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A somewhat surprising result

Theorem
Solutions u(t) 2 C1(S1,R) to the Camassa-Holm equation
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are particular solutions of an incompressible Euler equation on
R2 \ {0} for a density ⇢(r , ✓) = 1

r

3 dr d✓ =
1
r

4 Leb

(

v̇ +r
v

v = �rp ,

r · (⇢v) = 0 .
(2)
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Arnold’s geometric point of view

Sur la géométrie di↵érentielle des groupes de Lie de dimension
infinie et ses applications à l’hydrodynamique des fluides parfaits,
Ann. Inst. Fourier, 1966.

Proposition
The incompressible Euler equation is the geodesic flow of the
right-invariant metric L2 on SDi↵(M).

• An intrinsic point of view by Ebin and Marsden, Groups of
di↵eomorphisms and the motion of an incompressible fluid,
Ann. of Math., 1970. Short time existence results for smooth
initial conditions.

• An extrinsic point of view by Brenier, relaxation of the
variational problem, optimal transport, polar factorization.
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Arnold’s remark continued

• Let (M, g) be a Riemannian manifold without boundary.

• Treat SDi↵(M) as an infinite dimensional Riemannian
submanifold of Di↵(M).

• Consider the metric L2 on SDi↵(M), it is right-invariant.

Proof.
Notations: ' 2 SDi↵(M), X 2 T' SDi↵(M). Since '⇤(vol) = vol,

G (')(X ,X ) =

Z

M

|X |2 dvol =
Z

M

|X � '�1|2 dvol



From unbalanced
optimal transport to
the Camassa-Holm

equation

François-Xavier
Vialard

Arnold’s point of view

Ebin-Marsden’s
approach and
Brenier’s

The Wasserstein-
Fisher-Rao
metric

The Camassa-Holm
equation as an
incompressible Euler
equation

Right-invariant metric on a Lie group

Definition (Right-invariant metric)

Let g1, g2 2 G be two group elements, the distance between g1
and g2 can be defined by:

d2(g1, g2) = inf
g(t)

⇢

Z 1

0

kv(t)k2g dt |g(0) = g0 and g(1) = g1

�

where @
t

g(t)g(t)�1 = v(t) 2 g, with g the Lie algebra.

Right-invariance simply means:

d2(g1g , g2g) = d(g1, g2) .

It comes from:

@
t

(g(t)g0)(g(t)g0)
�1 = @

t

g(t)g0g
�1
0 g(t)�1 = @

t

g(t)g(t)�1 .
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Euler-Arnold-Poincaré equation

Compute the Euler-Lagrange equation of the distance functional:

@L

@g
� d

dt

@L

@ġ
= 0

In the case of
R 1

0
L(g , ġ)dt =

R 1

0
kuk2dt,

Euler-Poincaré-Arnold equation
(

ġ = u � g
u̇ + ad⇤

u

u = 0
(3)

where ad⇤
u

is the (metric) adjoint of ad
u

v = [v , u].

Proof.

Compute variations of v(t) in terms of u(t) = �g(t)g(t)�1. Find
that admissible variations on g can be written as:
�v(t) = u̇ � ad

v

u for any u vanishing at 0 and 1.
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Euler-Arnold-Poincaré equation

Consider the Hilbert scalar product on vector fields on Rd

hu, ui = hu, Lui
L

2 . Denoting m = Lu,

@
t

m + Dm.u + DuT .m + div(u)m = 0 . (4)

For example, the L2 metric, L = Id gives:

@
t

u + Du.u + DuT .u + div(u)u = 0 . (5)

On the group of volume preserving di↵eomorphisms of (M, µ) with
the L2 metric:
Euler’s equation for ideal fluid where div(u) = 0

@
t

u +r
u

u = �rp ,

(use div(u) = 0 and write the term DuT .u as a gradient as
1
2rhu, ui)
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Fluid dynamics examples of Euler-Arnold
equations

• Incompressible Euler equation.

• Korteweg-de-Vries equation.

