Long and Winding Central Paths

 Journée McTAOXavier Allamigeon $^{1} \quad$ Pascal Benchimol ${ }^{2} \quad$ Stéphane Gaubert ${ }^{1}$ Michael Joswig ${ }^{3}$
${ }^{1}$ INRIA Saclay - Ile-de-France and CMAP, Ecole Polytechnique, CNRS
${ }^{2}$ EDF Lab
${ }^{3}$ Institut für Mathematik, Technische Universität Berlin

January 18th, 2016

Linear programming and its complexity

Linear programming $(L P)=$ optimize a linear objective function under linear (affine) inequality constraints.

Definition

A linear program is of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geqslant b, x \in \mathbb{R}^{n}
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

Linear programming and its complexity

Linear programming $(L P)=$ optimize a linear objective function under linear (affine) inequality constraints.

Definition

A linear program is of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geqslant b, x \in \mathbb{R}^{n}
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

$$
\begin{array}{rlrl}
& \operatorname{minimize} & x+3 y \\
\text { subject to } & x+y & \geqslant 3 \\
23 & \geqslant x+3 y \\
4 x & \geqslant 1+y \\
11+y & \geqslant 2 x \\
2 y & \geqslant 2
\end{array}
$$

Linear programming and its complexity

Linear programming $(L P)=$ optimize a linear objective function under linear (affine) inequality constraints.

Definition

A linear program is of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geqslant b, x \in \mathbb{R}^{n}
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

$$
\begin{aligned}
\operatorname{minimize} & x+3 y \\
\text { subject to } \quad x+y & \geqslant 3 \\
23 & \geqslant x+3 y \\
4 x & \geqslant 1+y \\
11+y & \geqslant 2 x \\
2 y & \geqslant 2
\end{aligned}
$$

Linear programming and its complexity

Linear programming $(L P)=$ optimize a linear objective function under linear (affine) inequality constraints.

Definition

A linear program is of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geqslant b, x \in \mathbb{R}^{n}
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

$$
\text { minimize } \left.\quad \begin{array}{rl}
& x+3 y \\
\text { subject to } & x+y
\end{array}\right) \geqslant 3 \begin{aligned}
23 & \geqslant x+3 y \\
4 x & \geqslant 1+y \\
11+y & \geqslant 2 x \\
2 y & \geqslant 2
\end{aligned}
$$

Linear programming and its complexity

Linear programming $(L P)=$ optimize a linear objective function under linear (affine) inequality constraints.

Definition

A linear program is of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geqslant b, x \in \mathbb{R}^{n}
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

$$
\text { minimize } \left.\quad \begin{array}{rl}
& x+3 y \\
\text { subject to } & x+y
\end{array}\right) \geqslant 3 \begin{aligned}
23 & \geqslant x+3 y \\
4 x & \geqslant 1+y \\
11+y & \geqslant 2 x \\
2 y & \geqslant 2
\end{aligned}
$$

Linear programming and its complexity (2)

Theorem (Khachiyan, 1980)
Linear programming can be solved in polynomial time in the Turing Machine model.

Linear programming and its complexity (2)

Theorem (Khachiyan, 1980)

Linear programming can be solved in polynomial time in the Turing Machine model.
$=$ execution time bounded by a polynomial

$$
P(m, n, L)
$$

where:

- $m=n b$ of inequalities
- $n=$ dimension of the space
- $L=$ total size of the coefficients $A_{i j}, b_{i}, c_{j}$ in bits (sum of their $\log _{2}$).

Linear programming and its complexity (2)

Theorem (Khachiyan, 1980)

Linear programming can be solved in polynomial time in the Turing Machine model.
$=$ execution time bounded by a polynomial

$$
P(m, n, L)
$$

where:

- $m=n b$ of inequalities
- $n=$ dimension of the space
- $L=$ total size of the coefficients $A_{i j}, b_{i}, c_{j}$ in bits (sum of their $\log _{2}$).
\neq strongly polynomial complexity
- number of arithmetic operations bounded by a polynomial in the dimension of the problem, i.e. $m \times n$
- the size of operands of arithmetic operations is bounded by a polynomial in L

Linear programming and its complexity (3)

9th Smale's Problem for 21st Century
Is there a strongly polynomial algorithm for linear programming?

