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Theorem

Solutions u(t) € C*°(51,R) to the Camassa-Holm equation
1 1 1
Oru — Zatxxu—i—fiaxuu— Eaxxuaxu— Zawuu:o (1)

are particular solutions of an incompressible Euler equation on
R2\ {0} for a density p(r,0) = 5 drdf = % Leb

v+V,v=-Vp,
V- (pv)=0.
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Arnold’s geometric point of view

Sur la géométrie différentielle des groupes de Lie de dimension
infinie et ses applications a I'hydrodynamique des fluides parfaits,
Ann. Inst. Fourier, 1966.

Proposition

The incompressible Euler equation is the geodesic flow of the
right-invariant metric L on SDiff(M).

e An intrinsic point of view by Ebin and Marsden, Groups of
diffeomorphisms and the motion of an incompressible fluid,
Ann. of Math., 1970. Short time existence results for smooth
initial conditions.

e An extrinsic point of view by Brenier, relaxation of the
variational problem, optimal transport, polar factorization.
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Arnold’s point of view

e Let (M, g) be a Riemannian manifold without boundary.

e Treat SDiff(M) as an infinite dimensional Riemannian
submanifold of Diff(M).
e Consider the metric L2 on SDiff(M), it is right-invariant.

Notations: ¢ € SDiff(M), X € T, SDiff(M). Since ¢, (vol) = vol,

G(cp)(X,X):/ |X|2dvoI:/ |X 0o dvol
M M




Right-invariant metric on a Lie group

Definition (Right-invariant metric)

Let g1,8> € G be two group elements, the distance between gy
and g» can be defined by:

1
Pl )= { / ||v(r)||3dr|g(0)—goandgu)—gl}

= inf
g(t)

where 0:g(t)g(t)~! = v(t) € g, with g the Lie algebra.

Right-invariance simply means:

d*(g18.828) = d(g1.82) -

It comes from:

D:(g(t)80)(8(t)g0) ™ = Oeg(t)gogy ‘g(t) ™ = Oeg(t)g(t) .
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Euler-Arnold-Poincaré equation L
equation
Compute the Euler-Lagrange equation of the distance functional: el
aL d aL Arnold’s point of view
"7
0g dtog

In the case of f01 (g,&)dt = fo ||ul|?dt,
Euler-Poincaré-Arnold equation

{?:“"g (3)

b+adju=0

where ad} is the (metric) adjoint of ad,v = [v, u].

Compute variations of v(t) in terms of u(t) = dg(t)g(t)~!. Find
that admissible variations on g can be written as:
dv(t) = i — ad,u for any u vanishing at 0 and 1. O
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Consider the Hilbert scalar product on vector fields on R?
(u,u) = {(u, Lu)>. Denoting m = Lu,

Arnold’s point of view

drm+ Dm.u+ Du”".m + div(u)m = 0. (4)
For example, the L? metric, L = Id gives:
Oru+ Du.u+ Du’ .u+ div(u)u=0. (5)

On the group of volume preserving diffeomorphisms of (M, i) with
the L2 metric:
Euler's equation for ideal fluid where div(u) =0

O:u+Vyu=-Vp,

(use div(u) = 0 and write the term DuT.u as a gradient as

V{u, u))
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e Incompressible Euler equation.

Arnold’s point of view

o Korteweg-de-Vries equation.
e Camassa-Holm equation 1981/1993. An integrable shallow
water equation with peaked solitons

Consider Diff(S;) endowed with the H! right-invariant metric
HVH%? + %HaxV”iz One has

(6)

atU — %8txxu u—+ 38XU u— %axxu axu - %aXXXU u=0
dep(t, x) = u(t, (1, x)).

Model for waves in shallow water.

Completely integrable system (bi-Hamiltonian).

Exhibits particular solutions named as peakons. (geodesics as
collective Hamiltonian).

