Convex Optimization-based Static Analysis
for Controllers

Pierre-Loic Garoche - ONERA
November, 18th, 2016

1/22

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

2/22

CONTENTS

Formal verification of controllers

2/22

CONTROLLERS ima —{5a et
inob —{Sat|—| Triﬁiex Ll

5
2
I T

' —| Controller
ina iny
Typically: imb —{Sat T‘;E}e"
» Linear core: Xy, 1 = Axy + Bing ine —]Sat

» Non linearities: !
> Piecewise systems, ie. with modes: ~ “~-------- < System(Plant) je------
if guard; then x1 = Aixy + Biing

» Saturations on inputs/outputs

> Linear Parameter Varying (LPV): linearization through gain
interpolation

» Polynomial update

» Safety architecture (redundancy, voters, ...)

Hypothesis: everything is discrete, no continuous models (e.g. ODE)

OBJECT UNDER ANALYSIS — THE INPUT
System:

» Code

> set of functions, sequence of instructions, mix of boolean
conditions, integer counters, floating point computations, pointers
» no dynamic allocation (malloc), no nested loops

» Models

» similar notions but simpler: no pointers, more types,

» knowledge can be provided on model components: a linear
controller, an anti-windup, a saturation, etc

Safety property:
axiomatic semantics, aka predicate over values
» set of all reachable values is bounded

> a given bad region is unreachable

v

high level properties: stability, robustness, bounded overshoot,
etc

4/22

HOW TO VERIFY SAFETY PROPERTIES

Let such a discrete system be defined as
> set of states ¥
» initial states Init C p(X)
» dynamics: Step C p(2 x %)

Almost all analyses are based on “induction”

HOW TO VERIFY SAFETY PROPERTIES

Let such a discrete system be defined as
> set of states ¥
» initial states Init C p(X)
» dynamics: Step C p(2 x %)
Almost all analyses are based on “induction”

» SMT-based model checking (k-induction, PDR), Deductive
methods

> encode system semantics S and property P as logical predicates

» check inductiveness of P wrt S through calls to SMT solvers

> loops: compute (inductive) loop invariants

» Static Analysis (Abstract interpretation)

» express collecting semantics (reachable states) as a fixpoint

» approximate the fixpoint by a larger set of states, the
over-approximation
inductive wrt the abstract transition relation (abstract domain).

In all cases: computation or need of inductive invariants

5/22

ABSTRACT INTERPRETATION: DEFINITIONS

Definition

Abstract Interpretation is a constructive and sound theory for the
approximation of semantics expressed as fixpoint of monotonic
operators in a complete lattice.

Collecting semantics (R) as a fixpoint
» transition system: (X, Init, Step)
» monotonic function:

F:ip(x) — o)
X = {dep®s elnitviseX,((ss) e Step}

» R=1UpF

Thanks to Tarski fixpoint theorem, it exists and is defined as the
smallest postfixpoint

R = lfp F = inf{X|F(X) C X}

ABSTRACTING THE FIXPOINT

Instead of computing R, computation of R# such that y(R#) O R
and

#
R* = lfp f# with F¥ : X s a(Init) U#* L] a({s'})
s’ €X,Fse(X),Step(s,s”)

where an abstract domain is defined by

» (D,C#) a partially ordered set of abstract elements, | its
infimum.

» U# ajoin operator
> «a: p(X) — D an abstraction function

> v:D — p(X) a concretization function

E.g. interval abstraction, convex polyhedra, etc

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)
x:=20,1); y:=2(0, 1); y
while true do
in:=2(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9;
y:=10xin — 9
else
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin
fi
od

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)
x:=20,1); y:=2(0, 1); y

before entering the loop

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

in:=?2(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9;
y:=10xin — 9
else
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin
fi

after a first iteration

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

Y
in :=2(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; {27 X
y:=10xin — 9 ~T.085 =7
else —0.49
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin
fi

after a second iteration

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

Y

in :=2(0, 1);
if 0.9 — in < 0 then

x:=10xin — 9; {27 X

1y:= 10xin — 9 ~T.085 =7
QLS —0.49

ti=x;

x:=0.2xt - 0.7xy + 0.5xin;

y:=0.7xt + 0.2xy 4+ 0.5xin
fi

not stable — widening

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

5+Y
in:=7?(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; X
y:=10xin — 9
else -5 1
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin
fi -5

after widening

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

5+Y
in:=7?(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; X
y:=10xin — 9
else) 4.15
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin
fi -5

after another iteration

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

5+Y
in:=7?(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; X
y:=10xin — 9
else) 4.15
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin
fi -5

not stable — widening

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

5+Y
in:=7?(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; X
y :=10xin — 9
else -5 5
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin
fi -5

after widening

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

4.951Y
in:=7?(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; X
y:=10xin — 9
else —4.5 4.95
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin —5
fi

after another iteration

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

4.951Y
in :=2(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; X
y:=10xin — 9
else —4.5 4.95
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin —5
fi
stable !
Remarks

» Worthwhile result: x € [-5,5] A y € [-5,5].
But we were lucky with the widening.