Linear programming and its complexity (3)

9th Smale's Problem for 21st Century

Is there a strongly polynomial algorithm for linear programming?

Existing algorithms for LP:

- simplex method (Dantzig, 1947)
- ellipsoid method (Khachiyan, 1980)
- interior point method (Karmarkar, 1984)

Linear programming and its complexity (3)

9th Smale's Problem for 21st Century

Is there a strongly polynomial algorithm for linear programming?

Existing algorithms for LP:

- simplex method (Dantzig, 1947)
- ellipsoid method (Khachiyan, 1980) $\}$ polynomial time
- interior point method (Karmarkar, 1984)

Linear programming and its complexity (3)

9th Smale's Problem for 21st Century

Is there a strongly polynomial algorithm for linear programming?

Existing algorithms for LP:

- simplex method (Dantzig, 1947)
- ellipsoid method (Khachiyan, 1980) $\}$ - interior point method (Karmarkar, 1984) polynomial time

Purpose of this talk

What can we say about interior point methods?

Path-following interior-point methods

Goal
Solve a convex program
minimize $\quad f(x)$
subject to $\quad x \in X$
where $X \subset \mathbb{R}^{n}$ is closed, convex, with non-empty interior.

Path-following interior-point methods

Goal
Solve a convex program
minimize $\quad f(x)$
subject to $\quad x \in X$
where $X \subset \mathbb{R}^{n}$ is closed, convex, with non-empty interior.
Penalization with a barrier function F given $\mu>0$,
\quad minimize $\quad f(x)+\mu F(x)$

Path-following interior-point methods

Goal

Solve a convex program

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \tag{P}\\
\text { subject to } & x \in X
\end{array}
$$

where $X \subset \mathbb{R}^{n}$ is closed, convex, with non-empty interior.
Penalization with a barrier function F given $\mu>0$,
minimize $\quad f(x)+\mu F(x)$
where F is defined over the interior of X, and satisfies:

- F is strongly convex
- $F(x) \rightarrow+\infty$ when $x \rightarrow \partial X$

Path-following interior-point methods

Goal

Solve a convex program

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \tag{P}\\
\text { subject to } & x \in X
\end{array}
$$

where $X \subset \mathbb{R}^{n}$ is closed, convex, with non-empty interior.
Penalization with a barrier function F given $\mu>0$,
minimize $\quad f(x)+\mu F(x)$
where F is defined over the interior of X, and satisfies:

- F is strongly convex
- $F(x) \rightarrow+\infty$ when $x \rightarrow \partial X$

Definition

The central path is the curve $\mu \mapsto x^{\mu}$, where x^{μ} is the (unique) solution of $\left(P^{\mu}\right)$.

Path-following interior-point methods

Goal

Solve a convex program

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \tag{P}\\
\text { subject to } & x \in X
\end{array}
$$

where $X \subset \mathbb{R}^{n}$ is closed, convex, with non-empty interior.
Penalization with a barrier function F given $\mu>0$, minimize $\quad f(x)+\mu F(x)$
where F is defined over the interior of X, and satisfies:

- F is strongly convex
- $F(x) \rightarrow+\infty$ when $x \rightarrow \partial X$

Definition

The central path is the curve $\mu \mapsto x^{\mu}$, where x^{μ} is the (unique) solution of $\left(P^{\mu}\right)$.
Conceptual IPM
Follow the central path with $\mu \searrow 0$ up to the solution of (P)

Path-following interior-point methods

Goal
Solve a convex program

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \tag{P}\\
\text { subject to } & x \in X
\end{array}
$$

where $X \subset \mathbb{R}^{n}$ is closed, convex, with non-empty interior.
Penalization with a barrier function F given $\mu>0$,
minimize $\quad f(x)+\mu F(x)$
where F is defined over the interior of X, and satisfies:

- F is strongly convex
- $F(x) \rightarrow+\infty$ when $x \rightarrow \partial X$

Definition

The central path is the curve $\mu \mapsto x^{\mu}$, where x^{μ} is the (unique) solution of $\left(P^{\mu}\right)$.
Conceptual IPM
Follow the central path with $\mu \searrow 0$ up to the solution of (P) approximately.

