Magnetic propel artificial micro-swimmers

Journées MokaTAO Paris

Laetitia Giraldi McTAO team INRIA Sophia Antipolis Méditerranée

3 octobre 2016

Microswimming

- Displacement of micro-swimmer
- Well establish domain
- Applications to Biology / Robotic
- Emerging of artificial mechanisms : How to obtain a micro-robot self-propelled and controlled?

Spintec Lab (2014)

Natural world

Definition Swimming is the ability of moving in or under water with suitable body deformation.

Numerous organisms are able to swim at this scale.

Magnetic swimming microrobots

- Biomimetics
- Magnetic field for deforming the micro-robot body

The controllability of such devices?

Content

1. Modeling

2. Numerical results

3. Controllability result \hookrightarrow Return method

Modeling : main ingredients

• Hydrodynamics : interaction between the fluid and the body.

 Elasticity (el) : take into account the rigidity of the micro-robot structure.

Magnetism (mag) : action of the magnetic field on the charged body swimmer.

Rescaling

The fluid is governed by the Navier-Stokes equation

$$Re\left(\tau \frac{\partial \mathbf{u}_*}{\partial t_*} + \mathbf{u}_* \cdot \nabla_*\right) \mathbf{u}_* - \Delta_* \mathbf{u}_* + \nabla_* p_* = \frac{Re}{F} \mathbf{g}_*, \quad \text{div } \mathbf{u} = 0 \quad \text{in } \mathcal{F}.\,,$$

where, $Re = \frac{\rho_f UL}{\mu}$, $F = \frac{U^2}{LG}$, $\tau = \frac{TU}{L}$. with the boundary condition,

$$\mathbf{u} = \dot{\mathbf{q}} + \mathbf{u}_d(\mathbf{q}, \mathsf{mag,el}) \quad \mathrm{on} \ \partial \mathcal{N},$$

with the Newton law

$$\begin{cases} \int_{\partial \mathcal{N}} \boldsymbol{\sigma}(\mathbf{u}_{*}, p_{*}) \cdot \mathbf{n} \, \mathrm{d}s = & -\frac{\rho_{m}}{\rho_{f}} Re\left(\frac{1}{F}\mathbf{g}_{*} + \frac{1}{\tau^{2}}\ddot{\mathbf{q}}_{*}\right) \\ +\mathbf{F}_{\mathrm{mag}} + \mathbf{F}_{\mathrm{el}}, \\ \int_{\partial \mathcal{N}} \boldsymbol{\sigma}(\mathbf{u}_{*}, p_{*}) \cdot \mathbf{n} \times (\mathbf{x} - \mathbf{q}) \, \mathrm{d}s = & -\frac{\rho_{m}}{\rho_{f}} Re\left(\frac{1}{F}\mathbf{q}_{*} \times \mathbf{g}_{*} + \frac{1}{\tau^{2}}\dot{\Omega}_{*}\right) \\ +\mathbf{T}_{\mathrm{mag}} + \mathbf{T}_{\mathrm{el}}, \end{cases}$$

At micro scale $Re := rac{ ho_f {\sf UL}}{\mu} \sim 10^{-6}$

The fluid is governed by the Navier-Stokes equation

$$\frac{Re\left(\tau \frac{\partial \mathbf{u}_{*}}{\partial t_{*}} + \mathbf{u}_{*} \cdot \nabla_{*}\right)\mathbf{u}_{*}}{\partial t_{*}} - \Delta_{*}\mathbf{u}_{*} + \nabla_{*}p_{*} = \frac{Re}{\mathcal{F}}\mathbf{g}_{*}, \quad \text{div } \mathbf{u} = 0 \quad \text{in } \mathcal{F}.,$$

where, $Re = \frac{\rho_f UL}{\mu}$, $F = \frac{U^2}{LG}$, $\tau = \frac{TU}{L}$. with the boundary condition,

$$\mathbf{u} = \dot{\mathbf{q}} + \mathbf{u}_d(\mathbf{q}, \text{mag,el}) \quad \text{on } \partial \mathcal{N},$$

