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Life at low Reynolds number - Purcell, 1977
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Copepod robot Copepod observation
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Model input (Top) and model prediction of naupliar displacement (Bottom). (Top) Lines
show the angular position of three appendages as labelled in Fig.?? at 0.2 ms intervals
starting from rest (T=0 ms) to completion of fourth return stroke (T=32 ms) from
an observed swim episode. Top line : Al (blue); middle line : A2 (green); and bottom
line : Md (red). (Bottom) Copepod displacement over time : observed (black line) and
theoretical model prediction (grey).
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Measured movements of a larval copepod. Panel (a) shows variations over time of the orientation angles of
three leg pairs, labeled as A1, A2, Md. Panel (b) shows time intervals when each leg pair performs a power

stroke (red), a return stroke (green stripes), or remains stationary (white). Panel (c) shows snapshots of the

copepod at four representative times.



Copepod model (Takagi, 2014)

2-link symmetric swimmer.

0 = 0 t) / 0>
\/ 91 t
92(1‘)

Dynamic.

Y2 1?6;sin(6))
24+Y2 sin?(6;)

X0 = 0, =u;, i=1,2 (state constraint : 0< 0, < 6, < 7).



Introduce a cost
Mechanical energy = Work of the Drag forces
Compare different strokes and different swimmers.

Criterion. minimize drag forces : ¢S(q)¢7, ¢ = (01, 02,x0) and S is positive definite
—> quadratic form in (uy,u).




— Dido'’s problem : a rough model of a swimmer.
Normal extremals :

x(t) = %‘ (s ) — )

y(6) = 7 (cos(A +¢) —cos9)
2 2

o) = Af _ ;L‘—zsin(m)

with A = /H? + H3 and ¢ is the angle of the vector (%, —y) at the origin.

— Generalization by Agrachev/Montgomery :

Charged particle in a magnetic field < 2D Riemannian metric



@

Example of cut locus on S2.

Simple branch : two intersecting minimizers,
Ramification point : three intersecting minimizers.
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The swimming curvature (Alouges, Avron-Raz)

Associated displacement produced by this stroke 7y :

mayﬂmnzﬁw

where @ is the smooth one form

m@yﬁmnszz/dw
Y D
References

— F. Alouges, A. DeSimone, A. Lefebvre, Optimal strokes for low Reynolds number
swimmers : an example, J. Nonlinear Sci. 18, 277-302 (2008)

— J.E. Avron and O. Raz, A geometric theory of swimming : Purcell's swimmer and
its symmetrized cousin, New Journal of Physics 10, 6 (2008) : 063016



Lemma 1.
1.do = —£(8)d6; AdB, f(0) = (25sin B; sin B5(cos B; —cos 6,))/A(6)?
2. dw < 0 in the interior of the triangle .7, and d® vanishes on the boundary of .7 .

Geometric consequence. Restricted to the interior of .7, dw is a volume form (den-
sity) which allows to estimate the displacement associated to small (amplitudes) strokes.
It can be "normalized” using the 2-form associated to a general Riemannian metric :

g E(0)u’>+2G(0)uv+F(0)v*

defined as
Wy =V EF —G2d6; Ad6,. (*)
1. A geometric 2-link micro-swimmer is defined by (dw,g).

2. The swimming curvature is defined as the ratio :

g do_ f(6) |
®;  VE(B)F(6)—G(6)’
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Level-sets of the swimming curvature (blue) and family of simple strokes (black) for
the Euclidean metric (top) and the mechanical cost (bottom).
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SR approach

- Compute optimal strokes minimizing an efficiency.
- Stroke : T-periodic motion of the shape variables 0 s.t. xo(7) —x¢(0) > 0.

- Admissible stroke : find closed curves in the 6-plane contained in the triangle :

sign(dw(fy,0s]) = sign(—sin b sin by (cos by — cos b))

Physical

0

domain

01 14



Sub-Riemannian (SR) problem

& (q(-)) = Geometric Efficiency = xo(T)/Isr(q)
SR Length [gz.

isa) = [ V@)@, Lgu) = alg)d+2b(q) e +la)1d

T
min Isg(q) (:)min/ L(q,u)dt
u(-) u() Jo

Two steps.

2 T
g = Z u;F; m(lgl/ L(q,u)dt
i=1 u-) JO

T
max & < | min / L(q,u)dt with xo(T) fixed, then select max &
u(-), x0(T) u(-) Jo xo(T)

N 7

TV
Transversality cond.

Compute points on the Sub-Riemannian sphere —
provide candidate solutions for the maximum of efficiency problem.
15



Normal strokes

Boundary conditions
x0(0) =0, xo(T)=xy, 6:(0)=6i(T),i=1,2
Transversality conditions
Pe,-(o) :PQ,-(T)7 I = 172

Boundary value problem

(:=H(2)
< x0(0) = O, xo(T) = xr (fixed) ,
= 1

. p@( ) Z(T)a i

— HamPath, indirect method : based on Maximum Principle, Newton type algorithm
(sensitive to initialization) and computation of second order necessary optima-
lity conditions .