Path-following interior-point methods (2)

Goal
Solve a linear program
minimize $\quad c^{\top} x$
subject to $\quad A x \leqslant b, x \in \mathbb{R}^{n}$

$$
\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
$$

Path-following interior-point methods (2)

Goal
Solve a linear program
minimize $\quad c^{\top} x$
subject to $\quad A x \leqslant b, x \in \mathbb{R}^{n}$

$$
\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
$$

Logarithmic barrier penalization given $\mu>0$,

$$
\text { minimize } \quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)
$$

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & \left.A x \leqslant b, x \in \mathbb{R}^{n} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)\right) \text {) } \quad \text { 位 }
\end{array}
$$

Logarithmic barrier penalization given $\mu>0$,

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{aligned}
& \text { minimize } \quad c^{\top} x \\
& \text { subject to } \quad A x \leqslant b, x \in \mathbb{R}^{n} \\
& \left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
\end{aligned}
$$

Logarithmic barrier penalization given $\mu>0$,

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leqslant b, x \in \mathbb{R}^{n}
\end{array} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
$$

Logarithmic barrier penalization given $\mu>0$,
minimize $\quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)$

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leqslant b, x \in \mathbb{R}^{n}
\end{array} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
$$

Logarithmic barrier penalization given $\mu>0$,
minimize $\quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)$

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leqslant b, x \in \mathbb{R}^{n}
\end{array} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
$$

Logarithmic barrier penalization given $\mu>0$,
minimize $\quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)$

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leqslant b, x \in \mathbb{R}^{n}
\end{array} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
$$

Logarithmic barrier penalization given $\mu>0$,
minimize $\quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)$

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leqslant b, x \in \mathbb{R}^{n}
\end{array} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)
$$

Logarithmic barrier penalization given $\mu>0$,
minimize $\quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)$

Path-following interior-point methods (2)

Goal
Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & \left.A x \leqslant b, x \in \mathbb{R}^{n} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right)\right) \text {) } \quad \text { 位 }
\end{array}
$$

Logarithmic barrier penalization given $\mu>0$,
minimize $\quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)$

Path-following interior-point methods (2)

Goal

Solve a linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leqslant b, x \in \mathbb{R}^{n} \quad\left(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}\right) \text {) }
\end{array} \quad \quad(A)
$$

Logarithmic barrier penalization given $\mu>0$,

$$
\text { minimize } \quad c^{\top} x-\mu \sum_{i=1}^{m} \log \left(b_{i}-A_{i} x\right)
$$

- stay in a certain "neighborhood" of the central path
- use Newton descent directions to iterate
- different choices of steps (short, long, predictor/ corrector, etc)

Complexity of interior point methods

Intimately related with the geometry of the central path!
According to Bayer and Lagarias (1989), the central path is
[...] a fundamental mathematical object underlying Karmarkar's algorithm and that the good convergence properties of Karmarkar's algorithm arise from good geometric properties [...]

Complexity of interior point methods

Intimately related with the geometry of the central path!
\Longrightarrow motivated several works on the total curvature of the central path

Complexity of interior point methods

Intimately related with the geometry of the central path!
\Longrightarrow motivated several works on the total curvature of the central path

Related work

Given a linear program defined by m inequalities in dimension n,

- Dedieu and Shub (2005) conjectured that the total curvature is in $O(n)$

Complexity of interior point methods

Intimately related with the geometry of the central path!
\Longrightarrow motivated several works on the total curvature of the central path

Related work

Given a linear program defined by m inequalities in dimension n,

- Dedieu and Shub (2005) conjectured that the total curvature is in $O(n)$
- Dedieu, Malajovich, and Shub (2005) showed that this is true "on average", see also (De Loera, Sturmfels, and Vinzant, 2012)

Long and Winding Central Paths I Allamigeon, Benchimol, Gaubert, Joswig | 7/27

Complexity of interior point methods

Intimately related with the geometry of the central path!
\Longrightarrow motivated several works on the total curvature of the central path