• Camassa-Holm equation 1981/1993. An integrable shallow
water equation with peaked solitons

Consider Di↵(S1) endowed with the H1 right-invariant metric
kvk2

L

2 + 1
4k@xvk

2
L

2 . One has

(

@
t

u � 1
4@txxu u + 3@

x

u u � 1
2@xxu @xu � 1

4@xxxu u = 0

@
t

'(t, x) = u(t,'(t, x)) .
(6)

• Model for waves in shallow water.

• Completely integrable system (bi-Hamiltonian).

• Exhibits particular solutions named as peakons. (geodesics as
collective Hamiltonian).

• Blow-up of solutions which gives a model for wave breaking.
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Ebin-Marsden analytical framework

Rewrite the metric in Lagrangian coordinates ' and a tangent
vector X' and realize that it is smooth...
• The right-invariant Hdiv metric:

G'(X',X') =

Z

M

a2|X' � '�1|2 + b2 div(X' � '�1)2 dµ . (7)

can be written

G'(X',X') =

Z

M

a2|X'|2 Jac(') + b2
�

Tr(DX' · [D']�1)
�2
Jac(') dµ .

Smooth metric on an infinite dimensional Riemannian manifold.
Consequences:

• Geodesic equations is a simple ODE (No need for a
Riemannian connection)

• Gauss lemma on Hs for s > d/2 + 2

• Geodesics are minimizing within Hs topology.
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The case of incompressible Euler

Need to deal with the projection on SDi↵(M)...
Geodesic equation on SDi↵(M) as a submanifold of Di↵(M):

'̈ = �rp � ' . (8)

where �rp = A(', '̇) is a smooth function of ', '̇.
More explicitely,

A(', '̇) = (r�)�1
' [div,r

v

]''̇ . (9)

where, if L is a di↵erential operator on functions,

L'(f ) := L(f � '�1) � ' . (10)

If '(t) is a smooth curve in Hs s.t. '̇ = w � ', then
d
ds L' = [L',rw

].
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About Brenier’s approach to incompressible Euler

Variational approach to geodesics on SDi↵(M) isometrically
embedded in a Hilbert space.

• Smooth solutions of Euler are minimizing (for t 2 [0, 1]) if
r2p is bounded in L1 (by ⇡).

• In general, relaxation of the boundary value problem as
(infinite) multimarginal optimal transport.

• Polar factorization as a nonlinear extension of the pressure.

• Benamou-Brenier’s dynamic formulation.
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A geometric picture: Otto’s Riemannian
submersion

SDi↵(M): Isotropy

subgroup of µ

(Dens
p

(M),W2) µ

Di↵(M)

L

2(M,M)

⇡(') = '⇤(µ)

Figure – A Riemannian submersion: SDi↵(M) as a Riemannian
submanifold of L2(M,M): Incompressible Euler equation on SDi↵(M)
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Reminders: Riemannian submersion
Let (M, g

M

) and (N, g
N

) be two Riemannian manifolds and
f : M 7! N a di↵erentiable mapping.

Definition
The map f is a Riemannian submersion if f is a submersion and
for any x 2 M, the map df

x

: Ker(df
x

)? 7! T
f (x)N is an isometry.

• Vert
f (x) := Ker(df (x)) is the vertical space.

• Hor
f (x)

def.
= Ker(df (x))? is the horizontal space.

• Geodesics on N can be lifted ”horizontally”to geodesics on M.

Theorem (O’Neill’s formula)

Let f be a Riemannian submersion and X ,Y be two orthonormal
vector fields on M with horizontal lifts X̃ and Ỹ , then

K
N

(X ,Y ) = K
M

(X̃ , Ỹ ) +
3

4
k vert([X̃ , Ỹ ])k2

M

, (11)

where K denotes the sectional curvature and vert the orthogonal
projection on the vertical space.
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A pre-formulation of the polar factorization

SDi↵(M)

Id

g1

(Dens
p

(M),W2) µ

Di↵(M)

L

2(M,M)

⇡(') = '⇤(µ)

Figure – A Riemannian submersion: SDi↵(M) as a Riemannian
submanifold of L2(M,M): Incompressible Euler equation on SDi↵(M)

SDi↵(M)

Id

g1

(Dens
p

(M),W2) µ ⇡(g1) = µ1

Di↵(M)

