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Microswimming

I Displacement of micro-swimmer
I Well establish domain
I Applications to Biology / Robotic
I Emerging of artificial mechanisms :

How to obtain a micro-robot self-propelled and controlled ?
Motivation

Nanorobot nageur: ESPCI (2005)
Micromoteur Monash University (Australia 2008)

Conception de micro-robots nageurs : diagnostique,
microchirurgie non invasive, dépôt de médicament, réparation
d’ADN, etc.)

F. Alouges

ESPCI (2005)

Microswimming

ESPCI (2005), Monash University (2008), SPINTEC (2013)

Well established domain1

Many applications to biology/medecine
Emerging artificial mechanisms

1see review paper by Lauga & Powers

Spintec Lab (2014)
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Natural world

Definition
Swimming is the ability of moving in or under water with suitable
body deformation.

I Numerous organisms are able to swim at this scale.
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Magnetic swimming microrobots

I Biomimetics
I Magnetic field for deforming the micro-robot body

decades, in particular the motion of helical agella. An obvious
way to generate helical propulsion would be to rotate a rigid
helix with a rotary motor. It was, however, assumed that this
type of mechanism did not exist as it was not observed anywhere
else in nature. In 1966 Doetsch entertained the idea that a rigid
helix could be rotated through a basal motor but abandoned
this notion only three years later.10,11 In 1971, in a paper
modeling helical propulsion, the author still claimed that
rotating joints do not exist in nature,12 though only two years
later, in 1973, Berg was able to prove that E. coli bacteria use
molecular motors to rotate their helical agella.11

Helical agella are not the only means of motion generation
of microswimmers. A different type of propeller is the exible
agellum beating in a planar waveform, as for example, in the
case of spermatozoa. Another common method is to use cilia,
which are generally shorter, hair-like structures covering the
outside of the cell body, for propulsion. The mechanism for
motion generation for all of these slender tails is based on the
drag imbalance on a cylindrical element in combination with a
non-reciprocal motion. In the low Re number regime, the drag
on a slender cylinder for motion perpendicular to its axis is
approximately twice the drag when moving along its axis. When
a slender cylinder is pulled at an oblique angle it moves with an
angle of attack due to the drag imbalance. This results in a
velocity vector that has components in the pulling direction as
well as perpendicular to it. This is taken advantage of when
agella or cilia are employed for motion generation.

Asmentioned previously, the lament has to bemoved in a set
ofnon-reciprocal congurations inorder togenerateanetmotion.
In the example of cilia, they are stretched out during the power
stroke and glide close by the body in recovery stroke. In the case of
a agellum beating in a planar wave pattern each segment of the
agellumgoes throughanon-reciprocalmotionas itmoves froma
positive angle of attack to moving with a negative angle of attack
versus the swimming direction. A segment on a rigid helix always
has the same angle of attack to the direction of motion and each
segment goes through a non-reciprocal motion only while the
helix is continuously rotated. If ahelix is rotatedbyapositive angle
and then rotated back by the same angle, the motion becomes
reversible and the helix moves back into its original position.

Bio-inspired microrobots and micro devices

The various propulsion mechanisms of micro-organisms have
in turn inspired a number of magnetic microrobot designs (see
Fig. 1). A exible agellum is arguably the easiest mechanism to
copy as it is a one dimensional (1D) structure. A challenge that
remains is to fabricate a simultaneously exible and stable
structure at the microscale. A exible sheet or beam can be
actuated magnetically when attached to a magnetic head.13,14

Dreyfus et al. presented another approach to form a exible
agellum. They used self-assembled magnetic beads to form a
exible tail (see Fig. 2a).15 Themagnetic force betweenmagnetic
beads is limited and fast rotation of these bead chains can lead
to a disassembly due to the uidic drag forces.16 Hence, Dreyfus
found a protocol to connect the magnetic particles with DNA
strands. It was shown that a chain of beads actuated with an
oscillating eld does not result in a non-reciprocal motion;
however, attaching a payload to one end of the chain breaks the
motion symmetry of the traveling wave along the bead chain. In
this way, the transport of a single red blood cell (RBC) was
demonstrated. It was shown that a kink in the chain also breaks
the symmetry and allows propulsion.17,18 The fact that an
imperfect or asymmetric chain can achieve propulsion was
utilized for the nano-bead chain swimmer presented by Ben-
koski.19,20 The length of some of their swimmers is only around
5 mm, which is smaller than Dreyfus’ propeller, which had an
overall length of approximately 24 mm, by a factor of almost ve.