Related work

Given a linear program defined by m inequalities in dimension n,

- Dedieu and Shub (2005) conjectured that the total curvature is in $O(n)$
- Dedieu, Malajovich, and Shub (2005) showed that this is true "on average", see also (De Loera, Sturmfels, and Vinzant, 2012)
- Deza, Terlaky, and Zinchenko (2009) built a counter-example with total curvature exponential in n, with $m \in \Omega\left(2^{n}\right)$ constraints

Complexity of interior point methods

Intimately related with the geometry of the central path!
\Longrightarrow motivated several works on the total curvature of the central path

Related work

Given a linear program defined by m inequalities in dimension n,

- Dedieu and Shub (2005) conjectured that the total curvature is in $O(n)$
- Dedieu, Malajovich, and Shub (2005) showed that this is true "on average", see also (De Loera, Sturmfels, and Vinzant, 2012)
- Deza, Terlaky, and Zinchenko (2009) built a counter-example with total curvature exponential in n, with $m \in \Omega\left(2^{n}\right)$ constraints

Continuous analogue of Hirsch conjecture (Deza, Terlaky, and Zinchenko, 2009)

The total curvature of the central path is bounded by $O(m)$.

This talk

Theorem

We can construct a linear program with $3 r+4$ inequalities in dimension $2 r+2$ where the central path has a total curvature in $\Omega\left(2^{r}\right)$.

This talk

Theorem

We can construct a linear program with $3 r+4$ inequalities in dimension $2 r+2$ where the central path has a total curvature in $\Omega\left(2^{r}\right)$.

$$
\begin{array}{ll}
\operatorname{minimize} & v_{0} \\
\text { subject to } & u_{0} \leqslant t, v_{0} \leqslant t^{2} \\
& u_{i} \leqslant t u_{i-1}, u_{i} \leqslant t v_{i-1} \\
& \left.v_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(u_{i-1}+v_{i-1}\right)}\right\} \\
& u_{r} \geqslant 0, v_{r} \geqslant 0
\end{array} \quad \text { for } 1 \leqslant i \leqslant r
$$

This talk

Theorem

We can construct a linear program with $3 r+4$ inequalities in dimension $2 r+2$ where the central path has a total curvature in $\Omega\left(2^{r}\right)$.

$$
\begin{array}{ll}
\operatorname{minimize} & v_{0} \\
\text { subject to } & u_{0} \leqslant t, v_{0} \leqslant t^{2} \\
& u_{i} \leqslant t u_{i-1}, u_{i} \leqslant t v_{i-1} \tag{LP}\\
& \left.v_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(u_{i-1}+v_{i-1}\right)}\right\} \\
& u_{r} \geqslant 0, v_{r} \geqslant 0
\end{array} \quad \text { for } 1 \leqslant i \leqslant r
$$

where the value of the parameter $t \in \mathbb{R}$ is large enough.

This talk

Theorem

We can construct a linear program with $3 r+4$ inequalities in dimension $2 r+2$ where the central path has a total curvature in $\Omega\left(2^{r}\right)$.

$$
\begin{array}{ll}
\operatorname{minimize} & v_{0} \\
\text { subject to } & u_{0} \leqslant t, v_{0} \leqslant t^{2} \\
& u_{i} \leqslant t u_{i-1}, u_{i} \leqslant t v_{i-1} \tag{LP}\\
& \left.v_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(u_{i-1}+v_{i-1}\right)}\right\} \\
& u_{r} \geqslant 0, v_{r} \geqslant 0
\end{array} \quad \text { for } 1 \leqslant i \leqslant r
$$

where the value of the parameter $t \in \mathbb{R}$ is large enough.

Our approach

Study the limit of the central path of $\operatorname{LP}(t)$ when $t \rightarrow+\infty$ through the "tropical central path".