L

2(M,M)

⇡(') = '⇤(µ)

Figure – A pre polar factorization

SDi↵(M)

Id

g1

g0

(Dens
p

(M),W2) µ ⇡(g1) = µ1

Di↵(M)

L

2(M,M)

⇡(') = '⇤(µ)

Figure – Polar factorization: g0 = argmin
g2SDi↵ kg1 � gk

L

2
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Reminders: Static Formulation

Monge formulation (1781)

Let µ, ⌫ 2 P+(M),

Minimize

Z

⌦

c(x ,'(x))dµ (12)

among the map s.t. '⇤(µ) = ⌫.

1 ill posed problem, the constraint may not be satisfied.
2 the constraint can hardly be made weakly closed.

! Relaxation of the Monge problem.
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Reminders: Static Formulation

Kantorovich formulation (1942)

Let µ, ⌫ 2 P+(⌦), define D by

D(µ, ⌫)= inf
�2P(⌦2)

⇢

Z

⌦2

c(x , y) d�(x , y) : ⇡1
⇤� = µ and ⇡2

⇤� = ⌫

�

1 Existence result: c lower semi-continuous and bounded from
below.

2 Also valid in Polish spaces.
3 If c(x , y) = 1

p

|x � y |p, D1/p is the Wasserstein distance
denoted by W

p

.

Linear optimization problem and associated numerical methods.
Recently introduced, entropic regularization. (C. Léonard, M.
Cuturi)
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Reminders: Dynamic formulation
(Benamou-Brenier)
For geodesic costs, for instance c(x , y) = 1

2 |x � y |2

inf E(v) = 1

2

Z 1

0

Z

⌦

|v(x)|2⇢(x) dx dt , (13)

s.t.
(

⇢̇+r · (v⇢) = 0

⇢(0) = µ0 and ⇢(1) = µ1 .
(14)

Convex reformulation: Change of variable: momentum m = ⇢v ,

inf E(m) =
1

2

Z 1

0

Z

⌦

|m(x)|2

⇢(x)
dx dt , (15)

s.t.
(

⇢̇+r ·m = 0

⇢(0) = µ0 and ⇢(1) = µ1 .
(16)

where (⇢,m) 2 M([0, 1]⇥ ⌦,R⇥ Rd).

Existence of minimizers: Fenchel-Rockafellar.
Numerics: First-order splitting algorithm: Douglas-Rachford.
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Starting point and initial motivation

• Extend the Wasserstein L2 distance to positive Radon
measures.

• Develop associated numerical algorithms.

Possible applications: Imaging, machine learning, gradient flows, ...
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Bibliography before (june) 2015

Taking into account locally the change of mass:

Two directions: Static and dynamic.

• Static, Partial Optimal Transport [FG10]

• Static, Hanin 1992, Benamou and Brenier 2001.

• Dynamic, Numerics, Metamorphoses [MRSS15]

• Dynamic, Numerics, Growth model [LM13]

• Dynamic and static, [PR13, PR14]

• . . .



From unbalanced
optimal transport to
the Camassa-Holm

equation

François-Xavier
Vialard

Arnold’s point of view

Ebin-Marsden’s
approach and
Brenier’s

The Wasserstein-
Fisher-Rao
metric

The Camassa-Holm
equation as an
incompressible Euler
equation

Bibliography after june 2015

More than 300 pages on the same model!
Starting point: Dynamic formulation

• Dynamic, Numerics, Imaging [CSPV15] (40 pages)

• Dynamic, Geometry and Static [CSPV15] (40 pages)

• Dynamic, Gradient flow [KMV15] (50 pages)

• Dynamic, Gradient flow [LMS15b] (40 pages)

• Static and more [LMS15a] (100 pages)

• Static relaxation of OT, Numerics [FZM+15] (20 pages)
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An extension of Benamou-Brenier formulation

Add a source term in the constraint: (weak sense)

⇢̇ = �r · (⇢v) + ↵⇢ ,

where ↵ can be understood as the growth rate.

WF(m,↵)2 =
1

2

Z 1

0

Z

⌦

|v(x , t)|2⇢(x , t) dx dt

+
�2

2

Z 1

0

Z

⌦

↵(x , t)2⇢(x , t) dx dt .

