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Life at low Reynolds number - Purcell, 1977
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Validation of the model by observation
procure data on locomotion in this range, we have used one of
the smaller paddling microswimmers available, the nauplii of
the paracalanid copepod Bestiolina similis (length 70–200 mm)
[16,17]. Nauplii of this size swim at Re of 0.1–10 [18], which is
thus transitional between low and intermediate Re. Simplifica-
tions that have minimal impact on predictions can allow direct
measurement of the morphological and kinematic parameters
needed for modelling, so none are free. A relatively simple
mathematical description is then applied that can be confined
to the measured quantities, without sacrificing predictive capa-
bility. The purpose is to determine how well such a simplified
model succeeds in accounting for observed swimming behav-
iour. As Re increases into the transition zone, deviations are
expected to develop, providing new insights into swimming at
intermediate Re where viscous and inertial forces are important.
The minimal model we have employed is based on slender-
body theory for Stokes flow adapted from one that was recently
developed by one of us [19]. It differs from previous models in
not relying on any net force or inertia for propulsion. By account-
ing individually for the empirically measured dimensions and
kinematics of all six paddling appendages, our model was
used to predict displacements of the body over time and com-
pare these results with direct observations to assess the
neglected effects of inertia. In addition, the vetted model was
used to quantify the contribution to displacement of each appen-
dage pair, feathering of setae and appendage stroke phase in
order to better understand their role in naupliar propulsion.

2. Material and methods
2.1. High-speed videography of naupliar swimming
High-resolution measurements of angular position of individual
appendages and body displacement were made for nauplii of
B. similis. Nauplii were obtained from cultures maintained in the
laboratory for less than 1 year under standard conditions as
described in VanderLugt & Lenz [20]. Briefly, B. similis adults
were isolated from mixed plankton collections from Kaneohe
Bay Island of Oahu, Hawaii, and cultured at ambient temperature
(24–288C), a 12 L : 12 D light regime, and fed ad libitum with live
phytoplankton (Isochrysis galbana). Experimental nauplii were iso-
lated from the cultures and identified to stage using morphological
characteristics and length and width measurements [17].

For videography, nauplii were placed into small Petri dishes
(35 mm diameter) at ambient food levels. Experimental nauplii
ranged in size from 70 to 150 mm corresponding to developmen-
tal stages NI to NV. Spontaneous fast swims were recorded at
5000 fps with a high-speed video system (Olympus Industrial
i-SPEED) filmed through an inverted microscope (Olympus IX70)
with a 10! objective. Frames of the video files were converted into
bitmap image files (‘tiff’ format) and analysed using IMAGEJ
(Wayne Rasband; web page: rsbweb.nih.gov/ij/). Six swim epi-
sodes were analysed for appendage angles and location over
multiple power/return stroke cycles at 0.2 ms intervals. The angle
of each appendagewas measured using the main axis of the nauplius
as a reference, as shown in a scanning electron micrograph of an
early nauplius (NI) in figure 1a. Location was determined by tracking
the x- and y-coordinates of the anterior medial margin of the head in
each successive frame during the swim sequence. Five additional
swim episodes were analysed for location during rapid swims to
determine forward, backward and net displacements. Swims were
usually initiated from rest (figure 1b), which was characterized by
a stereotypical position for each appendage: first antenna (A1) point-
ing anteriorly (6–128), the second antenna (A2) pointing mostly
laterally (60–908) and the mandible (Md) posteriorly (105–1358).

2.2. Model formulation
To determine the extent to which observed locomotion of a nau-
plius could be accounted for based on observed appendage
movements and the assumptions of a low Re regime (see Intro-
duction), we employed a model of swimming with rigid
appendages adapted from one based on slender-body theory for
Stokes flow [19]. The aim of the model is to predict the position
of the body, as the angle of each leg changes over time. The
model provides us a reasonable approximation for long and slen-
der appendages paddling at low Re [21], which omits inertia, as
explained in the Introduction. It makes several additional simplify-
ing assumptions intrinsic to its formulation. The copepod nauplius
has a compact rounded body (figure 1) that is simplified in the
model as a sphere with a diameter that is the mean of the length
and width of its body. Using the more accurate prolate ellipsoid
shape instead made little difference in predicted displacements.
Naupliar appendages are relatively rigid elongate rods, slightly
tapering at both ends, again with rounded cross section. In the
model, they were simplified and represented as uniform cylinders,
with a single diameter. While the appendages are only an order of
magnitude greater in length compared with their thickness, for the

