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Linear programming and its complexity
Linear programming (LP)= optimize a linear objective function under linear (affine)

inequality constraints.

Definition
A linear program is of the form:

minimize c⊤x
subject to Ax ⩾ b, x ∈ Rn

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

minimize x+ 3y
subject to x+ y ⩾ 3

23 ⩾ x+ 3y
4x ⩾ 1+ y

11+ y ⩾ 2x
2y ⩾ 2
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Linear programming and its complexity (2)

Theorem (Khachiyan, 1980)
Linear programming can be solved in polynomial time in the Turing Machine model.

= execution time bounded by a polynomial

P(m, n, L)
where:

• m = nb of inequalities
• n = dimension of the space
• L = total size of the coefficients Aij, bi, cj in bits (sum of their log2).

̸= strongly polynomial complexity
• number of arithmetic operations bounded by a polynomial in the dimension of
the problem, i.e. m× n

• the size of operands of arithmetic operations is bounded by a polynomial in L
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Linear programming and its complexity (3)

9th Smale’s Problem for 21st Century
Is there a strongly polynomial algorithm for linear programming?

Existing algorithms for LP:
• simplex method (Dantzig, 1947)
• ellipsoid method (Khachiyan, 1980)
• interior point method (Karmarkar, 1984)

Purpose of this talk

What can we say about interior point methods?
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Path-following interior-point methods
Goal
Solve a convex program

minimize f(x)
subject to x ∈ X (P)

where X ⊂ Rn is closed, convex, with non-empty interior.

Penalization with a barrier function F given µ > 0,
minimize f(x) + µF(x) (Pµ)

where F is defined over the interior of X, and satisfies:
• F is strongly convex
• F(x) → +∞ when x → ∂X

Definition
The central path is the curve µ 7→ xµ, where xµ is the (unique) solution of (Pµ).

Conceptual IPM
Follow the central path with µ ↘ 0 up to the solution of (P)

approximately

.
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Path-following interior-point methods (2)

Goal
Solve a linear program

minimize c⊤x
subject to Ax ⩽ b , x ∈ Rn (A ∈ Rm×n , b ∈ Rm , c ∈ Rn)

Logarithmic barrier penalization given µ > 0,

minimize c⊤x− µ
m
∑
i=1

log(bi − Aix)

• stay in a certain “neighborhood” of
the central path

• use Newton descent directions to
iterate

• different choices of steps (short, long,
predictor/corrector, etc)
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Complexity of interior point methods
Intimately related with the geometry of the central path!
According to Bayer and Lagarias (1989), the central path is

[…] a fundamental mathematical object underlying Karmarkar’s algorithm and
that the good convergence properties of Karmarkar’s algorithm arise from good
geometric properties […]

=⇒ motivated several works on the total curvature of the central path

Related work
Given a linear program defined by m inequalities in dimension n,

• Dedieu and Shub (2005) conjectured that the total curvature is in O(n)

• Dedieu, Malajovich, and Shub (2005) showed that this is true “on average”, see
also (De Loera, Sturmfels, and Vinzant, 2012)

• Deza, Terlaky, and Zinchenko (2009) built a counter-example with total
curvature exponential in n, with m ∈ Ω(2n) constraints

Continuous analogue of Hirsch conjecture (Deza, Terlaky, and Zinchenko, 2009)
The total curvature of the central path is bounded by O(m).
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This talk

Theorem
We can construct a linear program with 3r+ 4 inequalities in dimension 2r+ 2
where the central path has a total curvature in Ω(2r).

minimize v0
subject to u0 ⩽ t , v0 ⩽ t2

ui ⩽ tui−1 , ui ⩽ tvi−1

vi ⩽ t1−
1
2i (ui−1 + vi−1)

}
for 1 ⩽ i ⩽ r

ur ⩾ 0 , vr ⩾ 0

LP(t)

where the value of the parameter t ∈ R is large enough.