Remark: very natural and not studied before...
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Convex reformulation

Add a source term in the constraint: (weak sense)

⇢̇ = �r ·m + µ .

WF(m, µ)2 =
1

2

Z 1

0

Z

⌦

|m(x , t)|2

⇢(x , t)
dx dt +

�2

2

Z 1

0

Z

⌦

µ(x , t)2

⇢(x , t)
dx dt .

• Fisher-Rao metric: Hessian of the Boltzmann entropy/
Kullback-Leibler divergence and reparametrization invariant.
Wasserstein metric on the space of variances in 1D.

• Convex and 1-homogeneous: convex analysis (existence and
more)

• Numerics: First-order splitting algorithm: Douglas-Rachford.

• Code available at
https://github.com/lchizat/optimal-transport/

https://github.com/lchizat/optimal-transport/
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A general framework

Definition (Infinitesimal cost)

An infinitesimal cost is f : ⌦⇥ R⇥ Rd ⇥ R ! R+ [ {+1} such
that for all x 2 ⌦, f (x , ·, ·, ·) is convex, positively 1-homogeneous,
lower semicontinuous and satisfies

f (x , ⇢,m, µ)

8

>

<

>

:

= 0 if (m, µ) = (0, 0) and ⇢ � 0

> 0 if |m| or |µ| > 0

= +1 if ⇢ < 0 .

Definition (Dynamic problem)

For (⇢,m, µ) 2 M([0, 1]⇥ ⌦)1+d+1, let

J(⇢,m, µ)
def.
=

Z 1

0

Z

⌦

f (x , d⇢
d� ,

dm
d� ,

dµ
d� ) d�(t, x) (17)

The dynamic problem is, for ⇢0, ⇢1 2 M+(⌦),

C (⇢0, ⇢1)
def.
= inf

(⇢,!,⇣)2CE1
0(⇢0,⇢1)

J(⇢,!, ⇣) . (18)
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Existence of minimizers

Proposition (Fenchel-Rockafellar)

Let B(x) be the polar set of f (x , ·, ·, ·) for all x 2 ⌦ and assume it
is a lower semicontinuous set-valued function. Then the minimum
of (18) is attained and it holds

C
D

(⇢0, ⇢1) = sup
'2K

Z

⌦

'(1, ·) d⇢1 �
Z

⌦

'(0, ·) d⇢0 (19)

with K
def.
=

�

' 2 C 1([0, 1]⇥ ⌦) : (@
t

',r',') 2 B(x), 8(t, x) 2 [0, 1]⇥ ⌦
 

.

WF(x , y , z) =

8

>

<

>

:

|y |2+�2z2
2x if x > 0,

0 if (x , |y |, z) = (0, 0, 0)

+1 otherwise

and the corresponding Hamilton-Jacobi equation is

@
t

'+
1

2

✓

|r'|2 + '2

�2

◆

 0 .
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Numerical simulations
Initial and final densities: gray and blue curves.

Figure – 1st row: Standard W2, 2nd row: Non-homogeneous L2, 3rd row:
Partial OT, 4th row: Wasserstein-Fisher-Rao
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Numerical simulations

•
t = 0 t = 1t = 0.5

⇢0 ⇢1

•
t = 0 t = 1t = 0.5

⇢0 ⇢1

Figure – Geodesics between ⇢0 and ⇢1 for (1st row) Hellinger, (2nd row)
W2, (3rd row) partial OT, (4th row) WF.

An Interpolating Distance between Optimal Transport and
Fisher-Rao, L. Chizat, B. Schmitzer, G. Peyré, and F.-X. Vialard,
FoCM, 2016.
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From dynamic to static

Group action

Mass can be moved and changed: consider m(t)�
x(t).

Infinitesimal action

⇢̇ = �r · (v⇢) + µ ,
(

ẋ(t) = v(x(t))

ṁ(t) = µ(x(t))

A cone metric

WF2(x ,m) =
1

2
(m dx2 +

dm2

m
) ,
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Riemannian cone

Definition
Let (M, g) be a Riemannian manifold. The cone over (M, g) is
the Riemannian manifold (M ⇥ R⇤

+, r
2g + dr2).