A1

A2A2

Md

Md

50 µm

100 µm

A1

(b)

(a)

Figure 1. Bestiolina similis nauplii. (a) Scanning electron micrograph of a first
nauplius (NI) showing angle measurements for first antenna (A1), second
antenna (A2) and mandible (Md). (b) Nauplius stage 3 (NIII) video image
showing position of appendages at rest. Scanning electron micrograph
courtesy of Jenn Kong. Appendage abbreviations, A1, A2 and Md, used in
all figures.
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Model input (Top) and model prediction of naupliar displacement (Bottom). (Top) Lines
show the angular position of three appendages as labelled in Fig.?? at 0.2 ms intervals
starting from rest (T=0 ms) to completion of fourth return stroke (T=32 ms) from
an observed swim episode. Top line : A1 (blue) ; middle line : A2 (green) ; and bottom
line : Md (red). (Bottom) Copepod displacement over time : observed (black line) and
theoretical model prediction (grey).



tails). Furthermore, forward displacements were longer than
backward ones, and this difference was disproportionate
to the relative duration of power and return strokes by the
appendages (figure 3, right versus left arrows).

3.2. Comparison between experimental and
model-predicted locomotion

3.2.1. Amplitude of appendage excursions
The model was run using morphological and angular data
obtained from each of the six naupliar swim episodes (tables 1
and 2). Figure 6 shows experimental data and model output

for a four-cycle swim episode of a stage 5 nauplius (NV;
N201), with the angular measurements used as model input
shown in figure 6a. This episode offers a good dataset to test
the model, because displacements per cycle were small initially,
so inertia was small as assumed in the model. In addition, this
nauplius varied the stroke amplitudes over time and produced
non-periodic cycles, which can be readily inputted into our
model. Appendage excursions for this nauplius increased over
the first three cycles as shown in figure 6a. In particular, the
angular excursion of the first antenna (A1) nearly quadrupled
between the first and third cycles. The experimentally measu-
red displacements (figure 6b, black line) are superimposed on
the predicted displacements (grey line). The model output
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Figure 2. Appendage angles and timing of power and return strokes during 1.5 cycles of swim sequence in a stage 5 nauplius (NV, N201). (a) Appendage angle
with respect to body axis during power and return strokes. The sequence starts at the beginning of the third cycle (14 ms) with the power stroke of the Md and
ends after the completion of the following power stroke (T ¼ 28 ms). Circles: angular position of A1 (blue); squares: angular position of A2 (green); and triangles:
angular position of Md (red). Temporal resolution: 0.2 ms. Numbers 1 – 4 correspond to each video image, and represent minimum (1), maximum (3) and mid-point
(2, 4) angular positions of the A1. (b) Temporal progression of power and return strokes and stationary periods for A1, A2 and Md. Solid bars: power stroke (Pwr,
red); hatched bars: return stroke (Rtn, green); open bars: stationary phase (Sta, white). Vertical dashed lines correspond to images 1 – 4. (c) Video images taken at
the indicated times (1 – 4) showing the relative position of the nauplius and its appendages (A1, A2 and Md). (Online version in colour.)
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Measured movements of a larval copepod. Panel (a) shows variations over time of the orientation angles of

three leg pairs, labeled as A1, A2, Md. Panel (b) shows time intervals when each leg pair performs a power

stroke (red), a return stroke (green stripes), or remains stationary (white). Panel (c) shows snapshots of the

copepod at four representative times.
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Copepod model (Takagi, 2014)

2-link symmetric swimmer.

x0(t)
x0

θ1(t)

θ1(t)

ll
θ2(t)

θ2(t)

θ = π θ = 0

Dynamic.