Blow-up of solutions which gives a model for wave breaking.
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Ebin-Marsden analytical framework optimal transport to
equation
Rewrite the metric in Lagrangian coordinates ¢ and a tangent e
vector X, and realize that it is smooth...

e The right-invariant H4" metric: Ebin-Marsden's

approach and

Brenier's

Gp(Xp, Xp) = / PX, 007 P+ b div(Xp 007 du. (7)
M
can be written
2 2 2 —1\)2
Go(X, X,) = /M 21X, 2 Jac(p) + B (Tr(DX, - [Dy] ™)) Jac() du.

Smooth metric on an infinite dimensional Riemannian manifold.
Consequences:

e Geodesic equations is a simple ODE (No need for a
Riemannian connection)

e Gauss lemma on H* for s > d/2 + 2
e Geodesics are minimizing within H*® topology.
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Need to deal with the projection on SDiff(M)...
Geodesic equation on SDiff(M) as a submanifold of Diff(M): B

approach and
Brenier's

$=-Vpoyp. (8)

where —Vp = A(p, ¢) is a smooth function of ¢, .
More explicitely,

Alp,¢) = (VA) [div. V] (9)
where, if L is a differential operator on functions,
L,(f) = L(fogo’l)ogp. (10)

If ©(t) is a smooth curve in H® s.t. ¢ = w o ¢, then
iLs@ = [L<F7VW]-

ds
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Ebin-Marsden’s
approach and

Variational approach to geodesics on SDiff(M) isometrically Brepire
embedded in a Hilbert space.

e Smooth solutions of Euler are minimizing (for t € [0,1]) if
V?2p is bounded in L> (by 7).

e In general, relaxation of the boundary value problem as
(infinite) multimarginal optimal transport.

e Polar factorization as a nonlinear extension of the pressure.

e Benamou-Brenier's dynamic formulation.
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Diff(M)

L2(M, M) Ebin-Marsden’s

approach and
Brenier's

SDiff(M): Isotropy
subgroup of p

ﬁ () = @u(n)

(Densp(M),W2)  p

Figure — A Riemannian submersion: SDiff(M) as a Riemannian
submanifold of L>(M, M): Incompressible Euler equation on SDiff(M)




Reminders: Riemannian submersion

Let (M, gm) and (N, gn) be two Riemannian manifolds and
f: M+— N a differentiable mapping.

Definition

The map f is a Riemannian submersion if f is a submersion and
for any x € M, the map df, : Ker(df, )+ — Tr(x)N is an isometry.

o Verts(, := Ker(df(x)) is the vertical space.

o Hors(x) = Ker(df(x))* is the horizontal space.
e Geodesics on N can be lifted "horizontally” to geodesics on M.

Theorem (O'Neill's formula)

Let f be a Riemannian submersion and X, Y be two orthonormal
vector fields on M with horizontal lifts X and Y, then

Kn(X, ¥) = KulX, ¥) + Sl vert(%, Pl (1)

where K denotes the sectional curvature and vert the orthogonal
projection on the vertical space.
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Diff(M) F\.ln\(;;ﬁ;?((rvicr
L2(M, M) &
Ebin-Marsden’s
approach and
Brenier’s
Id
SDiff(M)
m(p) = e« (n)

(Densp(M), Ws) 1

Figure — A Riemannian submersion: SDiff(M) as a Riemannian
submanifold of L>(M, M): Incompressible Euler equation on SDiff(M)
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Ebin-Marsden’s
approach and
Brenier's

Monge formulation (1781)

Let u,v € PL(M),

Minimize /Qc(x, o(x))du (12)

among the map s.t. p.(u) =v.

© ill posed problem, the constraint may not be satisfied.
@ the constraint can hardly be made weakly closed.

— Relaxation of the Monge problem.
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Kantorovich formulation (1942)

Let n,v e 73+(Q), define D by Ebin-Marsden’s

approach and
Brenier's

D(p,v) =yei7f;(f92){/m c(x,y)dy(x,y) : miy = p and 72y = V}

@ Existence result: ¢ lower semi-continuous and bounded from
below.