• Change of variable: WF2 = 1
2 r

2g + 2 dr2.

• Non complete metric space: add the vertex M ⇥ {0}.
• The distance:

d((x1,m1), (x2,m2))
2 =

m2 +m1 � 2
p
m1m2 cos

✓

1

2
d
M

(x1, x2) ^ ⇡
◆

. (20)

• Curvature tensor: R(X̃ , e) = 0 and
R(X̃ , Ỹ )Z̃ = (R

g

(X ,Y )Z � g(Y ,Z )X + g(X ,Z )Y , 0).

• M = R then (x ,m) 7!
p
me ix/2 2 C local isometry.
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Geometry of a cone

Corollary

If (⌦, g) has sectional curvature greater than 1, then
(⌦⇥ R⇤

+,mg + 1
4m dm2) has non-negative sectional curvature.

For X ,Y two orthornormal vector fields on ⌦,

K (X̃ , Ỹ ) = (K
g

(X ,Y )� 1) (21)

where K and K
g

denote respectively the sectional curvatures of
⌦⇥ R⇤

+ and ⌦.
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Generalization of Otto’s Riemannian submersion
Idea of a left group action:

⇡ :
�

Di↵(M)n C1(M,R⇤
+)
�

⇥ Dens(M) 7! Dens(M)

⇡ ((',�), ⇢) := '⇤(�
2⇢)

Group law:

('1,�1) · ('2,�2) = ('1 � '2, (�1 � '2)�2) (22)

Theorem
Let ⇢0 2 Dens(M) and ⇡0 : Di↵(M)n C1(M,R⇤

+) 7! Dens(M)
defined by ⇡0(',�) := '⇤(�2⇢0). It is a Riemannian submersion

(Di↵(M)n C1(M,R⇤
+), L

2(M,M ⇥ R⇤
+))

⇡0�! (Dens(M),WF)

(where M ⇥ R⇤
+ is endowed with the cone metric).

O’Neill’s formula: sectional curvature of (Dens(⌦),WF).
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Horizontal lift

Proposition (Horizontal lift)

Let ⇢ 2 Denss(⌦) be a smooth density and X⇢ 2 Hs(⌦,R) be a
tangent vector at the density ⇢. The horizontal lift at (Id, 1) of X⇢
is given by ( 12r�,�) where � is the solution to the elliptic partial
di↵erential equation:

� div(⇢r�) + 2�⇢ = X⇢ . (23)

By elliptic regularity, the unique solution � belongs to Hs+1(M).
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Geometric consequence
The sectional curvature of Dens(⌦) at point ⇢ is:

K (⇢)(X1,X2) =

Z

⌦

k(x , 1)(Z1(x),Z2(x))w(Z1(x),Z2(x))⇢(x) d⌫(x)

+
3

4

�

�[Z1,Z2]
V

�

�

2
(24)

where

w(Z1(x),Z2(x)) = g(x)(Z1(x),Z1(x))g(x)(Z2(x),Z2(x))

� g(x)(Z1(x),Z2(x))
2

and [Z1,Z2]V denotes the vertical projection of [Z1,Z2] at identity
and k · k denotes the norm at identity.

Corollary

Let (⌦, g) be a compact Riemannian manifold of sectional
curvature bounded below by 1, then the sectional curvature of
(Dens(⌦),WF) is non-negative.
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Consequences
Monge formulation

WF (⇢0, ⇢1) = inf
(',�)

�

k(',�)� (Id, 1)k
L

2(⇢0) : '⇤(�
2⇢0) = ⇢1

 

(25)

Under existence and smoothness of the minimizer, there exists a
function p 2 C1(M,R) such that

('(x),�(x)) = expC(M)
x

✓

1

2
rp(x), p(x)

◆

, (26)

Equivalent to Monge-Ampère equation

With z
def.
= log(1 + p) one has

(1 + |rz |2)e2z⇢0 = det(D')⇢1 � ' (27)

and

'(x) = expM
x

✓

arctan

✓

1

2
|rz |

◆

rz(x)

|rz(x)|

◆

.
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Distance between Diracs

x

y

P1

P2

P3

1
4
WF (m1�x1 ,m2�x2)

2 = m2 +m1

� 2
p
m1m2 cos

✓
1
2
d⌦(x1, x2) ^ ⇡/2

◆
.