ẋ0 =
∑

2
i=1 l2 θ̇i sin(θi)

2+∑
2
i=1 sin2(θi)

, θ̇i = ui, i = 1,2 (state constraint : 0≤ θ1 ≤ θ2 ≤ π).
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The Sub-Riemannian Framework
Introduce a cost
Mechanical energy = Work of the Drag forces
Compare different strokes and different swimmers.

Criterion. minimize drag forces : q̇S(q)q̇ᵀ, qqq === (((θθθ 111,,,θθθ 222,,,xxx000))) and S is positive definite
=⇒ quadratic form in (u1,u2).
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Related problem : Dido problem and its generalization

— Dido’s problem : a rough model of a swimmer.
Normal extremals :

x(t) =
A
λ
(sin(λ t +φ)− sinφ)

y(t) =
A
λ
(cos(λ t +φ)− cosφ)

z(t) =
A2

λ
t− A2

λ 2 sin(λ t)

with A =
√

H2
1 +H2

2 and φ is the angle of the vector (ẋ,−ẏ) at the origin.

— Generalization by Agrachev/Montgomery :

Charged particle in a magnetic field ⇔ 2D Riemannian metric



Á Á

Á

Â

Example of cut locus on S2.

Simple branch : two intersecting minimizers,
Ramification point : three intersecting minimizers.

References
— A. Agrachev, J.P. Gauthier On the Dido problem and plane isoperimetric problems,

Acta Appl. Math. 57, 3 (1999) 287–338

— R. Montgomery, Isoholonomic problems and some applications, Commun. Math.
Phys. 128, 3 (1990) 565–592
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Curvature control approach

The swimming curvature (Alouges, Avron-Raz)

Associated displacement produced by this stroke γ :

x0(T )− x0(0) =
∮

γ

ω

where ω is the smooth one form

ω =
2

∑
i=1

sinθi

∆(θ)
dθi.

x0(T )− x0(0) =
∮

γ

ω =
∫

D
dω.

References
— F. Alouges, A. DeSimone, A. Lefebvre, Optimal strokes for low Reynolds number

swimmers : an example, J. Nonlinear Sci. 18, 277–302 (2008)

— J.E. Avron and O. Raz, A geometric theory of swimming : Purcell’s swimmer and
its symmetrized cousin, New Journal of Physics 10, 6 (2008) : 063016



Lemma 1.

1. dω =− f (θ)dθ1∧dθ2 f (θ) = (2sinθ1 sinθ2(cosθ1− cosθ2))/∆(θ)2

2. dω < 0 in the interior of the triangle T , and dω vanishes on the boundary of T .

Geometric consequence. Restricted to the interior of T , dω is a volume form (den-
sity) which allows to estimate the displacement associated to small (amplitudes) strokes.
It can be ”normalized” using the 2-form associated to a general Riemannian metric :

g : E(θ)u2+2G(θ)uv+F(θ)v2

defined as
ωg =

√
EF−G2 dθ1∧dθ2. (*)

1. A geometric 2-link micro-swimmer is defined by (dω,g).

2. The swimming curvature is defined as the ratio :

SK =
dω

ωg
=− f (θ)√

E(θ)F(θ)−G(θ)2
.
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SR approach

- Compute optimal strokes minimizing an efficiency.

- Stroke : T -periodic motion of the shape variables θ s.t. x0(T )− x0(0)> 0.

- Admissible stroke : find closed curves in the θ -plane contained in the triangle :

0

.

.

π

π θ1

θ2

Physical

domain

14



Sub-Riemannian (SR) problem

E (q(·)) = Geometric Efficiency = x0(T )/lSR(q)
SR Length lSR.

lSR(q) =
∫ T

0

√
L(q,u) dt, L(q,u) = a(q)u2

1+2b(q)u1u2+ c(q)u2
2

min
u(·)

lSR(q)⇔min
u(·)

∫ T

0
L(q,u)dt

Two steps.

q̇ =
2

∑
i=1

uiFi←min
u(·)

∫ T

0
L(q,u)dt,

max
u(·), x0(T )

E ⇔

min
u(·)

∫ T

0
L(q,u)dt with xxx000(((TTT ))) fixed, then select max

x0(T )
E︸ ︷︷ ︸

Transversality cond.