@ Also valid in Polish spaces.

Q If c(x,y) = %|X — y|P, DY/P is the Wasserstein distance
denoted by W,.

Linear optimization problem and associated numerical methods.
Recently introduced, entropic regularization. (C. Léonard, M.
Cuturi)




Reminders: Dynamic formulation

(Benamou-Brenier)

For geodesic costs, for instance c(x,y) = 3| 2

x =yl

inf E(v / /| )2p(x) dxdt ,

s.t.

p+V-(vp)=0
p(0) = po and p(1) = puy .
Convex reformulation: Change of variable: momentum m =
)2
inf £(m / ‘m | dxdt,
s.t.
p+V-m=0
p(0) = po and p(1) = pus .

where (p, m) € M([0,1] x Q,R x R9).

Existence of minimizers: Fenchel-Rockafellar.

Numerics: First-order splitting algorithm: Douglas-Rachford.
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13 Ebin-Marsden’s
( ) approach and

Brenier's

(14)
pv,

(15)

(16)
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Ebin-Marsden’s
approach and
Brenier's

e Extend the Wasserstein L2 distance to positive Radon
measures.
e Develop associated numerical algorithms.

Possible applications: Imaging, machine learning, gradient flows, ...
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Ebin-Marsden’s
Taking into account locally the change of mass: approach and

Brenier's

Two directions: Static and dynamic.

Static, Partial Optimal Transport [FG10]
Static, Hanin 1992, Benamou and Brenier 2001.
Dynamic, Numerics, Metamorphoses [MRSS15]

Dynamic, Numerics, Growth model [LM13]
e Dynamic and static, [PR13, PR14]
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Ebin-Marsden’s

More than 300 pages on the same model! approach and
Starting point: Dynamic formulation

Dynamic, Numerics, Imaging [CSPV15] (40 pages)
Dynamic, Geometry and Static [CSPV15] (40 pages)
Dynamic, Gradient flow [KMV15] (50 pages)

Dynamic, Gradient flow [LMS15b] (40 pages)

Static and more [LMS15a] (100 pages)

e Static relaxation of OT, Numerics [FZM™15] (20 pages)
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Add a source term in the constraint: (weak sense)

p. == _v ° (pv) + ap? The Wasserstein-

Fisher-Rao
metric

where a can be understood as the growth rate.

1
WF(m, a)? = %/0 /Q|v(x, t)|2p(x, t) dxdt
5 [t
—1——/ /oz(x7 t)%p(x, t) dxdt.
2 Jo Ja

Remark: very natural and not studied before...




Convex reformulation
Add a source term in the constraint: (weak sense)

p=—V-m+p.

1 [ [ m(x, 1)) 82 (Y[ ou(x,t)?
WF(m, 2:7//7’dxdt+—/ /7’dxdt.
=5 0y Jo olxt) 2 Jo Jo ol t)

e Fisher-Rao metric: Hessian of the Boltzmann entropy/
Kullback-Leibler divergence and reparametrization invariant.
Wasserstein metric on the space of variances in 1D.

e Convex and 1-homogeneous: convex analysis (existence and
more)

e Numerics: First-order splitting algorithm: Douglas-Rachford.

e Code available at
https://github.com/lchizat/optimal-transport/
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https://github.com/lchizat/optimal-transport/

A general framework
Definition (Infinitesimal cost)

An infinitesimal cost is f : @ x R x R x R — Ry U {+oc} such
that for all x € Q, f(x, -, -, ) is convex, positively 1-homogeneous,
lower semicontinuous and satisfies

=0 if (m,p) =(0,0) and p >0
f(x,p,m, ) ¢ >0 if [m| or |u| >0
=400 ifp<O.

