

Convex Optimization-based Static Analysis for Controllers

Pierre-Loïc Garoche – ONERA November, 18th, 2016

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

CONTROLLERS

in₀a Sat $in_0 d in_1 d$ Triplex Sat in in inoc Sai in_0 Controller in in1a Sat Triplex Sat in_1 in System (Plant)

Typically:

- Linear core: $x_{k+1} = Ax_k + Bin_k$
- Non linearities:
 - Piecewise systems, ie. with modes: if $guard_i$ then $x_{k+1} = A_i x_k + B_i i n_k$
 - Saturations on inputs/outputs
 - Linear Parameter Varying (LPV): linearization through gain interpolation
 - Polynomial update
 - ► Safety architecture (redundancy, voters, ...)

Hypothesis: everything is discrete, no continuous models (e.g. ODE)

OBJECT UNDER ANALYSIS – THE INPUT

System:

- ► Code
 - set of functions, sequence of instructions, mix of boolean conditions, integer counters, floating point computations, pointers
 - no dynamic allocation (malloc), no nested loops
- Models
 - similar notions but simpler: no pointers, more types,
- knowledge can be provided on model components: a linear controller, an anti-windup, a saturation, etc

Safety property:

axiomatic semantics, aka predicate over values

- set of all reachable values is bounded
- a given bad region is unreachable
- high level properties: stability, robustness, bounded overshoot, etc

How to verify safety properties

Let such a discrete system be defined as

- set of states Σ
- initial states $Init \subseteq \wp(\Sigma)$
- dynamics: $Step \subseteq \wp(\Sigma \times \Sigma)$

Almost all analyses are based on "induction"

HOW TO VERIFY SAFETY PROPERTIES

Let such a discrete system be defined as

- set of states Σ
- initial states $Init \subseteq \wp(\Sigma)$
- dynamics: $Step \subseteq \wp(\Sigma \times \Sigma)$

Almost all analyses are based on "induction"

- SMT-based model checking (k-induction, PDR), Deductive methods
 - ▶ encode system semantics *S* and property *P* as logical predicates
 - check inductiveness of P wrt S through calls to SMT solvers
 - loops: compute (inductive) loop invariants
- Static Analysis (Abstract interpretation)
 - express collecting semantics (reachable states) as a fixpoint
 - approximate the fixpoint by a larger set of states, the over-approximation

inductive wrt the abstract transition relation (abstract domain).

In all cases: computation or need of inductive invariants

Abstract Interpretation: definitions

Definition

Abstract Interpretation is a constructive and sound theory for the approximation of semantics expressed as fixpoint of monotonic operators in a complete lattice.

Collecting semantics (\mathcal{R}) as a fixpoint

- transition system: $(\Sigma, Init, Step)$
- monotonic function:

$$\begin{array}{rccc} F:\wp(\Sigma) & \to & \wp(\Sigma) \\ X & \mapsto & \{s' \in \wp(\Sigma) | s' \in \mathit{Init} \lor \exists s \in X, (s,s') \in \mathit{Step} \} \end{array}$$

 $\blacktriangleright \mathcal{R} = \operatorname{lfp} F$

Thanks to Tarski fixpoint theorem, it exists and is defined as the smallest postfixpoint

$$\mathcal{R} = \operatorname{lfp} F = \inf\{X | F(X) \subseteq X\}$$

Abstracting the fixpoint

Instead of computing \mathcal{R} , computation of $\mathcal{R}^{\#}$ such that $\gamma(\mathcal{R}^{\#}) \supseteq \mathcal{R}$ and

$$\mathcal{R}^{\#} = \operatorname{lfp} f^{\#} \text{ with } F^{\#} : X \mapsto \alpha(\operatorname{Init}) \sqcup^{\#} \bigsqcup_{\exists s' \in \Sigma, \exists s \in \gamma(X), \operatorname{Step}(s, s')} \alpha(\{s'\})$$

where an abstract domain is defined by

- ⟨D, ⊑#⟩ a partially ordered set of abstract elements, ⊥ its infimum.
- ▶ ⊔[#] a join operator
- $\alpha: \wp(\Sigma) \to \mathcal{D}$ an abstraction function
- $\gamma : \mathcal{D} \to \wp(\Sigma)$ a concretization function