Compute points on the Sub-Riemannian sphere →
provide candidate solutions for the maximum of efficiency problem.
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Normal strokes

Boundary conditions

x0(0) = 0, x0(T ) = x f , θi(0) = θi(T ), i = 1,2

Transversality conditions

pθi(0) = pθi(T ), i = 1,2

Boundary value problem
ż =
−→
H n(z)

x0(0) = 0, x0(T ) = x f (fixed) ,
θi(0) = θi(T ), i = 1,2
pθi(0) = pθi(T ), i = 1,2

— HamPath, indirect method : based on Maximum Principle, Newton type algorithm
(sensitive to initialization) and computation of second order necessary optima-
lity conditions .

— Bocop, direct method : gives an initialization for the shooting algorithm of Ham-
Path.
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Exponential mapping

First conjugate time tttccc : The first time tc when the exponential mapping

expq0
: IR×C →M, (t, p0) 7→ q(t,q0, p0)

is not an immersion at (tc, p0).

Theorem 2. Let q : [0,T ] −→ IRn be a strict normal stroke. If q(.) has at least one
conjugate point on ]0,T [, then q(·) is not a local minimizer for the L∞ topology on
the controls considering the optimal control problem with fixed extremities.

expq0

C = { p0 |Hn(q0, p0)=1}

IR ×

17
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Generate normal strokes
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Pontryagin Maximum Principle

∫ T

0
L(q,u) ← min

u(·)

Proposition 3. There is a one parameter family of normal simple loop strokes parame-
terized by the displacement x0(T ).

Σ : θ2 = π−θ1

∗ center for θ1 = 0.8527443

θ1 π0
0

π

θ
2
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Select on the point on the SR sphere with maximum of efficiency

Geometric efficiency : E = x0(T )/lSR(q), (xxx000(((TTT ))) free)
Transversality condition of the maximum Principle

px0(T ) = q0(T )/x0(T ), p0(T ) =−1/2
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Theorem 4. The abnormal stroke is not minimizing.
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Microlocal analysis : strokes with small amplitude

Normal form of order −1 Nilpotent model of order −1, the Brockett-Heisenberg
model :

F̂ =
∂

∂x
+ y

∂

∂ z
, Ĝ =

∂

∂y
− x

∂

∂ z
where (weight of x,y)=1 and (weight of z)=2 (privileged coordinates).

u2
1+u2

2←min
u(·)

, q̇ = u1 F̂(q)+u2 Ĝ(q)

x
y

z

x

y

Geodesics q(·) for the model of order −1.

These families of circles are not generic 23



Theorem 5 (Brockett, Chakir et al). The model of order −1 is equivalent to the model
of order 0.

Application to the Copepod z cannot be identified to the displacement x0.
x = θ1−θ10, y = θ2−θ20, θ20 = π−θ10. (contact point)

Perturbation of the model of order −−−111 by terms of order 000 :

F1(x,y,z) =
∂

∂x
+(a11(θ10)xy+a02(θ10)y2+ y)

∂

∂ z

F2(x,y,z) =
∂

∂y
+(a11(θ10)xy+a02(θ10)x2− x)

∂

∂ z

(F1,F2) ⇐⇒
ϕ

(F̂ , Ĝ)
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Lemma 6. The only value of θ10 such that the transformation ϕ doesn’t mix up the
shape variables (x,y) and the displacement z corresponds to the center of swimming
of the family.

ϕ(x,y,z) = (x+ c011(θ10)yyyzzz+ c001(θ10)zzz, y− c011(θ10)xxxzzz+ c001(θ10)zzz, z+P(x,y,z,θ10))

=⇒
Lem.5

c011(θ10) = c001(θ10) = 0 ⇔ θ10 = center of the family.

Theorem 7. The center of swimming is a SR-invariant.



0
θ1 π0

π

θ
2

Σ : θ2 = π−θ1

∗ center for θ1 = 0.7236888

One parameter family of simple loops with different metrics.