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = lim,,_, 1 oo F" (L)

4.951Y
in :=2(0, 1);
if 0.9 — in < 0 then
x:=10xin — 9; X
y:=10xin — 9
else —4.5 4.95
ti=x;
x:=0.2xt - 0.7xy + 0.5xin;
y:=0.7xt + 0.2xy 4+ 0.5xin —5
fi
stable !
Remarks

» Worthwhile result: x € [-5,5] A y € [-5,5].
But we were lucky with the widening.
» Larger than least fixpoint: x € [-2.23,2.27] A y € [-1.95,2.55].

ANALYSIS OF CONTROLLERS

QUADRATIC LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS
Let A be a square matrix. Define the linear system:

1 = Ak >0, a given «°

A matrix P satisfies Lyapunov conditions for the system iff:
P—-I1d >0, P—ATPA -0, (1)

» Id is the identity matrix;
» M >0means M = MT and Vx, xTMx > 0;

4= 0: . :
P —1d > 0 implies boundedness P LR = O e T

crease:

x|l < b IR)

9/22

ANALYSIS OF CONTROLLERS

QUADRATIC LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS
Let A be a square matrix. Define the linear system:

1 = Ak >0, a given «°

A matrix P satisfies Lyapunov conditions for the system iff:

P-1d=0, P—-ATPA>0, 1)

» Id is the identity matrix;
» M»>=0means M = MT and Vx, xTMx > 0;

P —1d > 0is equivalent to:

Va>0

(0)= (0)=

P — ATPA>0 is equivalent to:

Yb>0

b 0\ (-b O
(0 P>_<0 ATPA)*O

/22

CONTENTS

Invariants, fixpoints and convex optimization

9/22

TEMPLATE ABSTRACTIONS

Let x be a vector of program variables and b; € R.
A template domain D is defined as: A\, pi(x) < b;
> p; = xx; £ b;, octagons, for example x —y < 3
> p; quadratic polynomials: ellipsoids

> p; polynomials: basic semi-algebraic sets

Once (p;) fixed, an abstract element is only defined by the vector (b;).

intervals octagons quadratic
x < 2 x < 2 x+y < 25 g 5 1

=5 < 1 —x < 1 x—y < 2 *% < 1
y < 1 y < 1 —x+y < 1 x =y < 1

-y < 1 -y < 1] —x—y < 2 A -x < 0

10/22

KEY CONTRIBUTION: REVISITING TARSKI FIXPOINT
DEFINITION AS CONVEX PROBLEM

Least fixpoint is the smallest postfixpoint

lfp F# = inf {Y|F#(Y) C Y}
where F#(Y) = Init# U f#(Y)
Let C be a postfixpoint: F#(C) C C. Then

Foca-{c| mets)

frEeC
A postfixpoint, in a template domain, satisfies:

Vx € Init,p(x) <0
V(x,x') € Step,p(x) <0 = p(x') <0

Lyapunov function: energy level decreases over trajectories:

p(x') < p(x) is a sufficient condition for p(x) <0 = p(x') <0

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS

» Linear invariants commonly used in y

static analysis are not well suited:

> at best costly;
» at worst no result.

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS

» Linear invariants commonly used in Y
static analysis are not well suited: '\Ij \
> at best costly;
> at worst no result. X

12/22

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS

» Linear invariants commonly used in
static analysis are not well suited:
> at best costly;
» at worst no result.

> Control theorists have known for a
long time that quadratic invariants
are a good fit for linear systems.

X

p
L

=
7

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS

» Linear invariants commonly used in
static analysis are not well suited:
> at best costly;
» at worst no result.

> Control theorists have known for a
long time that quadratic invariants
are a good fit for linear systems.

y

1)

(g

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS

» Linear invariants commonly used in Yy

static analysis are not well suited:
> at best costly;
» at worst no result. %
» Control theorists have known for a
long time that quadratic invariants

are a good fit for linear systems.

Characterizing a small stable ellipsoid
for a linear system:

> Convex expression: Linear Matrix
Inequalities (LMI)

P—-ATPA >0
P—-1d >0

» Different heuristics (encoding and
optimization costs)

» minimize condition number
» preserve shape
» consider inputs

2/22

12/

PIECEWISE LINEAR SYSTEMS
K-INDUCTIVE QUADRATIC INVARIANTS
For stable switched linear systems, a common Lyapunov function
may not exists. Method by MORARI et al, RANTZER and JOHANSSON
to compute piecewise quadratic LE.
» System defined as partition of zones: X' = {c/, T'}.
» Build a set of local Lyapunov function P’ such that
»xe X, T'(x) e X, x"Px <0 = (T'(x))"P'T'(x) <0
> bound variable values in each zone
» quadratic number of constraints in the LMI wrt number of zones.
» Reducing the set of possible zone transitions is performed using
Motzkin transposition theorem

Extension to k-inductive invariants:
» Generate a set of paths in X'* of length < k

> Considering transitions between zones
i—j
» Base cases with |w| < k:
TiTPZU-i-jTi _ Pw-i <0
» Inductive cases with |w| = k:
TiTPtl(w-i)jTi _ Pw-i <0

13/22

SUM OF SQUARES (SOS) POLYNOMIALS

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials g1, . .., qu s.t.

p=2_a

» If p SOS thenp >0

14/22

SUM OF SQUARES (SOS) POLYNOMIALS

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials g1, ..., g s.t.

p=2_a

» If p SOS thenp >0
> p SOS iff there exist z := [1,xg, x1,Xox1, ..., x4] and Q = 0

p=2Qz.