Our approach
Study the limit of the central path of LP(t) when t → +∞ through the “tropical
central path”.
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Tropical algebra and tropical polyhedra

Tropical algebra refers to the semiring Rmax := R ∪ {−∞} where:
• the addition x⊕ y is max(x, y)
• the multiplication x⊙ y is x+ y

Tropical operations extend to matrices and vectors:

A⊕ B = (Aij ⊕ Bij)ij A⊙ B =
(⊕

k
Aik ⊙ Bkj

)
ij
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Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions x ∈ Rn
max of a system of the form:

A+ ⊙ x⊕ b+ ⩾ A− ⊙ x⊕ b−

with A+,A− ∈ Rm×n
max and b+, b− ∈ Rm

max.

x1

x2
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Tropical polyhedra vs convex polyhedra

Alternative definition
Tropical polyhedra= limits of deformations of classical polyhedra through the map

logt : x 7→ log x
log t

Maslov dequantization

max(logt x, logt y) ⩽ logt(x+ y) ⩽ max(logt x, logt y) + logt 2

logt(x · y) = logt x+ logt y

Our goal: tropicalizing the central path
Study the central path of a parametric family of LPs:

minimize c(t)⊤x
subject to A(t)x ⩽ b(t) , x ⩾ 0

and its deformation by the map logt(·), when t goes to+∞.
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A possible setting for tropicalization
The entries of A(t), b(t) and c(t) belong to the Hardy field K.

Hardy field
Field of germs at+∞ of real-valued functions t 7→ f(t):

• containing the power functions t 7→ tr for all r ∈ R,
• functions are “well-behaved”, i.e. definable in a o-minimal structure

The good properties of K

• K is real-closed.

In particular, it is ordered:

f ⩽ g if f(t) ⩽ g(t) for all t ≫ 1

• elements of K have “polynomial asymptotics”:

f(t) ∼ ptα when t → +∞ (p, α ∈ R , p ̸= 0)

Makes sense to consider a LP over K, which encodes a family of LPs over R:
minimize c⊤x
subject to Ax ⩽ b , x ∈ (K⩾0)n

minimize c(t)⊤x
subject to A(t)x ⩽ b(t) , x ∈ (R⩾0)n
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A possible setting for tropicalization (2)
Elements of K have “polynomial asymptotics”:

x(t) ∼ ptα when t → +∞ (p, α ∈ R , p ̸= 0)

The valuation map over K is defined by:

val(x) := lim
t→+∞

logt |x(t)|

Theorem
LetP ⊂ (K⩾0)n be a convex polyhedron. Then

val(P) = lim
t→+∞

logt P(t)

is a tropical polyhedron.

t3 ⩽ x1 + tx2
t−10x1 + t ⩽ x2

t−3x1 ⩽ x2 + t4

x1 + t2x2 ⩽ t8

x2 + t5 ⩽ t4x1

val(·)
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Outline of the talk

1 Preliminaries on tropical geometry

2 Tropicalizing the central path

3 Central paths with large curvature
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The central path over the Hardy field
Given A ∈ Km×n, b ∈ Km and c ∈ Kn, consider the following LP:

minimize c⊤x
subject to Ax ⩽ b , x ⩾ 0

, w ⩾ 0

x ∈ Kn
LP(A, b, c)

Proposition
For all µ ∈ K>0, the log-barrier problem over the Hardy field

minimize c⊤x− µ
(

∑n
j=1 log(xj) + ∑m

i=1 log(wi)
)

subject to Ax+w = b , x > 0 , w > 0 ,

has a unique solution (xµ,wµ).

Proof
The expansion of our o-minimal structure with the function log is also
o-minimal (van den Dries et al., 1994).
=⇒ the resulting Hardy field still has nice model theoretic properties.

The proposition is valid over the reals, so it is still valid over the Hardy field.
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The tropical central path
Two points of view:

• over the Hardy field, the central path of LP(A, b, c)
µ 7→ C(µ)

• over the reals, the central path µ 7→ Ct(µ) of
LP(A(t), b(t), c(t)) ≡ min{c(t)⊤x | A(t)x+ w = b(t) , x,w ⩾ 0}

Proposition
For all µ ∈ K>0, we have

val(C(µ)) = lim
t→+∞

logt Ct(µ(t))

and the latter quantity only depends on the valuation of µ.