Proof: prove that an explicit geodesic is a critical point of the convex
functional.
Properties: positively 1-homogeneous and convex in (m1,m2).
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General Kantorovich formulation

Definition (Cost function)

A cost function is

c :
(⌦⇥ [0,+1[)2 ! [0,+1]
(x1,m1), (x2,m2) 7! c(x1,m1, x2,m2)

which is l.s.c. and positively 1-homogeneous and convex in
(m0,m1).

Example: c
d

(x1,m1, x2,m2)
def.
= C

D

(m1�x1 ,m2�x2) (if l.s.c.)

Definition (Semi-couplings)

Let ⇢1, ⇢2 2 M+(⌦), the set of semi-couplings is

�(⇢1, ⇢2) :=
n

(�1, �2) 2
�

M+(M
2)
�2
: (Proj1)⇤�1 = ⇢1, (Proj2)⇤�2 = ⇢2

o

,
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Kantorovich formulation

The functional is

J
K

(�0, �1)
def.
=

Z

⌦2

c
⇣

x , d�0
d� , y ,

d�1
d�

⌘

d�(x , y) , (28)

The new Kantorovich problem is

C
K

(⇢0, ⇢1)
def.
= inf

(�0,�1)2�(⇢0,⇢1)
J
K

(�0, �1) . (29)

1 If c is a cost function then a minimizer for C
K

(⇢0, ⇢1) exists.

2 If c1/p is a metric on the cone, C 1/p
K

is a metric on M+(⌦).
3 If, in addition, c(x , 1, y , 1) is continuous in the space variable

and c(x , 1, x , 0) < 1 for some x , C
K

weak⇤ continuous on
M+(⌦)2.
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Kantorovich formulation
Recall

1

4
c2
d

(x1,m1, x2,m2) = m2 +m1

� 2
p
m1m2 cos

✓

1

2
d⌦(x1, x2) ^ ⇡/2

◆

.

then

WF (⇢1, ⇢2)
2 = inf

(�1,�2)2�(⇢1,⇢2)

Z

M

2

c2
d

✓

(x ,
d�1
d�

), (y ,
d�2
d�

)

◆

d�(x , y) ,

Theorem (Dual formulation)

WF 2(⇢0, ⇢1) = sup
(�, )2C(M)2

Z

M

�(x) d⇢0 +

Z

M

 (y) d⇢1

subject to 8(x , y) 2 M2,

(

�(x)  1 ,  (y)  1 ,

(1� �(x))(1�  (y)) � cos2 (|x � y |/2 ^ ⇡/2)
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A relaxed static OT formulation

Define

KL(�, ⌫) =

Z

d�

d⌫
log

✓

d�

d⌫

◆

d⌫ + |⌫|� |�|

The corresponding primal formulation

WF 2(⇢1, ⇢2) = KL(Proj1⇤ �, ⇢1) + KL(Proj2⇤ �, ⇢2)

�
Z

⌦2

�(x , y) log(cos2(d(x , y)/2 ^ ⇡/2)) dx dy
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New algorithm

Scaling Algorithms for Unbalanced Transport Problems, L. Chizat,
G. Peyré, B. Schmitzer, F.-X. Vialard.

• Use of entropic regularization.

WF 2(⇢1, ⇢2) = KL(Proj1⇤ �, ⇢1) + KL(Proj2⇤ �, ⇢2)

�
Z

⌦2

�(x , y) log(cos2(d(x , y)/2 ^ ⇡/2)) dx dy + "KL(�, µ0) .

• Alternate projection algorithm (contraction for a Hilbert type
metric).

• Applications to color transfer, Fréchet-Karcher mean
(barycenters).