with the Newton law

$$\begin{cases} \int_{\partial \mathcal{N}} \boldsymbol{\sigma}(\mathbf{u}_{*}, p_{*}) \cdot \mathbf{n} \, \mathrm{d}s = & -\frac{\rho_{m}}{\rho_{F}} \operatorname{Re}\left(\frac{1}{F} \mathbf{g}_{*} + \frac{1}{\tau^{2}} \ddot{\mathbf{q}}_{*}\right) \\ +\mathbf{F}_{mag} + \mathbf{F}_{el}, \\ \int_{\partial \mathcal{N}} \boldsymbol{\sigma}(\mathbf{u}_{*}, p_{*}) \cdot \mathbf{n} \times (\mathbf{x} - \mathbf{q}) \, \mathrm{d}s = & -\frac{\rho_{m}}{\rho_{f}} \operatorname{Re}\left(\frac{1}{F} \mathbf{q}_{*} \times \mathbf{g}_{*} + \frac{1}{\tau^{2}} \dot{\Omega}_{*}\right) \\ +\mathbf{T}_{mag} + \mathbf{T}_{el}, \end{cases}$$

To sum up

A swimmer is parametrized by

- $\mathbf{q} \in \mathbb{R}^3 \times SO_3$: position and orientation.
- $\boldsymbol{\xi} \in \mathbb{R}^k$: shape.

A particular micro-robots

\hookrightarrow Constructed by CEA laboratory (Spintec) in Grenoble

1. Hydrodynamics : approximation

Resistive Force Theory

If a segment has a given speed at its extremities, noted $\bm{v},$ then the associated distribution of hydrodynamic forces, called $\bm{F},$ is given by

$$\mathbf{F} = d_{\parallel}(\mathbf{v}.\mathbf{e}_{\parallel})\mathbf{e}_{\parallel} + d_{\perp}(\mathbf{v}.\mathbf{e}_{\perp})\mathbf{e}_{\perp}$$

J. Gray and J. Hancock

The propulsion of sea-urchin spermatozoa, Journal of Experimental Biology, 1955.

2. Rigidity of the structure : discrete beam theory

The rigidity of the structure is given by an elastic torque compute on each extremities of the segment, called x_i , as

$$\mathbf{T}_{i,\mathbf{x}_i}^{el} = \kappa(\xi_{i+1} - \xi_i)\mathbf{e}_z$$

where,

 κ : the spring constant.

 \hookrightarrow This torque tends to align all of the segments.

3. Magnetism

Each segment is magnetized and it experiences a magnetic torque due to the external field denoted by ${\bf M}$

$$\mathsf{T}^m_i = m_i(\mathbf{e}_{i,\parallel} imes \mathsf{M})$$

where,

- m_i : the (total) magnetization of the *i*-th segment
- $\boldsymbol{\mathsf{M}}$: the external magnetic field

Equations of motion

- 3 unknowns corresponding to the position and the orientation of the swimmer
- ▶ (N-1) unknowns corresponding to the shape of the swimmer

Newton law \rightarrow 3 equations.

The balance of the torque component of each subsystem, we get an invertible system of $N\!+\!2$ equations

$$\left(\begin{array}{l} \mathbf{F} = \sum_{i=1}^{N} \mathbf{F}_{i}^{h} = 0, \\ \mathbf{e}_{z} \cdot \sum_{i=1}^{N} \left(\mathbf{T}_{i,\mathbf{x}_{1}}^{h} + \mathbf{T}_{i}^{m} \right) = 0, \\ \mathbf{e}_{z} \cdot \sum_{i=2}^{N} \left(\mathbf{T}_{i,\mathbf{x}_{2}}^{h} + \mathbf{T}_{i}^{m} \right) = -\kappa(\xi_{2} - \theta), \\ \vdots \\ \mathbf{e}_{z} \cdot \sum_{i=k}^{N} \left(\mathbf{T}_{i,\mathbf{x}_{k}}^{h} + \mathbf{T}_{i}^{m} \right) = -\kappa(\xi_{k} - \xi_{k-1}), \\ \vdots \\ \mathbf{e}_{z} \cdot \left(\mathbf{T}_{N,\mathbf{x}_{N}}^{h} + \mathbf{T}_{N}^{m} \right) = -\kappa(\xi_{N} - \xi_{N-1}). \end{array}$$