The family can be obtained by numerical continuation from the center
of swimming.
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Conclusion

Theoretical aspect Use the model of order 1 to compute the conjugate locus by
continuation methods.

F1(x,y,z) =
∂

∂x
+

y
2
(1+Q(x,y))

∂

∂ z
,

F2(x,y,z) =
∂

∂y
− x

2
(1+Q(x,y))

∂

∂ z

where
Q(x,y) =−0.7165898586x2−0.7379854942y2.



Experimental aspect

Validation of the adequation between the predic-
ted and observed most efficient stroke
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Second order sufficient optimality conditions
for a Copepod stroke
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Second order sufficient conditions

 min J(q(.),u(.)) := c(q(0),q(T ))
s.t. q̇(t) = F(q(t),u(t))

m(q(0),q(T )) = 0 ,

H(q,u, p) := p ·F(q,u) and h(q0,qT ) := c(q0,qT )+ν ·m(q0,qT ).
Consider a normal extremal (q, p) associated with u.

Second variation

δ
2J(δq(.),δu(.)) := 1/2 [δq(0)ᵀ δq(T )ᵀ]CCC [δq(0) δq(T )]ᵀ

+1/2
∫ T

0
(δq(t)ᵀ∂∂∂ qqHHH(t)δq(t)+2δq(t)ᵀ∂∂∂ quHHH(t)δu(t)+δu(t)ᵀ∂∂∂ uuHHH(t)δu(t))dt

where CCC := Hessianq0,qT (h).

30



Accessory problem
min δ 2J(δq(.),δu(.))
s.t. δ̇q := ∂∂∂ qFFF(t)δq(t)+∂∂∂ uFFF(t)δu(t)

∇q0m(q(0),q(T ))δq(0)+∇qT m(q(0),q(T ))δq(T ) = 0

Classical optimality conditions
- 2nd order necessary conditions : δ 2J(δq(.),δu(.))≥ 0,
- 2nd order sufficient conditions : δ 2J(δq(.),δu(.)) coercive.

Monodromy matrix. Φ(., .) associated with the linearized Hamiltonian system :{ d
dt Φ(t,s) = ZZZ Φ(t,s)
Φ(s,s) = Id,

where

Z :=
[

∂qF−∂uF [∂uuH]−1∂quHT −∂uF [∂uuH]−1∂uFT

−∂qqH +∂quH[∂uuH]−1∂quHT −∂qF [∂uuH]−1∂uFT

]
.

Define

W :=
[

φ22φ
−1
12 φ21−φ22φ

−1
12 φ11

−φ12 φ
−1
12 φ11

]
, Φ(0,T ) =:

[
φ11 φ12
φ21 φ22

]
31



Standard second order sufficient conditions

Theorem 8 ( Standard conditions). Assume
(i) : ∂∂∂ uuHHH(t)≤−ε Id on [0,T ], u(.) bounded and (∂∂∂ qqqFFF(.),∂∂∂ uuuFFF(.)) is controllable on

[0,T ],
(ii) : the extremal (q(.),u(.), p(.)) doesn’t have conjugate points on [0,T ],
(iii) : there exists γ > 0 t.q.

[
ξ

T
0 ξ

T
1
]
W

[
ξ0
ξ1

]
≥ γ

∣∣∣∣[ ξ0
ξ1

]∣∣∣∣2 ,

for all vectors ξ0,ξ1 ∈ IRn \{0} s.t.

∇q0m((q(0),q(T )))ξ0+∇qT m((q(0),q(T )))ξ1 = 0.

Then (q(.),u(.)) is a W 1,∞-minimizer and locally unique.
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Symmetries for the Copepod model

Boundary values
θ j(0) = θ j(T ) j = 1,2,
x0(0) = 0, x(T ) = xT , xT is fixed

Proposition 9. Take I = (−ε,ε), ε > 0 and let (q(·),u(·), p(·)) be a normal extremal.
For all a ∈ I and t ∈ [0,T ], we define qa(·) = (θ a

1 (·),θ a
2 (·),xa(·)), ua

1(·),ua
2(·) and pa(·)

by

θ
a
j (t) = θ j(t +a), ua

j(t) = u j(t +a) for j = 1,2,
xa(t) = x(t +a)− x(a), pa(t) = (p1(t), p2(t +a), p3(t +a)).

