
Convex Optimization-based Static Analysis
for Controllers

Pierre-Loïc Garoche – ONERA
November, 18th, 2016

1 / 22

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

2 / 22

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

2 / 22

CONTROLLERS

u
Controller

in0_d in1_d
Triplex

in0

Triplex
in1

System (Plant)

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

Typically:
I Linear core: xk+1 = Axk + Bink

I Non linearities:
I Piecewise systems, ie. with modes:

if guardi then xk+1 = Aixk + Biink
I Saturations on inputs/outputs
I Linear Parameter Varying (LPV): linearization through gain

interpolation
I Polynomial update
I Safety architecture (redundancy, voters, . . .)

Hypothesis: everything is discrete, no continuous models (e.g. ODE)

3 / 22

OBJECT UNDER ANALYSIS – THE INPUT
System:

I Code
I set of functions, sequence of instructions, mix of boolean

conditions, integer counters, floating point computations, pointers
I no dynamic allocation (malloc), no nested loops

I Models
I similar notions but simpler: no pointers, more types,

I knowledge can be provided on model components: a linear
controller, an anti-windup, a saturation, etc

Safety property:
axiomatic semantics, aka predicate over values

I set of all reachable values is bounded
I a given bad region is unreachable
I high level properties: stability, robustness, bounded overshoot,

etc
I . . .

4 / 22

HOW TO VERIFY SAFETY PROPERTIES

Let such a discrete system be defined as
I set of states Σ

I initial states Init ⊆ ℘(Σ)

I dynamics: Step ⊆ ℘(Σ× Σ)

Almost all analyses are based on “induction”

I SMT-based model checking (k-induction, PDR), Deductive
methods

I encode system semantics S and property P as logical predicates
I check inductiveness of P wrt S through calls to SMT solvers
I loops: compute (inductive) loop invariants

I Static Analysis (Abstract interpretation)
I express collecting semantics (reachable states) as a fixpoint
I approximate the fixpoint by a larger set of states, the

over-approximation
inductive wrt the abstract transition relation (abstract domain).

In all cases: computation or need of inductive invariants

5 / 22

HOW TO VERIFY SAFETY PROPERTIES

Let such a discrete system be defined as
I set of states Σ

I initial states Init ⊆ ℘(Σ)

I dynamics: Step ⊆ ℘(Σ× Σ)

Almost all analyses are based on “induction”
I SMT-based model checking (k-induction, PDR), Deductive

methods
I encode system semantics S and property P as logical predicates
I check inductiveness of P wrt S through calls to SMT solvers
I loops: compute (inductive) loop invariants

I Static Analysis (Abstract interpretation)
I express collecting semantics (reachable states) as a fixpoint
I approximate the fixpoint by a larger set of states, the

over-approximation
inductive wrt the abstract transition relation (abstract domain).

In all cases: computation or need of inductive invariants

5 / 22

ABSTRACT INTERPRETATION: DEFINITIONS

Definition
Abstract Interpretation is a constructive and sound theory for the
approximation of semantics expressed as fixpoint of monotonic
operators in a complete lattice.

Collecting semantics (R) as a fixpoint
I transition system: (Σ, Init,Step)

I monotonic function:

F : ℘(Σ) → ℘(Σ)
X 7→ {s′ ∈ ℘(Σ)|s′ ∈ Init ∨ ∃s ∈ X, (s, s′) ∈ Step}

I R = lfp F

Thanks to Tarski fixpoint theorem, it exists and is defined as the
smallest postfixpoint

R = lfp F = inf{X|F(X) ⊆ X}

6 / 22

ABSTRACTING THE FIXPOINT

Instead of computingR, computation ofR# such that γ(R#) ⊇ R
and

R# = lfp f # with F# : X 7→ α(Init) t#

#⊔
∃s′∈Σ,∃s∈γ(X),Step(s,s′)

α({s′})

where an abstract domain is defined by
I 〈D,v#〉 a partially ordered set of abstract elements, ⊥ its

infimum.
I t# a join operator
I α : ℘(Σ)→ D an abstraction function
I γ : D → ℘(Σ) a concretization function

E.g. interval abstraction, convex polyhedra, etc

7 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→wideningafter wideningafter another iterationnot stable→wideningafter wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0

−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loop

after a first iterationafter a second iterationnot stable→wideningafter wideningafter another iterationnot stable→wideningafter wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0

−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loop

after a first iteration

after a second iterationnot stable→wideningafter wideningafter another iterationnot stable→wideningafter wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49

−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iteration

after a second iteration

not stable→wideningafter wideningafter another iterationnot stable→wideningafter wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49

−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iteration

not stable→widening

after wideningafter another iterationnot stable→wideningafter wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49

−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→widening

after widening

after another iterationnot stable→wideningafter wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→wideningafter widening

after another iteration

not stable→wideningafter wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→wideningafter wideningafter another iteration

not stable→widening

after wideningafter another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→wideningafter wideningafter another iterationnot stable→widening

after widening

after another iterationstable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks

I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].
But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→wideningafter wideningafter another iterationnot stable→wideningafter widening

after another iteration

stable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks
I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].