Ct(·) logt Ct(·) lim
t→∞

logt Ct(·)

Definition
The tropical central path is defined as the map

λ 7→ C trop(λ) := val(C(tλ))

= lim
t→+∞

logt Ct(tλ)
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Geometric characterization of the tropical central path
Relies on the notion of barycenter of a tropical polyhedron P
= greatest point of the set P for the coordinate-wise order⩽

Tropical notation
P := val(P), c := val(c)

Theorem
The point C trop(λ) of the tropical central path is given by the barycenter of

P ∩ {(x,w) ∈ (Rmax)n+m | c⊤ ⊙ x ⩽ λ}

Remark
The tropical central path does not depend on the representation ofP .
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Geometric characterization of the tropical central path (2)
minimize x1 + t3x2

(P)

x1 + x2 ⩽ 2
tx1 ⩽ 1+ t2x2
tx2 ⩽ 1+ t3x1
x1 ⩽ t2x2

x1, x2 ⩾ 0

minimize max(x1, 3+ x2)

(P)

max(x1, x2) ⩽ 0
1+ x1 ⩽ max(0, 2+ x2)
1+ x2 ⩽ max(0, 3+ x1)

x1 ⩽ 2+ x2

λ = 1λ = 0λ = −1λ = −2λ = −3λ = −4
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minimize x1 + t3x2
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Sketch of the proof
Let us fix λ ∈ R, and let µ := tλ.
Consider the penalized function

Φ(x,w) =
c⊤x
µ

−
( n
∑
j=1

log(xj) +
m
∑
i=1

log(wi)
)

defined over the (relative) interior ofP .

∼ γt(val(c)⊙val(x))−λ =
(

∑n
j=1 val(xj) + ∑m

i=1 val(wi)
)
log t+O(1)

=⇒ the (unique) minimal point (xµ,wµ) of Φ has to satisfy val(c)⊙ val(xµ) ⩽ λ

+ the point val(xµ,wµ)maximizes the function

(x,w) 7→
n
∑
j=1

xj +
m
∑
i=1

wi

over the tropical polyhedron P ∩ {c⊤ ⊙ x ⩽ λ}.
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Outline of the talk

1 Preliminaries on tropical geometry

2 Tropicalizing the central path

3 Central paths with large curvature
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Our counterexample to the continuous Hirsch conjecture
minimize v0
subject to u0 ⩽ t

v0 ⩽ t2

ui ⩽ tui−1

ui ⩽ tvi−1

vi ⩽ t1−
1
2i (ui−1 + vi−1)

 for 1 ⩽ i ⩽ r

ur ⩾ 0 , vr ⩾ 0

Tropical central path
The point C trop(λ) is given by

u0 = 1
v0 = min(λ, 2)
ui = 1+min(ui−1, vi−1)

vi =
(
1− 1

2i
)
+max(ui−1, vi−1)

 for 1 ⩽ i ⩽ r

0 1 20

1

2

3

4

λ

v0

u0

v1

u1

u2
v2

u3
v3
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Our counterexample to the continuous Hirsch conjecture (2)
In the (ur, vr)-plane, the tropical central path looks like a staircase with 2r steps:

ur

vr

rr r+ 2
2r r+ 4

2r r+ 6
2r

r+ 1
2r

r+ 3
2r

r+ 5
2r

r+ 7
2r

λ = 0
λ = 1

2r−1

λ = 2
2r−1

λ = 3
2r−1

λ = 4
2r−1

λ = 5
2r−1

λ = 6
2r−1
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Total curvature

Definition
The total curvature of a curve is defined as

• polygonal curve:

sum of the angles

• arbitrary curve:

sup of total curvature of inscribed polygonal curves
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Curvature analysis
In the (ur, vr)-plane, the tropical central path looks like:

ur

vr

rr r+ 2
2r r+ 4

2r r+ 6
2r

r+ 1
2r

r+ 3
2r

r+ 5
2r

r+ 7
2r

λ = 0
λ = 1

2r−1

λ = 2
2r−1

λ = 3
2r−1

λ = 4
2r−1

λ = 5
2r−1

λ = 6
2r−1

=⇒ lim inf(total curvature of Ct) ⩾ (2r − 1)π
2 when t → +∞.
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Curvature analysis
In the (ur, vr)-plane, the preimage under logt of the tropical central path looks like:
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tr+ 5
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tr+ 7
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tr+ 2
2r tr+ 4

2r tr+ 6
2r

point of the real central path Ct(·)
with parameter µ = tk/2r−1

polygonal curve inscribed in Ct

=⇒ lim inf(total curvature of Ct) ⩾ (2r − 1)π
2 when t → +∞.
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Thank you!

Long and winding central paths, arXiv:1405.4161

http://arxiv.org/abs/1405.4161
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