This talk

Theorem

We can construct a linear program with $3 r+4$ inequalities in dimension $2 r+2$ where the central path has a total curvature in $\Omega\left(2^{r}\right)$.
(1) Preliminaries on tropical geometry
(2) Tropicalizing the central path
(3) Central paths with large curvature

Outline of the talk

(1) Preliminaries on tropical geometry

Tropical algebra and tropical polyhedra

Tropical algebra refers to the semiring $\mathbb{R}_{\max }:=\mathbb{R} \cup\{-\infty\}$ where:

- the addition $x \oplus y$ is $\max (x, y)$
- the multiplication $x \odot y$ is $x+y$

Tropical algebra and tropical polyhedra

Tropical algebra refers to the semiring $\mathbb{R}_{\max }:=\mathbb{R} \cup\{-\infty\}$ where:

- the addition $x \oplus y$ is $\max (x, y)$
- the multiplication $x \odot y$ is $x+y$

Tropical operations extend to matrices and vectors:

$$
A \oplus B=\left(A_{i j} \oplus B_{i j}\right)_{i j} \quad A \odot B=\left(\bigoplus_{k} A_{i k} \odot B_{k j}\right)_{i j}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
\begin{gathered}
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-} \\
\text {with } A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n} \text { and } b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}
\end{gathered}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-}
$$

with $A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n}$ and $b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}$.

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & 1 \\
-\infty & 0 \\
-\infty & 0 \\
-\infty & -\infty \\
4 & -\infty
\end{array}\right) \odot\binom{x_{1}}{x_{2}} \oplus\left(\begin{array}{c}
-\infty \\
-\infty \\
4 \\
8 \\
-\infty
\end{array}\right) \\
& \quad \geqslant\left(\begin{array}{cc}
-\infty & -\infty \\
-10 & -\infty \\
-3 & -\infty \\
0 & 2 \\
-\infty & 0
\end{array}\right) \odot\binom{x_{1}}{x_{2}} \oplus\left(\begin{array}{c}
3 \\
1 \\
-\infty \\
-\infty \\
5
\end{array}\right)
\end{aligned}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-}
$$

with $A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n}$ and $b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}$.

$$
\begin{aligned}
\max \left(x_{1}, 1+x_{2}\right) & \geqslant 3 \\
x_{2} & \geqslant \max \left(-10+x_{1}, 1\right) \\
\max \left(x_{2}, 4\right) & \geqslant-3+x_{1} \\
8 & \geqslant \max \left(x_{1}, 2+x_{2}\right) \\
4+x_{1} & \geqslant \max \left(x_{2}, 5\right)
\end{aligned}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-}
$$

with $A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n}$ and $b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}$.

$$
\begin{aligned}
\max \left(x_{1}, 1+x_{2}\right) & \geqslant 3 \\
x_{2} & \geqslant \max \left(-10+x_{1}, 1\right) \\
\max \left(x_{2}, 4\right) & \geqslant-3+x_{1} \\
8 & \geqslant \max \left(x_{1}, 2+x_{2}\right) \\
4+x_{1} & \geqslant \max \left(x_{2}, 5\right)
\end{aligned}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-}
$$

with $A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n}$ and $b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}$.

$$
\begin{aligned}
\max \left(x_{1}, 1+x_{2}\right) & \geqslant 3 \\
x_{2} & \geqslant \max \left(-10+x_{1}, 1\right) \\
\max \left(x_{2}, 4\right) & \geqslant-3+x_{1} \\
8 & \geqslant \max \left(x_{1}, 2+x_{2}\right) \\
4+x_{1} & \geqslant \max \left(x_{2}, 5\right)
\end{aligned}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-}
$$

with $A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n}$ and $b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}$.

$$
\begin{aligned}
\max \left(x_{1}, 1+x_{2}\right) & \geqslant 3 \\
x_{2} & \geqslant \max \left(-10+x_{1}, 1\right) \\
\max \left(x_{2}, 4\right) & \geqslant-3+x_{1} \\
8 & \geqslant \max \left(x_{1}, 2+x_{2}\right) \\
4+x_{1} & \geqslant \max \left(x_{2}, 5\right)
\end{aligned}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-}
$$

with $A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n}$ and $b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}$.

$$
\begin{aligned}
\max \left(x_{1}, 1+x_{2}\right) & \geqslant 3 \\
x_{2} & \geqslant \max \left(-10+x_{1}, 1\right) \\
\max \left(x_{2}, 4\right) & \geqslant-3+x_{1} \\
8 & \geqslant \max \left(x_{1}, 2+x_{2}\right) \\
4+x_{1} & \geqslant \max \left(x_{2}, 5\right)
\end{aligned}
$$