E.g. interval abstraction, convex polyhedra, etc

When ascending chains admit least upper bounds, fixpoint can be computed iteratively using Kleene iterations lfp $F = lim_{n \to +\infty} F^n(\bot)$ x := ?(0, 1); y := ?(0, 1);while true do in := ?(0, 1); **if** 0.9 - in < 0 **then** $x := 10 \times in - 9;$ x $y := 10 \times in - 9$ else t := x; $x := 0.2 \times t - 0.7 \times y + 0.5 \times in;$ $y := 0.7 \times t + 0.2 \times y + 0.5 \times in$ fi od

When ascending chains admit least upper bounds, fixpoint can be computed iteratively using Kleene iterations lfp $F = lim_{n \to +\infty}F^n(\bot)$

x

after another iteration

When ascending chains admit least upper bounds, fixpoint can be computed iteratively using Kleene iterations lfp $F = lim_{n \to +\infty}F^n(\bot)$

х

4.95

When ascending chains admit least upper bounds, fixpoint can be computed iteratively using Kleene iterations lfp $F = lim_{n \to +\infty}F^n(\bot)$

Remarks

▶ Worthwhile result: $x \in [-5,5] \land y \in [-5,5]$. But we were lucky with the widening.

When ascending chains admit least upper bounds, fixpoint can be computed iteratively using Kleene iterations lfp $F = lim_{n \to +\infty}F^n(\bot)$

Remarks

- ▶ Worthwhile result: $x \in [-5, 5] \land y \in [-5, 5]$. But we were lucky with the widening.
- ▶ Larger than least fixpoint: $x \in [-2.23, 2.27] \land y \in [-1.95, 2.55]$.

ANALYSIS OF CONTROLLERS

QUADRATIC LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS Let *A* be a square matrix. Define the linear system:

 $x^{k+1} = Ax^k, k \ge 0$, a given x^0

A matrix P satisfies Lyapunov conditions for the system iff:

$$P - \mathrm{Id} \succeq 0$$
, $P - A^{\mathsf{T}} P A \succeq 0$, (1)

- ▶ Id is the identity matrix;
- $M \succeq 0$ means $M = M^{\intercal}$ and $\forall x, x^{\intercal}Mx \ge 0$;

 $P - \mathrm{Id} \succeq 0$ implies boundedness: $||x||_2^2 \le b$ $x^{\mathsf{T}} P x \le b$

 $P - A^{\mathsf{T}}PA \succeq 0$ guarantees the decrease:

$$x^{\mathsf{T}} P x \leq b$$
$$x^{\mathsf{T}} A^{\mathsf{T}} P A x \leq b$$

ANALYSIS OF CONTROLLERS

QUADRATIC LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS Let *A* be a square matrix. Define the linear system:

 $x^{k+1} = Ax^k, k \ge 0$, a given x^0

A matrix *P* satisfies Lyapunov conditions for the system iff:

$$P - \mathrm{Id} \succeq 0$$
, $P - A^{\mathsf{T}} P A \succeq 0$, (1)

• $M \succeq 0$ means $M = M^{\intercal}$ and $\forall x, x^{\intercal}Mx \ge 0$;

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

TEMPLATE ABSTRACTIONS

Let *x* be a vector of program variables and $b_i \in \mathbb{R}$.

A template domain *D* is defined as: $\bigwedge_i p_i(x) \leq b_i$

- $p_i = \pm x_i \pm b_i$, octagons, for example $x y \le 3$
- ► *p_i* quadratic polynomials: ellipsoids
- *p_i* polynomials: basic semi-algebraic sets

Once (p_i) fixed, an abstract element is only defined by the vector (b_i) .