Dynamics

The dynamics of the micro-robot is governed by an ODE linear with respect to the external magnetic field (i.e., control function $\mathbf{M} = (M_x, M_y)$) with a drift term,

$$\begin{pmatrix} \dot{\mathbf{q}} \\ \dot{\boldsymbol{\xi}} \end{pmatrix} = \underbrace{\mathbf{F}_{0}(\boldsymbol{\theta}, \boldsymbol{\xi})}_{\text{Restoring force}} + \mathbf{F}_{1}(\boldsymbol{\theta}, \boldsymbol{\xi}) M_{x}(t) + \mathbf{F}_{2}(\boldsymbol{\theta}, \boldsymbol{\xi}) M_{y}(t) ,$$

Equilibrium states : : $\{(x, y, 0, 0, \cdots, 0\}$

Dynamics

The dynamics of the micro-robot is governed by an ODE linear with respect to the external magnetic field (i.e., control function $\mathbf{M} = (M_x, M_y)$) with a drift term,

$$\begin{pmatrix} \dot{\mathbf{q}} \\ \dot{\boldsymbol{\xi}} \end{pmatrix} = \underbrace{\mathbf{F}_{0}(\boldsymbol{\theta}, \boldsymbol{\xi})}_{\text{Restoring force}} + \mathbf{F}_{1}(\boldsymbol{\theta}, \boldsymbol{\xi}) M_{x}(t) + \mathbf{F}_{2}(\boldsymbol{\theta}, \boldsymbol{\xi}) M_{y}(t) ,$$

Equilibrium states : : $\{(x, y, 0, 0, \cdots, 0\}$

Questions : Is it possible to control the swimmer by acting on the magnetic field (M_x, M_y) ?

Numerical answer

By prescribing the magnetic sinusoidal field such as $(M_x, M_y \sin(\omega t))$ we get

Numerical simulations

By prescribing now

$$\mathbf{M} = M_{x}\mathbf{e}_{ heta(t)} + M_{y}\sin(\omega t)\mathbf{e}_{ heta(t)}^{\perp}$$

with θ as

$$heta(t) = rac{\pi}{4} \left(1 + anh\left(30 \left(rac{t}{{\mathcal{T}_{\mathsf{max}}}} - rac{1}{2}
ight)
ight)
ight) \,.$$

the swimmer navigates inside a narrow pipe (length are in μ m.).

Numerical simulations

By prescribing

$$\mathbf{M} = M_{x}\mathbf{e}_{ heta(t)} + M_{y}\sin(\omega t)\mathbf{e}_{ heta(t)}^{\perp}$$

with θ as

$$\theta(t) = 2\pi t / T_{\max} \,,$$

the swimmer "makes a circle"

Negative answer

Definition [Small Time Locally Controllable (STLC)]

For all T > 0, there exists $\eta > 0$ such that for all initial and final states η -closed to the equilibrium point, we could control the system from one to the other state by using control functions bounded by T.

 STLC : The system is controllable closed to the equilibrium state with "small" control function

Negative answer

Definition [Small Time Locally Controllable (STLC)]

For all T > 0, there exists $\eta > 0$ such that for all initial and final states η -closed to the equilibrium point, we could control the system from one to the other state by using control functions bounded by T.

 STLC : The system is controllable closed to the equilibrium state with "small" control function

Theorem [L.G, P. Lissy, C. Moreau, J.-B. Pomet, 2016] The 2-link (resp. 3-link) magnetized swimmer is not STLC.

Ideas of the proof

- Main idea : we prove that small control do not allow the swimmer to follow small closed-loop.
- \hookrightarrow An asymptotic expansion leads to obtain a new parameter ζ (as linear combination of the states) such that

$$orall \gamma$$
 close loop, $\int_{\gamma} \zeta > 0$

whereas this integral should vanish.

Controllability result

Definition : "weak" small time local controllability

 \forall equilibrium points, \forall time T > 0, \exists a neighborhood \mathcal{V} , such that any couples $((\mathbf{q}_i, \boldsymbol{\xi}_i), (\mathbf{q}_f, \boldsymbol{\xi}_f)) \in \mathcal{V}^2$, \exists a bounded control **M** associated with the solution of the swimmer dynamics which starts at $(\mathbf{q}_i, \boldsymbol{\xi}_i)$ and ends at time T at $(\mathbf{q}_f, \boldsymbol{\xi}_f)$.