Definition (Dynamic problem)
For (p, m, ) € M([0,1] x Q)1+9+L let

1
S i) /0 /Q Flx, 42 dm duya)(ex)  (17)

The dynamic problem is, for pg, p1 € M4(R),

C(po, p1) = inf J(p,w, Q). 18
(o 2) = eyt ™ 2 C) (18)
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Existence of minimizers

Proposition (Fenchel-Rockafellar)

Let B(x) be the polar set of f(x,-,-,-) for all x € Q and assume it
is a lower semicontinuous set-valued function. Then the minimum
of (18) is attained and it holds

Co(po, p1) = SUP/QQO(L')dPl—/QQO(O:')dPO (19)

peK

def.

with K =
{o e CY([0,1] x Q) : (B, Vip, ) € B(x), ¥(t,x) €[0,1] x Q} . )

WEE s,
WF(x,y,z) =40 if (x,ly],z) =(0,0,0)
+00 otherwise

and the corresponding Hamilton-Jacobi equation is

2
dep+ = <|V<f9|2 ) <0.
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Numerical simulations
Initial and final densities: gray and blue curves.

Figure — 1°* row: Standard W5, 2" row: Non-homogeneous L2, 3 row:

Partial OT, 4™ row: Wasserstein-Fisher-Rao
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The Wasserstein-
T Fisher-Rao
metric
—

Figure — Geodesics between po and p1 for (1st row) Hellinger, (2nd row)
W, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.
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Group action

Mass can be moved and changed: consider m(t)dy(y).

Infinitesimal action

P {xu) = v(x(1))

The Wasserstein-
Fisher-Rao
metric

m(t) = p(x(t))

A cone metric

1
WF?(x, m) = E(mdx2 + - ),

N,
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Definition

Let (M, g) be a Riemannian manifold. The cone over (M, g) is
the Riemannian manifold (M x R% , r’g + dr?).

Francois-Xavier
Vialard

The Wasserstein-
Fisher-Rao

e Change of variable: WF* = 1r2g +2dr2. metrc

The C
€

Non complete metric space: add the vertex M x {0}.
The distance:

d((x1, m1), (x2, m2))2 =

1
my + my — 2y/myms cos (2dM(X1,X2) /\77) . (20)

Curvature tensor: R(X,e) = 0 and
R(X,Y)Z = (Ry(X,Y)Z — g(Y,Z)X + g(X, Z)Y,0).
e M =R then (x,m) — \/me*/? € C local isometry.




Geometry of a cone

Corollary

If (Q2, g) has sectional curvature greater than 1, then
(2 x R%, mg + ;& dm?) has non-negative sectional curvature.
For X, Y two orthornormal vector fields on €,

K(X,Y) = (Kg(X,Y)—1) (21)

where K and K, denote respectively the sectional curvatures of

Q x R and €.
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Generalization of Otto’s Riemannian submersion

Idea of a left group action:
7 (Diff(M) x C*(M,R%)) x Dens(M) > Dens(M)
T (. A), p) = 9 (N?p)

Group law:

(1, A1) - (92, X2) = (01 0 2, (A1 0 2)\2) (22)

Let po € Dens(M) and o : Diff(M) x C>°(M,R? ) — Dens(M)
defined by mo(¢p, \) := @.(N\2po). It is a Riemannian submersion

(Diff(M) x C>°(M,R%), L*(M, M x R%)) =% (Dens(M), WF)

(where M x R*_is endowed with the cone metric).

O’Neill's formula: sectional curvature of (Dens(2), WF). J
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Horizontal lift

Proposition (Horizontal lift)

Let p € Dens®(Q2) be a smooth density and X, € H*(2,R) be a
tangent vector at the density p. The horizontal lift at (Id,1) of X,
is given by (%V(D, ®) where ® is the solution to the elliptic partial
differential equation:

—div(pVP) +20p = X, . (23)

By elliptic regularity, the unique solution ® belongs to HST1(M).