Key Contribution: Revisiting Tarski fixpoint definition as convex problem

Least fixpoint is the smallest postfixpoint

$$\operatorname{lfp} F^{\#} = \operatorname{inf} \left\{ Y | F^{\#}(Y) \sqsubseteq Y \right\}$$

where $F^{\#}(Y) = Init^{\#} \sqcup f^{\#}(Y)$ Let *C* be a postfixpoint: $F^{\#}(C) \sqsubseteq C$. Then

$$\{F^{\#}(C) \sqsubseteq C\} = \left\{ C \mid \begin{array}{c} Init^{\#} \sqsubseteq C \\ f^{\#}(C) \sqsubseteq C \end{array} \right\}$$

A postfixpoint, in a template domain, satisfies:

$$\begin{aligned} \forall x \in Init, p(x) \leq 0 \\ \forall (x, x') \in Step, p(x) \leq 0 \implies p(x') \leq 0 \end{aligned}$$

Lyapunov function: energy level decreases over trajectories:

 $p(x') \le p(x)$ is a sufficient condition for $p(x) \le 0 \implies p(x') \le 0$

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.
- Control theorists have known for a long time that <u>quadratic invariants</u> are a good fit for linear systems.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.
- Control theorists have known for a long time that <u>quadratic invariants</u> are a good fit for linear systems.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.
- Control theorists have known for a long time that <u>quadratic invariants</u> are a good fit for linear systems.

Characterizing a small stable ellipsoid for a linear system:

 Convex expression: Linear Matrix Inequalities (LMI)

$$\begin{array}{l} P - A^{\mathsf{T}} P A \succeq 0\\ P - \mathrm{Id} \succeq 0 \end{array}$$

- Different heuristics (encoding and optimization costs)
 - minimize condition number
 - preserve shape
 - consider inputs

PIECEWISE LINEAR SYSTEMS

K-INDUCTIVE QUADRATIC INVARIANTS

For stable switched linear systems, a common Lyapunov function may not exists. Method by MORARI *et al*, RANTZER and JOHANSSON to compute piecewise quadratic LF.

- System defined as partition of zones: $X^i = \{c^i, T^i\}$.
- ▶ Build a set of local Lyapunov function *Pⁱ* such that

$$x \in X^i, T^i(x) \in X^j, x^{\mathsf{T}} P^i x \le 0 \implies (T^i(x))^{\mathsf{T}} P^j T^i(x) \le 0$$

- bound variable values in each zone
- quadratic number of constraints in the LMI wrt number of zones.
- Reducing the set of possible zone transitions is performed using Motzkin transposition theorem

Extension to k-inductive invariants:

- Generate a set of paths in X^{i^*} of length < k
- Considering transitions between zones $i \rightarrow j$
 - Base cases with |w| < k: $T^{i^{\mathsf{T}}}P^{w \cdot i \cdot j}T^{i} - P^{w \cdot i} \leq 0$
 - Inductive cases with |w| = k: $T^{i^{\mathsf{T}}}P^{tl(w \cdot i) \cdot j}T^{i} - P^{w \cdot i} \preceq 0$

SUM OF SQUARES (SOS) POLYNOMIALS

Definition (SOS Polynomial)

A polynomial *p* is SOS if there are polynomials q_1, \ldots, q_m s.t.

$$p = \sum_i q_i^2.$$

• If p SOS then $p \ge 0$

SUM OF SQUARES (SOS) POLYNOMIALS

Definition (SOS Polynomial)

A polynomial *p* is SOS if there are polynomials q_1, \ldots, q_m s.t.

$$p = \sum_i q_i^2.$$

- If p SOS then $p \ge 0$
- ▶ *p* SOS iff there exist $z := [1, x_0, x_1, x_0 x_1, \dots, x_n^d]$ and $Q \succeq 0$

$$p = z^T Q z.$$

 \Rightarrow SOS can be encoded as semi-definite programming (SDP).