— Bocop, direct method : gives an initialization for the shooting algorithm of Ham-
Path. 16



Exponential mapping

First conjugate time 7. : The first time 7. when the exponential mapping

equO:Rx%—)M, (t7p0)'_>Q(t7QO7p0)

is not an immersion at (., po).

Theorem 2. Let g : [0,T] — IR" be a strict normal stroke. If q(.) has at least one
conjugate point on |0, T, then q(-) is not a local minimizer for the L* topology on
the controls considering the optimal control problem with fixed extremities.

e

% ={po |Hu(q0,p0) =1}

17
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Generate normal strokes

20

20



Pontryagin Maximum Principle

T
/ L(q,u) < min
0 u(-)

Proposition 3. There is a one parameter family of normal simple loop strokes parame-

terized by the c{:splacegze_n_t_zg (r. - )

T




Select on the point on the SR sphere with maximum of efficiency

Geometric efficiency : & = xo(T)/Isr(q), (xo(T) free)
Transversality condition of the maximum Principle

Pxo(T) = q°(T) /x0(T),

004
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0.06 0.08 0.1 012 014 016 0.8 0.2 022 024 026 0 @ t 2r
zo(T)
Efficiency curve with continuation on xo(7'). Optimal normal stroke

Theorem 4. The abnormal stroke is not minimizing.
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Microlocal analysis : strokes with small amplitude

Normal form of order —1 Nilpotent model of order —1, the Brockett-Heisenberg

model :
I R I
~ox Y9z ~ dy * oz

where (weight of x,y)=1 and (weight of z)=2 (privileged coordinates).

3 +us —min, §=u F(q)+u2G(q)

u

Y

Geodesics ¢(-) for the model of order —1.

These families of circles are not generic 23




Theorem 5 (Brockett, Chakir et al). The model of order —1 is equivalent to the model
of order 0.

Application to the Copepod z cannot be identified to the displacement xy.
x=01—019, y=6,— 6, 60 =7 — O1p. (contact point)
Perturbation of the model of order — 1 by terms of order O :

b, .
Fi(x,y,z) = I + (a11(810) xy +ao2(610) > + ¥)

0z
d , d
F(x,y,2) = PRl (a11(10) xy +a02(610)x” — x) 5

(F1,F) <7 (F,G)

24



Lemma 6. The only value of 019 such that the transformation ¢ doesn’t mix up the
shape variables (x,y) and the displacement z corresponds to the center of swimming
of the family.

¢(x,y,2) = (x+co11(010) ¥z + c001(010) 2, y — co11(610) Xz + co01(010) 2, 2+ P(x,y,2,610))

L:>5 c011(610) = 6001(910) =0 <« 0= center of the family.
em.

Theorem 7. The center of swimming is a SR-invariant,



i »

i Z 0, =71 — 0y

A

| # % center for 6; = 0.7236888
0 ‘

0 0, Y/

One parameter family of simple loops with different metrics.

The family can be obtained by numerical continuation from the center
of swimming.

26



Theoretical aspect Use the model of order 1 to compute the conjugate locus by
continuation methods.

d d
Filen2) = 5-+3 (1+0(x) 5
X

0
FZ(xayaz)_ _E(

0

where
Q(x,y) = —0.7165898586x% — 0.7379854942)12.



Experimental aspect

Validation of the adequation between the predic-
ted and observed most efficient stroke

28



Second order sufficient optimality conditions

for a Copepod stroke

29



Second order sufficient conditions

min  J(g(.),u(.)) = c(q(0),4(T))
s.t. q(t) = F(q(t),u(t))
m(q(0),q(T)) =0,
H(q,u,p) :=p-F(q,u) and h(qo,qr) := c(qo.qr) + Vv -m(q0,q7)
Consider a normal extremal (g,p) associated with u.

Second variation

82J(84(.),6u(.)) :==1/2[8q(0)T 8q(T)T| C[8q(0) &q(T)]"
+1/2 /0 (8q(1)T,oH (1)8q(t) +2.8q(1)T uH (1) Su(t) + 5u(t)T duaH (1)Su(r)) dt

where  C :=Hessian,, ,,.(h).

30



Accessory problem

Classical optimality conditions
- 2nd order necessary conditions : §%J(8q(.),8u(.)) >0,
- 2nd order sufficient conditions : 5°J(8¢q(.),8u(.)) coercive.