But we were lucky with the widening.

I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→wideningafter wideningafter another iterationnot stable→wideningafter wideningafter another iteration

stable !

8 / 22

CLASSICAL ABSTRACT FIXPOINT COMPUTATION:
KLEENE ITERATIONS

When ascending chains admit least upper bounds, fixpoint can be
computed iteratively using Kleene iterations lfp F = limn→+∞Fn(⊥)

x := ?(0, 1); y := ?(0, 1);
while true do

in := ?(0, 1);
if 0.9 − in ≤ 0 then

x := 10×in − 9;
y := 10×in − 9

else
t := x;
x := 0.2×t − 0.7×y + 0.5×in;
y := 0.7×t + 0.2×y + 0.5×in

fi
od

Remarks
I Worthwhile result: x ∈ [−5, 5] ∧ y ∈ [−5, 5].

But we were lucky with the widening.
I Larger than least fixpoint: x ∈ [−2.23, 2.27] ∧ y ∈ [−1.95, 2.55].

1

1

0−0.7 1

1.35

−1.085 1

1.42

−0.49−5 1

5

−5

−5 4.15

5

−5

−5 5

5

−5

−4.5 4.95

4.95

−4.5

x

y

before entering the loopafter a first iterationafter a second iterationnot stable→wideningafter wideningafter another iterationnot stable→wideningafter wideningafter another iteration

stable !

8 / 22

ANALYSIS OF CONTROLLERS
QUADRATIC LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS

Let A be a square matrix. Define the linear system:

xk+1 = Axk, k ≥ 0, a given x0

A matrix P satisfies Lyapunov conditions for the system iff:

P− Id � 0 , P− AᵀPA � 0 , (1)

I Id is the identity matrix;
I M � 0 means M = Mᵀ and ∀ x, xᵀMx ≥ 0;

P− Id � 0 implies boundedness:

‖x‖2
2 ≤ b

xᵀPx ≤ b

P − AᵀPA � 0 guarantees the de-
crease:

xᵀPx ≤ b

xᵀAᵀPAx ≤ b

9 / 22

ANALYSIS OF CONTROLLERS
QUADRATIC LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS

Let A be a square matrix. Define the linear system:

xk+1 = Axk, k ≥ 0, a given x0

A matrix P satisfies Lyapunov conditions for the system iff:

P− Id � 0 , P− AᵀPA � 0 , (1)

I Id is the identity matrix;
I M � 0 means M = Mᵀ and ∀ x, xᵀMx ≥ 0;

P− Id � 0 is equivalent to:

∀α ≥ 0(
−b 0
0 P

)
−
(
−b 0
0 Id

)
� 0

P− AᵀPA�0 is equivalent to:

∀ b ≥ 0(
−b 0
0 P

)
−
(
−b 0
0 AᵀPA

)
� 0

9 / 22

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

9 / 22

TEMPLATE ABSTRACTIONS
Let x be a vector of program variables and bi ∈ R.

A template domain D is defined as:
∧

i pi(x) ≤ bi

I pi = ±xi ± bi, octagons, for example x− y ≤ 3
I pi quadratic polynomials: ellipsoids
I pi polynomials: basic semi-algebraic sets

Once (pi) fixed, an abstract element is only defined by the vector (bi).

x

y

intervals

x

y

octagons

x

y

quadratic


x ≤ 2
−x ≤ 1

y ≤ 1
−y ≤ 1


x ≤ 2 x + y ≤ 2.5
−x ≤ 1 x − y ≤ 2

y ≤ 1 −x + y ≤ 1
−y ≤ 1 −x − y ≤ 2


y ≤ 1
−y ≤ 1

x − y2 ≤ 1
−y2 − x ≤ 0

10 / 22

KEY CONTRIBUTION: REVISITING TARSKI FIXPOINT

DEFINITION AS CONVEX PROBLEM
Least fixpoint is the smallest postfixpoint

lfp F# = inf
{

Y|F#(Y) v Y
}

where F#(Y) = Init# t f #(Y)

Let C be a postfixpoint: F#(C) v C. Then

{F#(C) v C} =

{
C
∣∣∣∣ Init# v C

f #(C) v C

}
A postfixpoint, in a template domain, satisfies:

∀x ∈ Init, p(x) ≤ 0
∀(x, x′) ∈ Step, p(x) ≤ 0 =⇒ p(x′) ≤ 0

Lyapunov function: energy level decreases over trajectories:

p(x′) ≤ p(x) is a sufficient condition for p(x) ≤ 0 =⇒ p(x′) ≤ 0

11 / 22

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS
I Linear invariants commonly used in

static analysis are not well suited:
I at best costly;
I at worst no result.