4
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The sectional curvature of Dens(f2) at point p is:
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K(p)(X1; X2) :/Qk(X71)(21(X)722(X))W(21(X),Zz(X))p(X) dv(x)

3 o
312210 20 P

metric
where

w(Zi(x), Z2(x)) = g(x)(21(x), Z1(x))g(x)(Z2(x), Z2(x))
— g()(Zi(x), Z(x))?

and [Z1, Z,]V denotes the vertical projection of [Z;, Z5] at identity
and || - || denotes the norm at identity.

Let (2, g) be a compact Riemannian manifold of sectional
curvature bounded below by 1, then the sectional curvature of

(Dens(2), WF) is non-negative.
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Monge formulation

Arnold’s point of view

WF(po, p1) = (L”E){II(%A) — (Id, 1) || 12p0) = ©x(Ap0) = p1}

(25)
The Wasserstein-
. L. . . Fisher-Rao
Under existence and smoothness of the minimizer, there exists a metric

function p € C*°(M,R) such that

(). M(x)) = expSlM (VP(X) p(x)), (26)

Equivalent to Monge-Ampere equation

With z = log(1 + p) one has

(1+|Vz[*)e** po = det(Dgp)p1 o (27)

" e(x) = expl! (t ( 'Vz> |ng§§|> '
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> The Wasserstein-
P X Fisher-Rao
metric

1
2 WF (midy, m26X2)2 =m+m
1
— 2y/mim; cos (ECIQ(XhXQ) A 7r/2) .

Proof: prove that an explicit geodesic is a critical point of the convex

functional.
Properties: positively 1-homogeneous and convex in (mz, my).
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Definition (Cost function)

A cost function is

(Q X [07 +OO[)2 — [O, +OO] The Wasserstein-
(x1,m), (x2,m) +—  c(x1, my,x2, my) Fisher-Rao

metric

The C

which is |.s.c. and positively 1-homogeneous and convex in
(mo, ml).

Example: cy(x1, my, x2, my) = Cp(my6y,, mady,) (if l.s.c.)

Definition (Semi-couplings)

Let p1, p2 € M (), the set of semi-couplings is

F(p1,p2) ==
{(71772) € (M+(M2))23 (Proj)«m1 = p1, (Proj;)«y2 = Pz} ;
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The functional is

el [ e(x Sy dn) ditey). (29
Q2 The Wasserstein-
Fisher-Rao
The new Kantorovich problem is e
Ck(po, p1) = inf Ik (70,71) - (29)

(v0,71)€M(po,p1)

Q If cis a cost function then a minimizer for Ck(po, p1) exists.

@ If c1/P is a metric on the cone, Ci/” is a metric on M., (Q).

@ If, in addition, ¢(x, 1, y,1) is continuous in the space variable
and ¢(x, 1, x,0) < co for some x, Cx weak* continuous on

M (Q)2.
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1,
—cg(x1, M, xo, m2) = my + My

4
— 2+/m1ms cos < da(x1,x) A 77/2)
T_he Wasserstein-
then L
. dmn d2
WF (p1, p2)? = inf /c2<x,7 , dy(x
(p1,p2) LN ( d’y) (v d’y) Y(x,¥),

Theorem (Dual formulation)

WF(o9, 1) = sup /¢&Mm+/¢@ﬂm
(¢, p)eC(M)? J M M

subject to ¥(x,y) € M?,

{¢u><17 Y(y) <1,
(1 ¢(x))(L — %(y)) = cos® (|x — y|/2 A m/2)




A relaxed static OT formulation

Define

The corresponding primal formulation

WF2(p1, p2) = KL(Proji v, p1) + KL(Proj2 v, p2)
- / (%, ) log(cos2(d(x, y)/2 A /2)) dx dy
QZ
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New algorithm

Scaling Algorithms for Unbalanced Transport Problems, L. Chizat,
G. Peyré, B. Schmitzer, F.-X. Vialard.

e Use of entropic regularization.