POLYNOMIAL INVARIANTS

PROP.-DRIVEN POLYNOMIAL TEMPLATES USING SOS

Provided a property expressed as a sublevel set property $\kappa(x)$, search for polynomial p such that

- initial condition: $p(x) \leq 0, \forall x \in Init$
- ▶ inductiveness: $\forall i \in \mathcal{I}, p(T^i(x)) \leq p(x), \forall x \in X^i$
- ▶ property-driven, minimizing $w \in \mathbb{R}$ such that $\kappa(x) \le w + p(x)$

Expressions are convex and linear in *p*: Positiveness is ensured thanks to Sum of Square Programming (solving LMIs)

POLYNOMIAL INVARIANTS

MINIMIZING VOLUME WITHIN COMPACT SET X USING SOS

When provided an upper bound on variables value (a compact set *X*), one can minimize the volume of reachable states in that set:

- $p(x) \ge 0$ on initial states
- ► inductive positiveness (with damping scalar α): $\alpha p \circ T(x) - p(x)$ positive on *X*
- ▶ *w* positive on *X* and "strictly above" $p: w(x) \ge p(x) + 1$
- minimizing the volume of w(x) in compact set *X*

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

FLOATING POINT ISSUES

Floating point computation are inexact:

- approximate representation of constants
 e.g. 0.1 = 0.1000000000000000055511151231257827021182...
- sum/product of two floats is not necessarily a float
- results depend on order of evaluation (no distributivity, associativity)

Two main (and different) issues wrt floating-point arithmetic: the analyzed controller performs its computations using floating-point arithmetic rather than real numbers the analysis itself is performed in floating-point arithmetic, in particular the LMI/SOS is solved using approximate SDP solvers

FLOATING-POINT ARITHMETIC IN THE CONTROLLER

Computations of the controller being performed using floating-point arithmetic, rounding errors unavoidably occur and x_{k+1}^c is not exactly equal to $f(x_k^c) = A_c x_k^c + B_c e_k$.

Using affine arithmetics or intervals, we bound the floating point error ϵ associated to the computation of $f(x_k^c)$ assuming x_k^c in a given interval [a, b].

$$(f(x_k^c))_{fl} = f(x_k^c) \pm \epsilon$$

Inductiveness constraints in the LMI/SOS become

$$p \circ f(x) - p(x) + \epsilon \le 0$$

In practice, for linear systems, $\epsilon\simeq 10^{-9}$ is small with respect to the ϵ already needed to compensate for the SDP solver precision.

FLOATING-POINT ARITHMETIC IN THE ANALYSIS

- we solve a convex SDP optimization problem: linear objective + (LMI) constraints
- the SDP solver, implemented with floating-point arithmetic, computes an approximate solution
 - the solution is not the real optimum wrt objective
 - it may not strictly satisfy the constraints (ie. not a feasible solution)
 - more than often, returned values of P makes the LMI slightly not negative definite.

Interior point methods

FLOATING-POINT ARITHMETIC IN THE ANALYSIS

CONSERVATIVE CHECK

- we "pad" the initial problem M ≺ 0 into M + εI ≺ 0 with ε greater than solver precision, e.g. ε := 10⁻⁷
- ▶ we check the soundness of the solution (P, γ) wrt the initial LMI.
 - LMI is instanciated into an exact matrix, computed with rational arithmetics
 - positiveness is checked with a conservative Cholesky decomposition using floats (algorithm proved in Coq)

CONCLUSION

- Convex optimization is a powerful tool to perform automatic computation of non linear invariants
- Lyapunov function is the good approach to construct inductive invariants
- Applicable to large sets of programs, especially numerical controllers
- ▶ Floating point issues have to be carefully addressed
- Enable the analysis of control level properties at code level
- ▶ OSDP: Ocaml SDP library with integrated soundness checks

CONCLUSION

- Convex optimization is a powerful tool to perform automatic computation of non linear invariants
- Lyapunov function is the good approach to construct inductive invariants
- Applicable to large sets of programs, especially numerical controllers
- ▶ Floating point issues have to be carefully addressed
- ► Enable the analysis of control level properties at code level
- ▶ OSDP: Ocaml SDP library with integrated soundness checks

Thank you for your attention