The rst helical microrobot mimicking bacterial propulsion,
the articial bacterial agellum (ABF), was presented in 2007 by
Bell and further characterized by Zhang in 2009.21–23 The ABF
consists of a rigid helical tail which is attached to a so-
magnetic metal “head”, also referred to as “body”, for actuation
(see Fig. 2b). The size of the helical tail is 2.8 mm in diameter
and 30–100 mm in length. The head consists of a thin square
plate, with a thickness of 200 nm and a variable length of 2.5–
4.5 mm. Themain challenge for bacteria-inspired microrobots is
the fabrication of a helical lament at the microscale. In recent
years, a number of fabrication methods have been found that
are capable of small-scale helix fabrication. They will be dis-
cussed in more detail in the section “Fabrication of helical

Fig. 1 Propulsion mechanisms of microorganisms and analogous artificial propulsion of magnetic micro-devices. (a) Planar beating of flexible flagella, e.g. sper-
matozoa. (b) Rotating rigid helical flagella actuated by a molecular motor, e.g. E. coli bacteria. (c) Cilia, e.g. paramecium. (d) Flexible beam actuated by a torque at the
spherical head. (e) Flexible magnetic micro-bead tail. (f) Rotating rigid helical tail fixed to a magnetic head. (g) Artificial cilia array of flexible micro rods or beams. (h)
Artificial cilia array of self-assembled magnetic micro-beads.
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I The controllability of such devices ?
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Content

1. Modeling

2. Numerical results

3. Controllability result
↪→ Return method
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Modeling : main ingredients

I Hydrodynamics : interaction between the fluid and the body.

I Elasticity (el) : take into account the rigidity of the
micro-robot structure.

I Magnetism (mag) : action of the magnetic field on the
charged body swimmer.
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Rescaling
The fluid is governed by the Navier-Stokes equation

Re
(
τ ∂u∗
∂t∗

+ u∗ · ∇∗
)

u∗ −∆∗u∗ +∇∗p∗ = Re
F g∗, div u = 0 in F . ,

where, Re = ρf UL
µ , F = U2

LG , τ = TU
L .

with the boundary condition,

u = q̇ + ud (q,mag,el) on ∂N ,

with the Newton law

∫
∂N

σ(u∗, p∗) · n ds = −ρm
ρf
Re
(

1
F g∗ + 1

τ2 q̈∗
)

+Fmag + Fel ,∫
∂N

σ(u∗, p∗) · n× (x− q) ds = −ρm
ρf
Re
(

1
F q∗ × g∗ + 1

τ2 Ω̇∗
)

+Tmag + Tel ,

Laetitia Giraldi Microswimming 7



At micro scale Re := ρf UL
µ ∼ 10−6

The fluid is governed by the Navier-Stokes equation

((((
((((

(((Re
(
τ ∂u∗
∂t∗

+ u∗ · ∇∗
)

u∗ −∆∗u∗ +∇∗p∗ =���Re
F g∗, div u = 0 in F . ,

where, Re = ρf UL
µ , F = U2

LG , τ = TU
L .

with the boundary condition,

u = q̇ + ud (q,mag,el) on ∂N ,

with the Newton law

∫
∂N

σ(u∗, p∗) · n ds =
(((

((((
((((−ρm

ρf
Re
(

1
F g∗ + 1

τ2 q̈∗
)

+Fmag + Fel ,∫
∂N

σ(u∗, p∗) · n× (x− q) ds =
((((

((((
(((

((
−ρm
ρf
Re
(

1
F q∗ × g∗ + 1

τ2 Ω̇∗
)

+Tmag + Tel ,
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To sum up
A swimmer is parametrized by

I q ∈ R3 × SO3 : position and orientation.
I ξ ∈ Rk : shape.
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A particular micro-robots

↪→ Constructed by CEA laboratory (Spintec) in Grenoble
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1. Hydrodynamics : approximation

Resistive Force Theory
If a segment has a given speed at its extremities, noted v, then the
associated distribution of hydrodynamic forces, called F, is given by

F = d‖(v.e‖)e‖ + d⊥(v.e⊥)e⊥

J. Gray and J. Hancock
The propulsion of sea-urchin spermatozoa, Journal of Experimental
Biology, 1955.
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2. Rigidity of the structure : discrete beam theory

The rigidity of the structure is given by an elastic torque compute
on each extremities of the segment, called xi , as

Tel
i ,xi = κ(ξi+1 − ξi )ez

where,

κ : the spring constant.

↪→ This torque tends to align all of the segments.
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3. Magnetism

Each segment is magnetized and it experiences a magnetic torque
due to the external field denoted by M

Tm
i = mi (ei ,‖ ×M)

where,

mi : the (total) magnetization of the i−th segment
M : the external magnetic field
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Equations of motion
I 3 unknowns corresponding to the position and the orientation

of the swimmer
I (N-1) unknowns corresponding to the shape of the swimmer

Newton law → 3 equations.
The balance of the torque component of each subsystem, we get
an invertible system of N+2 equations