WF?(p1, p2) = KL(Proj: v, p1) + KL(Proj? v, p2)
_ / +(x, y) log(cos(d(x, y)/2 A 7/2)) dxdy + eKL(. o) .
QZ

e Alternate projection algorithm (contraction for a Hilbert type
metric).

e Applications to color transfer, Fréchet-Karcher mean
(barycenters).

e Simulations for gradient flows.
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The Riemannian submersion is given by the push forward

7 : Diff(M) — Dens,(M)
() = »«(po)

The Camassa-Holm
between (Diff(M), L2(M, M)) and (Dens,(M), W,). The vertical Bk

equation

space is
Vert, = {voy; v € Vect(M) s.t. div(pv) =0}, (30)
and the horizontal space

Hor, = {Vpoy; pe C*(M,R)} . (31)




The incompressible Euler equation

The usual Eulerian formulation of the equation:
Orv(t,x) + v(t,x) - Vv(t,x) = =Vp(t,x), t>0, xeM,
v(0,x) = w(x),
(32)

As a geodesic equation of the Riemannian submanifold SDiff(M),
a Lagrangian formulation

¢=-Vpog. (33)

and under the condition ¢ € SDiff(M).
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The Riemannian submersion for WFR

DIff(M) x C>(M, R,
L2(M,c(M))

Isotropy

subgroup of 1

(e, A) = 0 (V1)

(Dens(M), WFR) n

Figure — The same picture in our case: what is the corresponding
equation to Euler?
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trans pOFt

Recall that

Mo ({po}) = {(, ) € Diff(M) x C*(M,RY) : ¢.(\po) = po}

Francois-Xavier
Vialard

o ({ro}) = {(¢, Vdac()) € Diff(M)» C*(M,RY) : € Diff(M)}

The vertical space is e

Vert, 5 = {(v, @) o (¢, A); div(pv) = 2ap} , (34)
where (v, ) € Vect(M) x C>*(M,R). The horizontal space is

incompressible Euler
equation

1
Horioy = { (57P0) 0 (o) p e CxMB)} . (39)
The induced metric is

1
G(v,divv):/ \v|2du+7/ idivv[2de.  (36)
M 4 Jm

The HYV right-invariant metric on the group of diffeomorphisms.
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We have
inj : (Diff(M), HY) < [2(M,C(M)) (37)

The geodesic equations can be written as

The Camassa-Holm
equation as an
incompressible Euler
equation

Do +23¢=-VEPoy
Ar = Arg(@,9) = =2 rPo .

Corollary (Michor and Mumford)

The distance on Diff(M) with the right-invariant metric HPV is
non degenerate.

Segments are length minimizing in the ambient space. O




Consequences

e Smooth geodesics are length minimizing for a short enough
time under mild conditions (generalization of Brenier's proof).

e Using Gauss-Codazzi formula, it generalizes a curvature
formula by Khesin et al. obtained on Diff(5;).
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Generalisation of Brenier's proof

Theorem
Let (p(t), r(t)) be a smooth solution to the geodesic equations on the time
interval [to, t1]. If (t1 — t0)2<W,V2\UP(t)(X, ryw) < m2||\wl||? holds for all

t € [to, t1] and (x,r) € C(M) and w € T(, )C(M), then for every smooth

curve (po(t), ro(t)) € mg L({u}) satisfying (wo(t;), ro(t:)) = (e(t;), ro(t;)) for
i = 0,1 and the condition (x), one has

t1 t1
[ ienIE at< [ o )P at, (39)
to to

with equality if and only if the two paths coincide on [ty, t1].
The condition (x) is:
@ /f the sectional curvature of C(M) can assume both signs, there exists
6 > 0 such that the curve (¢o(t), ro(t)) has to belong to a
d-neighborhood of (p(t), r(t)), namely

dC(M) ((cpo(t,x), ro(t,X)), ((,Do(t,X), I‘(t,X)))) <94
for all (x, t) € M X [to, t1] where dc(py is the distance on the cone.

