for t < a, and

γ̃(t) = exp(Z )γ(t), for t > b, for some Z ∈ Vs.
#. Take t0, t1, t2 > b s.t. π1 ◦ γ(ti) form a big triangle (in terms of Z ).

Find small Y1,Y2 ∈ Vs−1 s.t.

[Y1, log((γ(t0)−1γ(t1))] + [Y2, log(γ(t1)−1γ(t2))] = Z .

#. Let αi geodesics from 1 to exp(Yi). Construct a curve shorter
than γ with same endpoints. Contradiction.
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Conclusions

With the same methods we expect that one might prove:
1. Every tangent is a line
2. Differentiability of geodesics

We don’t expect to go beyond C1,α
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Merci
——–

Thanks
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Definition of Carnot group

g stratified Lie algebra g = V1 ⊕ . . .⊕ Vs.
G simpl. conn. Lie group with Lie(G) = g.
‖ · ‖ norm in V1.

The CC distance is dcc(p,q) = inf

´ ‖γ̇‖ :
γ:[0,1]AC→G, x y

γ̇ ∈ V1


(G,dcc) is a (subFinsler) Carnot group.

Theorem
Carnot groups are the only metric spaces that are

1 locally compact,
2 geodesic,
3 homogeneous,
4 admit a dilation.
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SubRiemannian Heisenberg group

In R3, X = ∂1 − y
2∂3 = (1,0,−y

2 )
Y = ∂2 + x

2∂3 = (0,1, x
2 ) vector fields

Consider PWC∞/AC curves γ : [0,1]→ R3 s.t. ∀ almost t
γ̇(t) = a(t)X ◦ γ(t) + b(t)Y ◦ γ(t).
Call these curves horizontal, and set ‖γ̇‖ =

√
a2 + b2.

Set d(p,q) = inf{
´
‖γ̇‖ : γ horizontal, x  y}

= inf

´ ‖(γ̇1, γ̇2)‖`2 :
γ:[0,1]AC→R3, x y

γ̇3 = 1
2(γ1γ̇2 − γ2γ̇1)
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