F =
∑N

i=1 Fh
i = 0 ,

ez ·
∑N

i=1

(
Th

i ,x1 + Tm
i

)
= 0 ,

ez ·
∑N

i=2

(
Th

i ,x2 + Tm
i

)
= −κ(ξ2 − θ) ,

...
ez ·

∑N
i=k

(
Th

i ,xk
+ Tm

i

)
= −κ(ξk − ξk−1) ,

...
ez ·

(
Th

N,xN
+ Tm

N

)
= −κ(ξN − ξN−1) .
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Dynamics
The dynamics of the micro-robot is governed by an ODE linear
with respect to the external magnetic field (i.e., control function
M = (Mx ,My )) with a drift term,(

q̇
ξ̇

)
= F0(θ, ξ)︸ ︷︷ ︸

Restoring force

+F1(θ, ξ)Mx (t) + F2(θ, ξ)My (t) ,

Equilibrium states : : {(x , y , 0, 0, · · · , 0}

Questions :
Is it possible to control the swimmer by acting on the ma-
gnetic field (Mx ,My ) ?
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Numerical answer

By prescribing the magnetic sinusoidal field such as
(Mx ,My sin(ωt)) we get
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Numerical simulations
By prescribing now

M = Mxeθ(t) + My sin(ωt)e⊥θ(t)

with θ as

θ(t) = π

4

(
1 + tanh

(
30
( t
Tmax

− 1
2

)))
.

the swimmer navigates inside a narrow pipe (length are in µm.).

Laetitia Giraldi Microswimming 17



Numerical simulations
By prescribing

M = Mxeθ(t) + My sin(ωt)e⊥θ(t)

with θ as
θ(t) = 2πt/Tmax ,

the swimmer “makes a circle”
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Negative answer

Definition [Small Time Locally Controllable (STLC)]
For all T > 0, there exists η > 0 such that for all initial and final
states η-closed to the equilibrium point, we could control the
system from one to the other state by using control functions
bounded by T .

STLC : The system is controllable closed to the equilibrium state
with “small” control function

Theorem [L.G, P. Lissy, C. Moreau, J.-B. Pomet, 2016]
The 2-link (resp. 3-link) magnetized swimmer is not STLC.
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Ideas of the proof

I Main idea : we prove that small control do not allow the
swimmer to follow small closed-loop.

I ↪→ An asymptotic expansion leads to obtain a new parameter
ζ (as linear combination of the states) such that

∀γ close loop,
∫
γ
ζ > 0

whereas this integral should vanish.
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Controllability result

Definition : “weak” small time local controllability
∀ equilibrium points, ∀ time T > 0, ∃ a neighborhood V, such that
any couples ((qi , ξi ), (qf , ξf )) ∈ V2, ∃ a bounded control M
associated with the solution of the swimmer dynamics which starts
at (qi , ξi ) and ends at time T at (qf , ξf ).

Theorem [L.G, J.-B. Pomet, IEEE TAC, 2016]
A swimmer with 1-shape-parameter is “weak” small time locally
controllable.
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Remarks

The swimmer with 1-shape-parameter

I The bound of the control functions depends on magnetization
and bending stiffness of the swimmer

‖M‖∞ < 2κ
∣∣∣∣m2 + m1
m2 m1

∣∣∣∣+ |V| ,
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Sketch of the proof

Difficulties :
I Local controllability at an equilibrium point does not hold.
↪→ the linearized test using the Kalmann rank condition

I The specific Hermes-Sussmann conditions does not hold.
↪→ sufficient conditions for driftless system to get small time
locally controllable.

↪→ The proof is based on the “return method”
[J.-M. Coron, Math. Control Signals Syst., 1992]

I Construct a return trajectory
I Ensure that the linearized is controllable along a part of it
I The end-point mapping is a submersion
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Sketch of the proof

↪→ Construct a return trajectory :

I We choose any control Mx and My between [0, T
2 ]

I “Turn back” with the same path :

ż(t) = ż(T − t), ∀t ∈ [T2 ,T ] ,

where z = (q, ξ).
↪→ gives 2 equations with 2 unknowns Mx and My .

I M which solved the system is bounded.

The method cannot be generalized if the number of shape
parameters increase.
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When the shape parameters increase

To overcome the difficulties due to the large number of shape
parameters : ↪→ Local Partial Controllability Concept ([M. Duprez,
thesis, 2015])
↪→ controlling only the position of the swimmer (x , y)
↪→ leads to get a system with 2 equations and 2 unknowns,(

F1x (ξ) F2x (ξ)
F1y (ξ) F2y (ξ)

)
︸ ︷︷ ︸

F(ξ)

(
Mx
My

)
= G(ξ, θ).

Problem : F(ξ) is not invertible around the straight position (the
equilibrium one).
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For a twist magnetized swimmer
For a given ξ0

3 ∈ [0, π2 ], the equilibrium states : :
{

(x , y , 0, 0, ξ0
3)
}

A bended 3-link swimmer at rest

Theorem [L.G, P. Lissy, C. Moreau, J.-B. Pomet, 2016]
A bended 3-link magnetized swimmer is STLC around the
equilibrium states.

Proof : Kalmann
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And, we track locally the swimmer along a prescribed trajectory
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Numerical results : A straight line
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Numerical results : A trajectory
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Numerical results : Obstructions
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Perspectives
I Global controllability - Tracking of trajectories ?
I Optimal control
I When the shape variables increase ?
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Thank you for your attention.
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