• Simulations for gradient flows.
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Contents

1 Arnold’s point of view

2 Ebin-Marsden’s approach and Brenier’s

3 The Wasserstein-Fisher-Rao metric

4 The Camassa-Holm equation as an incompressible Euler
equation
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The Riemannian submersion

The Riemannian submersion is given by the push forward

⇡ : Di↵(M) ! Dens
p

(M)

⇡(') = '⇤(⇢0)

between (Di↵(M), L2(M,M)) and (Dens
p

(M),W2). The vertical
space is

Vert' = {v � ' ; v 2 Vect(M) s.t. div(⇢v) = 0} , (30)

and the horizontal space

Hor' = {rp � ' ; p 2 C1(M,R)} . (31)
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The incompressible Euler equation

The usual Eulerian formulation of the equation:
8

<

:

@
t

v(t, x) + v(t, x) ·rv(t, x) = �rp(t, x), t > 0, x 2 M ,

v(0, x) = v0(x) ,
(32)

As a geodesic equation of the Riemannian submanifold SDi↵(M),
a Lagrangian formulation

�̈ = �rp � � . (33)

and under the condition � 2 SDi↵(M).
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The Riemannian submersion for WFR

Isotropy

subgroup of µ

(Dens(M),WFR) µ

Di↵(M) n C

1(M,R⇤
+)

L

2(M, C(M))

⇡(',�) = '⇤(�2µ)

Figure – The same picture in our case: what is the corresponding
equation to Euler?
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The isotropy subgroup for unbalanced optimal
transport
Recall that

⇡�1
0 ({⇢0}) = {(',�) 2 Di↵(M)n C1(M,R⇤

+) : '⇤(�
2⇢0) = ⇢0}

⇡�1
0 ({⇢0}) = {(',

p

Jac(')) 2 Di↵(M)nC1(M,R⇤
+) : ' 2 Di↵(M)} .

The vertical space is

Vert(',�) = {(v ,↵) � (',�) ; div(⇢v) = 2↵⇢} , (34)

where (v ,↵) 2 Vect(M)⇥ C1(M,R). The horizontal space is

Hor(',�) =

⇢✓

1

2
rp, p

◆

� (',�) ; p 2 C1(M,R)
�

. (35)

The induced metric is

G (v , div v) =

Z

M

|v |2 dµ+
1

4

Z

M

| div v |2 dµ . (36)

The Hdiv right-invariant metric on the group of di↵eomorphisms.
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An isometric embedding

We have
inj : (Di↵(M),Hdiv) ,! L2(M, C(M)) (37)

The geodesic equations can be written as
(

D

Dt

'̇+ 2 �̇� '̇ = �rgP � '
�̈r � �rg('̇, '̇) = �2�rP � ' .

(38)

Corollary (Michor and Mumford)

The distance on Di↵(M) with the right-invariant metric HDiv is
non degenerate.

Proof.
Segments are length minimizing in the ambient space.
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Consequences

• Smooth geodesics are length minimizing for a short enough
time under mild conditions (generalization of Brenier’s proof).

• Using Gauss-Codazzi formula, it generalizes a curvature
formula by Khesin et al. obtained on Di↵(S1).
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Generalisation of Brenier’s proof
Theorem
Let ('(t), r(t)) be a smooth solution to the geodesic equations on the time

interval [t0, t1]. If (t1 � t0)2hw ,r2 
P(t)(x , r)wi < ⇡2kwk2 holds for all

t 2 [t0, t1] and (x , r) 2 C(M) and w 2 T(x,r)C(M), then for every smooth

curve ('0(t), r0(t)) 2 ⇡�1
0 ({µ}) satisfying ('0(t

i

), r0(t
i

)) = ('(t
i

), r0(t
i

)) for

i = 0, 1 and the condition (⇤), one has

Z
t1

t0

k('̇, ṙ)k2 dt 
Z

t1

t0

k('̇0, ṙ0)k2 dt , (39)

with equality if and only if the two paths coincide on [t0, t1].
The condition (⇤) is:

1
If the sectional curvature of C(M) can assume both signs, there exists

� > 0 such that the curve ('0(t), r0(t)) has to belong to a

�-neighborhood of ('(t), r(t)), namely

dC(M) (('0(t, x), r0(t, x)), ('0(t, x), r(t, x))))  �

for all (x , t) 2 M ⇥ [t0, t1] where dC(M) is the distance on the cone.