Monodromy matrix. &(.,.) associated with the linearized Hamiltonian system :

{ %CID(t,S) =ZD(t,s)

d(s,s) =1d,
where
. | OgF = OuF (O] ™" 0t H' —0,F [0 H) 9, F"
‘ 8qu+8quH[ wH] 10 H —0,F [0, H] "9, F"
Define

s [¢22¢12 P21 — 0220y, ¢11] D(0,T) = [¢11 ¢12]

—012 0, 01 $21 P a1



Standard second order sufficient conditions

Theorem 8 ( Standard conditions). Assume
(i) : 0uH(t) < —€ Id on [0,T], u(.) bounded and (d4F(.),0,F(.)) is controllable on
0,7],
(ii) : the extremal (q(.),u(.),p(.)) doesn’t have conjugate points on [0,T],
(iii) : there exists ¥ > 0 t.q.
2

e | 2]z 2]
for all vectors &y,&; € R"\ {0} s.t.

Voom((@(0),3(T)))E0+ Vyrm((3(0).(T)))& = 0.

9

Then (g(.),u(.)) is a Wh=-minimizer and locally unique.

32



Symmetries for the Copepod model

Boundary values
6,(0)=6,(T) j=1,2,

x0(0) =0, x(T) =xp, xr is fixed

Proposition 9. Take I = (—¢,€), € >0 and let (q(-),u(-),p(-)) be a normal extremal.
For alla el andt € [0,T], we define g°(-) = (6{(-), 05 (-),x*(-)), u{(:),u5(-) and p*(-)

by
0/(t) = 0j(t+a), uf(t)=ujt+a) forj=1,2,
xXi(1) =x(1 +a) =x(a), p*(t) = (P (1), P2t +a),p3(t +a)).

Then, for € > 0 small enough, the normal extremal (q(.),p(.),u(.)) is continuously
embedded in the family of extremals (¢“(.), p®(.),u®(.))acr-

These strokes have the SAME COST and satisfy the SAME BOUNDARY CONDITIONS

—> Standard conditions fail because of non-unique minimizers. 33
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Refined second order sufficient conditions

Theorem 10 ( Refined Conditions, Gavriel, Vinter (2014)). Assume the reference
normal extremal (q(.),u(.),p(.)) is continuously embedded in a family of extremals and
(i) : uH < —€ Id on [0,T], (d4F(.),0,F(.)) is controllable on [0,T],
(i) : the extremal (g(.),u(.),p(.)) doesn’t have conjugate points on [0,T],
(iii) : there exists y > 0 s.t.

e |[2]zr| 2]

for all vectors &y,&1 # 0 s.t.

2

9

V(@01 + V(@O TG =0 and  TT| F | 0.

where T := [gzgzg% ]

a=0

Then (g(.),u(.)) is a local W'*-minimizer.

35



Computation. Define the matrix N; from the subspace .Z; s.t.
% ={(&0,8r) € R xR | Vyy gom(qo,qr) (G0 &r)T =0} =: Im(N)

Standard conditions. Does the matrix % := NJ (# T+ W )N, € .#, is positive-
definite ?

Consider
= (Vag“(0) Vag"(T)),_o= (4(0) g(T))
and the linear subspace %, s.t.

%= 2,0 {(60,&r) e RO xR [TT (& &r)T =0} =: Im(NV,)

Refined conditions. Does #, :=N} (#T+# )N, > 07

36



Numerical results for the second order sufficient conditions

Relative | (Standard condition) | (Refined condition)
tolerance Spec (W) Spec(W,)
10-5 6.89¢e-4 2 5
3.42
10-8 -9.12e-7 5
3.42

— Standard conditions fail : #; has a zero eigenvalue.
— BUT Refined conditions are satisfied : 7, is positive-definite.

Theorem 11 (Numerical). The simple loop normal stroke (g,u) is W= — optimal.

37
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— Contact point : expression of the generic normal form at any point inside the
triangle — unique family of simple loops.

— Martinet point : compute the normal form for a point on the edges — locate the
eight loops.

— estimation of the first conjugate time using normal forms.

— swimmer model with more than 2 pairs of links.

39



Generate normal strokes
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Efficiency depending upon 6(0)

,_ x(T)m(8(0))

& (m smooth)
(g)
Transversality condition of the maximum Principle
d&’
0)—pe(2m) =41
af " ==ilTTT T - -2
2 0.3
S V g g
~ 0.2
1 o -5
, 0 ¢ 8 t
00 1 2 3 0 o 2m 0 m 27
01

™ 27
422
= 0.3497 =
2Lt
0.349704— t 0 ™ 2

L 27 41



Theorem 12 (Chakir, Gauthier, Kupka, 1996). The generic model is given by the
normal form of order 1

A 0 A
F:F+yQ(X,y)— G:G—XQ(X,y)

9
07’ 7’

Q quadratic in (x,y).

Remark 13. This normal form can be used to approximate the one parameter family of
simple strokes.
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