I Control theorists have known for a
long time that quadratic invariants
are a good fit for linear systems.

x

y

Characterizing a small stable ellipsoid
for a linear system:

I Convex expression: Linear Matrix
Inequalities (LMI)

P− AᵀPA � 0
P− Id � 0

I Different heuristics (encoding and
optimization costs)

I minimize condition number
I preserve shape
I consider inputs

12 / 22

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS
I Linear invariants commonly used in

static analysis are not well suited:
I at best costly;
I at worst no result.

I Control theorists have known for a
long time that quadratic invariants
are a good fit for linear systems.

x

y

Characterizing a small stable ellipsoid
for a linear system:

I Convex expression: Linear Matrix
Inequalities (LMI)

P− AᵀPA � 0
P− Id � 0

I Different heuristics (encoding and
optimization costs)

I minimize condition number
I preserve shape
I consider inputs

12 / 22

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS
I Linear invariants commonly used in

static analysis are not well suited:
I at best costly;
I at worst no result.

I Control theorists have known for a
long time that quadratic invariants
are a good fit for linear systems.

x

y

Characterizing a small stable ellipsoid
for a linear system:

I Convex expression: Linear Matrix
Inequalities (LMI)

P− AᵀPA � 0
P− Id � 0

I Different heuristics (encoding and
optimization costs)

I minimize condition number
I preserve shape
I consider inputs

12 / 22

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS
I Linear invariants commonly used in

static analysis are not well suited:
I at best costly;
I at worst no result.

I Control theorists have known for a
long time that quadratic invariants
are a good fit for linear systems.

x

y

Characterizing a small stable ellipsoid
for a linear system:

I Convex expression: Linear Matrix
Inequalities (LMI)

P− AᵀPA � 0
P− Id � 0

I Different heuristics (encoding and
optimization costs)

I minimize condition number
I preserve shape
I consider inputs

12 / 22

QUADRATIC TEMPLATES FOR LINEAR SYSTEMS
I Linear invariants commonly used in

static analysis are not well suited:
I at best costly;
I at worst no result.

I Control theorists have known for a
long time that quadratic invariants
are a good fit for linear systems.

x

y

Characterizing a small stable ellipsoid
for a linear system:

I Convex expression: Linear Matrix
Inequalities (LMI)

P− AᵀPA � 0
P− Id � 0

I Different heuristics (encoding and
optimization costs)

I minimize condition number
I preserve shape
I consider inputs

12 / 22

PIECEWISE LINEAR SYSTEMS
K-INDUCTIVE QUADRATIC INVARIANTS

For stable switched linear systems, a common Lyapunov function
may not exists. Method by MORARI et al, RANTZER and JOHANSSON
to compute piecewise quadratic LF.

I System defined as partition of zones: Xi = {ci,Ti}.
I Build a set of local Lyapunov function Pi such that

I x ∈ Xi,Ti(x) ∈ Xj, xᵀPix ≤ 0 =⇒ (Ti(x))ᵀPjTi(x) ≤ 0
I bound variable values in each zone
I quadratic number of constraints in the LMI wrt number of zones.

I Reducing the set of possible zone transitions is performed using
Motzkin transposition theorem

Extension to k-inductive invariants:
I Generate a set of paths in Xi∗ of length < k
I Considering transitions between zones

i→ j
I Base cases with |w| < k:

TiᵀPw·i·jTi − Pw·i � 0
I Inductive cases with |w| = k:

TiᵀPtl(w·i)·jTi − Pw·i � 0
13 / 22

SUM OF SQUARES (SOS) POLYNOMIALS

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials q1, . . . , qm s.t.

p =
∑

i

q2
i .

I If p SOS then p ≥ 0

I p SOS iff there exist z :=
[
1, x0, x1, x0x1, . . . , xd

n
]

and Q � 0

p = zTQ z.

⇒ SOS can be encoded as semi-definite programming (SDP).

14 / 22

SUM OF SQUARES (SOS) POLYNOMIALS

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials q1, . . . , qm s.t.

p =
∑

i

q2
i .

I If p SOS then p ≥ 0
I p SOS iff there exist z :=

[
1, x0, x1, x0x1, . . . , xd

n
]

and Q � 0

p = zTQ z.

⇒ SOS can be encoded as semi-definite programming (SDP).