@ /fC(M) has non positive sectional curvature, then, for every § as above,
there exists a short enough time interval on which the geodesic will be
length minimizing.

© I/f M = S,(r) the Euclidean sphere in R of radius r < 1, the result is
valid for every path (¢, F).
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ch and
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Consequences

When M = S; and a < 2b, smooth solutions to the
Camassa-Holm equation (here given in 1D)

20,1 — BPOpocti + 33205t i — 2%y ti Oyt — BPOsueit = 0. (40)

are length minimizing for short times.
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Toward the incompressible Euler equation

Why? Liero, Mielke, Savaré derived the new metric using a
minimization problem using probability densities on the cone.

Understand Diff(M) x C>°(M,R%) as a subgroup of Diff(C(M))?

Proposition
The space of half-densities on M is a trivial principal fibre bundle
over M which can be written M x R’ once a reference density is

chosen.
The automorphism group Aut(C(M)) can be identified with
Diff(M) x C>(M,R%). One has (¢, A) : (x,r) = (¢(x), A(x)r).

Recall that ¢ € Aut(C(M)) if ¢ € Diff(C (M)) and VA € RY one
has (A - (x,r)) = X-1(x,r) where X - (x, r) = (x, Ar).
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The geodesic equation on Diff(M) x C*°(M,R% ) can be extended
to Aut(C(M)) as

D . .
E(cpv )‘r) =-VVpo (Spa )‘r) ) (41)

Where \UP(X, r) déf’ r2 P(X) The Camassa-Holm

equation as an
incompressible Euler
equation

Question

Does there exist a density [i on the cone such that
inj(Diff(M)) C SDiff3(C(M))? (answer: yes)

| \

Proof.
The measure fi = r~3drdu where p denotes the volume form on
M. O

v




Results

The solutions of the Camassa-Holm equation can be lifted to
solutions to the incompressible Euler equation on the cone for a
density which is non integrable at the cone point.

In Lagrangian coordinates, the correspondence is given by

Mo = (p, y/Jac(p)).

Case when M = S;, M(p) = v/¢'e'? then the CH equation is

Oet — 20poct u+ 3050 u — 20 uOu — 20puu =0 (42)
at@(tax) = “(t,sﬂ(ﬂ X)) :

The cone is C(M) = R?\ {0}, the density is % Leb.
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Results

A corresponding polar factorization:

Proposition

Let (¢, A) € Aut(C(M)) be an element of the automorphism group
of the half-densities bundle and py. Denote by C>(C(M)))R+
functions f : C(M) — R of the form f(x, r) = r’p(x).

There exists a couple (¢, W) € Diff(M) x (C>(C(M)))®+ such
that log(1 + p) is — log(cos?(d(x,y) A 5))-convex and

(6,2) = exp“™ (VW) o (10, v/Jac()), (43)
where (@, v/Jac(p)) is the natural lift of ¢ in Aut(C(M)).
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Diff(M) xy Ay j2(M)
L2(M,c(M))

The Camassa-Holm
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Isotropy

subgroup of 1

J[ﬂ(v- A) = pa(Wp)

(Dens(M),WFR) 1 (Dens(C(M)),W2)  ji=p@r3dr
= e TR G R

Figure — The group Aut(C(M)) = Diff(M) x C*=(M,R}) is totally
geodesic in (Diff(C(M)), L>(C(M)) and there is a Riemannian
submersion of the automorphism group of the cone endowed with the L?
metric to the space of positive densities on M endowed with the
Wasserstein-Fisher-Rao metric.




. From unbalanced
Perspectives s

the Camassa-Holm
equation

e Study the relaxation of geodesics for CH (uniqueness of the Francoie Xavier
pressure, how the angle of the cone affects the results...) Vialard

e Develop numerical approaches following Mérigot et al.
e Treat other fluid dynamic equations ?

The Camassa-Holm
equation as an
incompressible Euler
equation

Figure — CH equation after the Madelung transform
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