2
If C(M) has non positive sectional curvature, then, for every � as above,

there exists a short enough time interval on which the geodesic will be

length minimizing.

3
If M = S

n

(r) the Euclidean sphere in Rn+1
of radius r  1, the result is

valid for every path ('̇, ṙ).
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Consequences

Corollary
When M = S1 and a  2b, smooth solutions to the
Camassa-Holm equation (here given in 1D)

a2@
t

u � b2@
txx

u + 3a2@
x

u u � 2b2@
xx

u @
x

u � b2@
xxx

u u = 0 . (40)

are length minimizing for short times.
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Toward the incompressible Euler equation

Why? Liero, Mielke, Savaré derived the new metric using a
minimization problem using probability densities on the cone.

Question
Understand Di↵(M)n C1(M,R⇤

+) as a subgroup of Di↵(C(M))?

Proposition
The space of half-densities on M is a trivial principal fibre bundle
over M which can be written M ⇥ R⇤

+ once a reference density is
chosen.
The automorphism group Aut(C(M)) can be identified with
Di↵(M)n C1(M,R⇤

+). One has (',�) : (x , r) 7! ('(x),�(x)r).

Recall that  2 Aut(C(M)) if  2 Di↵(C(M)) and 8� 2 R⇤
+ one

has  (� · (x , r)) = � ·  (x , r) where � · (x , r) def.
= (x ,�r).
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CH as an incompressible Euler equation

The geodesic equation on Di↵(M)n C1(M,R⇤
+) can be extended

to Aut(C(M)) as

D

Dt
('̇, �̇r) = �r 

P

� (',�r) , (41)

where  
P

(x , r)
def.
= r2P(x).

Question
Does there exist a density µ̃ on the cone such that
inj(Di↵(M)) ⇢ SDi↵µ̃(C(M))? (answer: yes)

Proof.

The measure µ̃
def.
= r�3 dr dµ where µ denotes the volume form on

M.
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Results

Theorem
The solutions of the Camassa-Holm equation can be lifted to
solutions to the incompressible Euler equation on the cone for a
density which is non integrable at the cone point.
In Lagrangian coordinates, the correspondence is given by
M : ' 7! (',

p

Jac(')).

Case when M = S1, M(') =
p
'0e i' then the CH equation is

(

@
t

u � 1
4@txxu u + 3@

x

u u � 1
2@xxu @xu � 1

4@xxxu u = 0

@
t

'(t, x) = u(t,'(t, x)) .
(42)

The cone is C(M) = R2 \ {0}, the density is 1
r

4 Leb.
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Results

A corresponding polar factorization:

Proposition

Let (�,�) 2 Aut(C(M)) be an element of the automorphism group
of the half-densities bundle and ⇢0. Denote by C1(C(M)))R

⇤
+

functions f : C(M) 7! R of the form f (x , r) = r2p(x).
There exists a couple (', ) 2 Di↵(M)⇥ (C1(C(M)))R

⇤
+ such

that log(1 + p) is � log(cos2(d(x , y) ^ ⇡
2 ))-convex and

(�,�) = expC(M)(r ) � (',
p

Jac(')) , (43)

where (',
p

Jac(')) is the natural lift of ' in Aut(C(M)).
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A new geometric picture

Isotropy

subgroup of µ

(Dens(M),WFR) µ

Di↵(M) n ⇤1/2(M)

L

2(M, C(M))

⇡(',�) = '⇤(�2µ)
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Figure – The group Aut(C(M)) = Di↵(M)n C

1(M,R⇤
+) is totally

geodesic in (Di↵(C(M)), L2(C(M)) and there is a Riemannian
submersion of the automorphism group of the cone endowed with the L

2

metric to the space of positive densities on M endowed with the
Wasserstein-Fisher-Rao metric.
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Perspectives
• Study the relaxation of geodesics for CH (uniqueness of the
pressure, how the angle of the cone a↵ects the results...)

• Develop numerical approaches following Mérigot et al.

• Treat other fluid dynamic equations ?

Figure – CH equation after the Madelung transform
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