= S0S can be encoded as semi-definite programming (SDP).

POLYNOMIAL INVARIANTS

PROP.-DRIVEN POLYNOMIAL TEMPLATES USING SOS
Provided a property expressed as a sublevel set property x(x), search
for polynomial p such that

» initial condition: p(x) <0, Vx € Init
» inductiveness: Vi € Z,p (T'(x)) < p(x), Vx € X'
» property-driven, minimizing w € R such that x(x) < w + p(x)

Expressions are convex and linear in p: Positiveness is ensured
thanks to Sum of Square Programming (solving LMIs)

15/22

POLYNOMIAL INVARIANTS

MINIMIZING VOLUME WITHIN COMPACT SET X USING SOS
When provided an upper bound on variables value (a compact set X),
one can minimize the volume of reachable states in that set:

» p(x) > 0 on initial states

» inductive positiveness (with damping scalar «):
apoT(x) — p(x) positive on X

» w positive on X and “strictly above” p: w(x) > p(x) + 1

» minimizing the volume of w(x) in compact set X

16 /22

CONTENTS

Floating point arithmetics

16 /22

FLOATING POINT ISSUES

Floating point computation are inexact:

> approximate representation of constants
e.g. 0.1 = 0.1000000000000000055511151231257827021182...

» sum/product of two floats is not necessarily a float

> results depend on order of evaluation (no distributivity,
associativity)

Two main (and different) issues wrt floating-point arithmetic:
the analyzed controller performs its computations using
floating-point arithmetic rather than real numbers

the analysis itself is performed in floating-point arithmetic, in
particular the LMI/SOS is solved using approximate
SDP solvers

17 /22

FLOATING-POINT ARITHMETIC IN THE CONTROLLER

Computations of the controller being performed using floating-point
arithmetic, rounding errors unavoidably occur and x;_ ; is not exactly
equal to f(xf) = Acx + Beex.

Using affine arithmetics or intervals, we bound the floating point
error € associated to the computation of f(x7) assuming x{ in a given
interval [a,].

(fOp))g =fxp) £e
Inductiveness constraints in the LMI/SOS become

pof(x) —p(x) +e<0

In practice, for linear systems, € ~ 10~ is small with respect to the €
already needed to compensate for the SDP solver precision.

18/22

FLOATING-POINT ARITHMETIC IN THE ANALYSIS

» we solve a convex SDP optimization problem:
linear objective + (LMI) constraints
» the SDP solver, implemented with floating-point arithmetic,
computes an approximate solution
> the solution is not the real optimum wrt objective
> it may not strictly satisfy the constraints (ie. not a feasible solution)
» more than often, returned values of P makes the LMI slightly not
negative definite.

{X| X =0}

" Analytic center

equality constraints

| gpese s

Optimum Infeasibility of the computed

solution
Interior point methods

19/22

FLOATING-POINT ARITHMETIC IN THE ANALYSIS

CONSERVATIVE CHECK

> we “pad” the initial problem M < Ointo M + el < 0
with e greater than solver precision, e.g. € := 1077

» we check the soundness of the solution (P,) wrt the initial
LML
» LMl is instanciated into an exact matrix,
computed with rational arithmetics
> positiveness is checked with a conservative Cholesky
decomposition using floats (algorithm proved in Coq)

{X|X >0} {X|X >0}

{Q+E}

equality constraints valid equality constraints

Padding conic convex constraints Checking feasibility

20/22

CONCLUSION

» Convex optimization is a powerful tool to perform automatic
computation of non linear invariants

» Lyapunov function is the good approach to construct inductive
invariants

» Applicable to large sets of programs, especially numerical
controllers

» Floating point issues have to be carefully addressed
» Enable the analysis of control level properties at code level
» OSDP: Ocaml SDP library with integrated soundness checks

/22

CONCLUSION

» Convex optimization is a powerful tool to perform automatic
computation of non linear invariants

» Lyapunov function is the good approach to construct inductive
invariants

» Applicable to large sets of programs, especially numerical
controllers

» Floating point issues have to be carefully addressed
» Enable the analysis of control level properties at code level
» OSDP: Ocaml SDP library with integrated soundness checks

Thank you for your attention

/22

	Formal verification of controllers
	Invariants, fixpoints and convex optimization
	Floating point arithmetics