Then, for ε > 0 small enough, the normal extremal (q(.), p(.),u(.)) is continuously
embedded in the family of extremals (qa(.), pa(.),ua(.))a∈I.

These strokes have the SAME COST and satisfy the SAME BOUNDARY CONDITIONS

=⇒ Standard conditions fail because of non-unique minimizers. 33



Families of extremals with same cost and same boundary conditions
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Refined second order sufficient conditions

Theorem 10 ( Refined Conditions, Gavriel, Vinter (2014) ). Assume the reference
normal extremal (q(.),u(.), p(.)) is continuously embedded in a family of extremals and

(i) : ∂∂∂ uuHHH ≤−ε Id on [0,T ], (∂∂∂ qqqFFF(.),∂∂∂ uuuFFF(.)) is controllable on [0,T ],
(ii) : the extremal (q(.),u(.), p(.)) doesn’t have conjugate points on [0,T ],
(iii) : there exists γ > 0 s.t.

[
ξ

T
0 ξ

T
1
]
W

[
ξ0
ξ1

]
≥ γ

∣∣∣∣[ ξ0
ξ1

]∣∣∣∣2 ,

for all vectors ξ0,ξ1 6= 0 s.t.

∇q0m((q(0),q(T )))ξ0+∇qT m((q(0),q(T )))ξ1 = 0 and ΓΓΓ
T
[

ξ0
ξ1

]
= 0 .

where Γ :=
[

∇aqa(0)
∇aqa(T )

]∣∣∣∣
a=0

.

Then (q(.),u(.)) is a local W 1,∞-minimizer.
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Computation. Define the matrix Ns from the subspace Ls s.t.

Ls = {(ξ0,ξT ) ∈ R3×R3 | ∇q0,qT m(q0,qT ) (ξ0 ξT )
ᵀ = 0}=: Im(Ns)

Standard conditions. Does the matrix Ws := Nᵀ
s (W ᵀ+W )Ns ∈M2 is positive-

definite ?

Consider
Γr =

(
∇aqa(0) ∇aqa(T )

)
a=0 =

(
q̇(0) q̇(T )

)
and the linear subspace Lr s.t.

Lr := Ls∩{(ξ0,ξT ) ∈ R3×R3 | Γᵀ
r (ξ0 ξT )

ᵀ = 0}=: Im(Nr)

Refined conditions. Does Wr := Nᵀ
r (W ᵀ+W )Nr > 0 ?
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Numerical results for the second order sufficient conditions

Relative (Standard condition) (Refined condition)

tolerance Spec(Ws) Spec(Wr)

10−5 666...888999e-4
22.5

3.42

10−8 -999...111222e-7
22.5

3.42

— Standard conditions fail : Ws has a zero eigenvalue.
— BUT Refined conditions are satisfied : Wr is positive-definite.

Theorem 11 (Numerical). The simple loop normal stroke (q,u) is W 1,∞−optimal.
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Perspectives

— Contact point : expression of the generic normal form at any point inside the
triangle → unique family of simple loops.

— Martinet point : compute the normal form for a point on the edges → locate the
eight loops.

— estimation of the first conjugate time using normal forms.

— swimmer model with more than 2 pairs of links.
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Generate normal strokes
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Efficiency depending upon θ(0)

E ′ =
x0(T )mmm(((θθθ(((000))))))

l(q)
, (m smooth)

Transversality condition of the maximum Principle

pθ(0)− pθ(2π) = λ
∂E ′

∂θ(0)
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Theorem 12 (Chakir, Gauthier, Kupka, 1996). The generic model is given by the
normal form of order 1

F = F̂ + yQ(x,y)
∂

∂ z
, G = Ĝ− xQ(x,y)

∂

∂ z
,

Q quadratic in (x,y).

Remark 13. This normal form can be used to approximate the one parameter family of
simple strokes.
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