Theorem [L.G, J.-B. Pomet, IEEE TAC, 2016]

A swimmer with 1-shape-parameter is "weak" small time locally controllable.

Remarks

The swimmer with 1-shape-parameter

The bound of the control functions depends on magnetization and bending stiffness of the swimmer

$$||M||_{\infty} < 2 \kappa \left| \frac{m_2 + m_1}{m_2 m_1} \right| + |\mathcal{V}| ,$$

Difficulties :

- ► Local controllability at an equilibrium point does not hold.
 → the linearized test using the Kalmann rank condition

Difficulties :

- ► Local controllability at an equilibrium point does not hold.
 → the linearized test using the Kalmann rank condition

Difficulties :

- ► Local controllability at an equilibrium point does not hold.
 → the linearized test using the Kalmann rank condition

 \hookrightarrow The proof is based on the "return method" [J.-M. Coron, Math. Control Signals Syst., 1992]

Difficulties :

- ► Local controllability at an equilibrium point does not hold.
 → the linearized test using the Kalmann rank condition
- \hookrightarrow The proof is based on the "return method" [J.-M. Coron, Math. Control Signals Syst., 1992]
 - Construct a return trajectory
 - Ensure that the linearized is controllable along a part of it
 - The end-point mapping is a submersion

- $\hookrightarrow \mathsf{Construct} \text{ a return trajectory}:$
 - We choose any control M_x and M_y between $[0, \frac{T}{2}]$
 - "Turn back" with the same path :

$$\dot{\mathbf{z}}(t) = \dot{\mathbf{z}}(T-t), \quad \forall t \in [\frac{T}{2}, T],$$

where $\mathbf{z} = (\mathbf{q}, \xi)$. \hookrightarrow gives 2 equations with 2 unknowns M_x and M_y .

• **M** which solved the system is bounded.

The method cannot be generalized if the number of shape parameters increase.

When the shape parameters increase

To overcome the difficulties due to the large number of shape parameters : \hookrightarrow Local Partial Controllability Concept ([M. Duprez, thesis, 2015])

- \hookrightarrow controlling *only* the position of the swimmer (x, y)
- \hookrightarrow leads to get a system with 2 equations and 2 unknowns,

$$\underbrace{\begin{pmatrix} F_{1x}(\boldsymbol{\xi}) & F_{2x}(\boldsymbol{\xi}) \\ F_{1y}(\boldsymbol{\xi}) & F_{2y}(\boldsymbol{\xi}) \end{pmatrix}}_{\mathcal{F}(\boldsymbol{\xi})} \begin{pmatrix} M_x \\ M_y \end{pmatrix} = G(\boldsymbol{\xi}, \theta).$$

Problem : $\mathcal{F}(\boldsymbol{\xi})$ is not invertible around the straight position (the equilibrium one).

For a twist magnetized swimmer

For a given $\xi_3^0 \in [0, \frac{\pi}{2}]$, the equilibrium states : : { $(x, y, 0, 0, \xi_3^0)$ }

A bended 3-link swimmer at rest

Theorem [L.G, P. Lissy, C. Moreau, J.-B. Pomet, 2016] A bended 3-link magnetized swimmer is STLC around the equilibrium states.

Proof : Kalmann

And, we track locally the swimmer along a prescribed trajectory

Numerical results : A straight line

Numerical results : A trajectory

Numerical results : Obstructions

Perspectives

- Global controllability Tracking of trajectories?
- Optimal control
- When the shape variables increase?

References

- F. Alouges, A. DeSimone, L. G and M. Zoppello. Can magnetic multilayers propel artificial micro-swimmers mimicking sperm cells?. Soft Robotics, 2015.
- [2] L. G., J.-B. Pomet, *Local controllability of the two-link magneto-elastic swimmer.*, IEEE TAC, 2015.
- [3] L. G., P. Lissy, C. Moreau, J.-B. Pomet, *Controllability of a bent 3-link magnetic microswimmer .*, Preprint submitted, 2016.
- [4] L. G., P. Lissy, C. Moreau, J.-B. Pomet, *Remarks on a 2-link magnetized microswimmer*, working paper, 2016.

Thank you for your attention.