14 / 22

POLYNOMIAL INVARIANTS
PROP.-DRIVEN POLYNOMIAL TEMPLATES USING SOS

Provided a property expressed as a sublevel set property κ(x), search
for polynomial p such that

I initial condition: p(x) ≤ 0, ∀x ∈ Init
I inductiveness: ∀ i ∈ I, p (Ti(x)) ≤ p(x), ∀x ∈ Xi

I property-driven, minimizing w ∈ R such that κ(x) ≤ w + p(x)

Expressions are convex and linear in p: Positiveness is ensured
thanks to Sum of Square Programming (solving LMIs)

15 / 22

POLYNOMIAL INVARIANTS
MINIMIZING VOLUME WITHIN COMPACT SET X USING SOS

When provided an upper bound on variables value (a compact set X),
one can minimize the volume of reachable states in that set:

I p(x) ≥ 0 on initial states
I inductive positiveness (with damping scalar α):
α p ◦ T(x)− p(x) positive on X

I w positive on X and “strictly above” p: w(x) ≥ p(x) + 1
I minimizing the volume of w(x) in compact set X

16 / 22

CONTENTS

Formal verification of controllers

Invariants, fixpoints and convex optimization

Floating point arithmetics

16 / 22

FLOATING POINT ISSUES

Floating point computation are inexact:
I approximate representation of constants

e.g. 0.1 = 0.1000000000000000055511151231257827021182...
I sum/product of two floats is not necessarily a float
I results depend on order of evaluation (no distributivity,

associativity)

Two main (and different) issues wrt floating-point arithmetic:
the analyzed controller performs its computations using

floating-point arithmetic rather than real numbers
the analysis itself is performed in floating-point arithmetic, in

particular the LMI/SOS is solved using approximate
SDP solvers

17 / 22

FLOATING-POINT ARITHMETIC IN THE CONTROLLER

Computations of the controller being performed using floating-point
arithmetic, rounding errors unavoidably occur and xc

k+1 is not exactly
equal to f (xc

k) = Acxc
k + Bcek.

Using affine arithmetics or intervals, we bound the floating point
error ε associated to the computation of f (xc

k) assuming xc
k in a given

interval [a, b].

(f (xc
k))fl = f (xc

k)± ε

Inductiveness constraints in the LMI/SOS become

p ◦ f (x)− p(x) + ε ≤ 0

In practice, for linear systems, ε ' 10−9 is small with respect to the ε
already needed to compensate for the SDP solver precision.

18 / 22

FLOATING-POINT ARITHMETIC IN THE ANALYSIS
I we solve a convex SDP optimization problem:

linear objective + (LMI) constraints
I the SDP solver, implemented with floating-point arithmetic,

computes an approximate solution
I the solution is not the real optimum wrt objective
I it may not strictly satisfy the constraints (ie. not a feasible solution)
I more than often, returned values of P makes the LMI slightly not

negative definite.

Analytic center

Optimum

Interior point methods

{X | X � 0}

Q

Q̃

equality constraints

Infeasibility of the computed
solution

19 / 22

FLOATING-POINT ARITHMETIC IN THE ANALYSIS
CONSERVATIVE CHECK

I we “pad” the initial problem M ≺ 0 into M + εI ≺ 0
with ε greater than solver precision, e.g. ε := 10−7

I we check the soundness of the solution (P, γ) wrt the initial
LMI.

I LMI is instanciated into an exact matrix,
computed with rational arithmetics

I positiveness is checked with a conservative Cholesky
decomposition using floats (algorithm proved in Coq)

{X | X � 0}

Q

Q̃

equality constraints

ε

ε

ε
ε

Padding conic convex constraints

{X | X � 0}

{Q + E}Q

valid equality constraints

Checking feasibility
20 / 22

CONCLUSION

I Convex optimization is a powerful tool to perform automatic
computation of non linear invariants

I Lyapunov function is the good approach to construct inductive
invariants

I Applicable to large sets of programs, especially numerical
controllers

I Floating point issues have to be carefully addressed
I Enable the analysis of control level properties at code level
I OSDP: Ocaml SDP library with integrated soundness checks

Thank you for your attention

21 / 22

CONCLUSION

I Convex optimization is a powerful tool to perform automatic
computation of non linear invariants

I Lyapunov function is the good approach to construct inductive
invariants

I Applicable to large sets of programs, especially numerical
controllers

I Floating point issues have to be carefully addressed
I Enable the analysis of control level properties at code level
I OSDP: Ocaml SDP library with integrated soundness checks

Thank you for your attention

21 / 22

	Formal verification of controllers
	Invariants, fixpoints and convex optimization
	Floating point arithmetics