Tropical algebra and tropical polyhedra (2)

A tropical polyhedron is the set of solutions $x \in \mathbb{R}_{\max }^{n}$ of a system of the form:

$$
A^{+} \odot x \oplus b^{+} \geqslant A^{-} \odot x \oplus b^{-}
$$

with $A^{+}, A^{-} \in \mathbb{R}_{\max }^{m \times n}$ and $b^{+}, b^{-} \in \mathbb{R}_{\max }^{m}$.

$$
\begin{aligned}
\max \left(x_{1}, 1+x_{2}\right) & \geqslant 3 \\
x_{2} & \geqslant \max \left(-10+x_{1}, 1\right) \\
\max \left(x_{2}, 4\right) & \geqslant-3+x_{1} \\
8 & \geqslant \max \left(x_{1}, 2+x_{2}\right)
\end{aligned}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\log _{t}: x \mapsto \frac{\log x}{\log t}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\log _{t}: x \mapsto \frac{\log x}{\log t}
$$

$$
\begin{aligned}
x_{1}+t x_{2} & \geqslant t^{3} \\
x_{2} & \geqslant t^{-10} x_{1}+t \\
x_{2}+t^{4} & \geqslant t^{-3} x_{1} \\
t^{8} & \geqslant x_{1}+t^{2} x_{2} \\
t^{4} x_{1} & \geqslant x_{2}+t^{5}
\end{aligned}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\begin{aligned}
& \log _{t}: x \mapsto \frac{\log x}{\log t} \\
& x_{1}+t x_{2} \geqslant t^{3} \\
& x_{2} \geqslant t^{-10} x_{1}+t \\
& x_{2}+t^{4} \geqslant t^{-3} x_{1} \\
& t^{8} \geqslant x_{1}+t^{2} x_{2} \\
& t^{4} x_{1} \geqslant x_{2}+t^{5}
\end{aligned}
$$

$$
\log _{t} x_{2}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\begin{aligned}
\log _{t}: x & \mapsto \frac{\log x}{\log t} \\
x_{1}+t x_{2} & \geqslant t^{3} \\
x_{2} & \geqslant t^{-10} x_{1}+t \\
x_{2}+t^{4} & \geqslant t^{-3} x_{1} \\
t^{8} & \geqslant x_{1}+t^{2} x_{2} \\
t^{4} x_{1} & \geqslant x_{2}+t^{5}
\end{aligned}
$$

$$
\log _{t} x_{2}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\begin{aligned}
\log _{t}: x & \mapsto \frac{\log x}{\log t} \\
x_{1}+t x_{2} & \geqslant t^{3} \\
x_{2} & \geqslant t^{-10} x_{1}+t \\
x_{2}+t^{4} & \geqslant t^{-3} x_{1} \\
t^{8} & \geqslant x_{1}+t^{2} x_{2} \\
t^{4} x_{1} & \geqslant x_{2}+t^{5}
\end{aligned}
$$

$$
\log _{t} x_{2}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\begin{aligned}
& \log _{t}: x \mapsto \frac{\log x}{\log t} \\
& x_{1}+t x_{2} \geqslant t^{3} \\
& x_{2} \geqslant t^{-10} x_{1}+t \\
& x_{2}+t^{4} \geqslant t^{-3} x_{1} \\
& t^{8} \geqslant x_{1}+t^{2} x_{2} \\
& t^{4} x_{1} \geqslant x_{2}+t^{5}
\end{aligned}
$$

$$
\log _{t} x_{2}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\begin{aligned}
\log _{t}: x & \mapsto \frac{\log x}{\log t} \\
x_{1}+t x_{2} & \geqslant t^{3} \\
x_{2} & \geqslant t^{-10} x_{1}+t \\
x_{2}+t^{4} & \geqslant t^{-3} x_{1} \\
t^{8} & \geqslant x_{1}+t^{2} x_{2} \\
t^{4} x_{1} & \geqslant x_{2}+t^{5}
\end{aligned}
$$

$$
\log _{t} x_{2}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\log _{t}: x \mapsto \frac{\log x}{\log t}
$$

Maslov dequantization

$$
\begin{aligned}
\max \left(\log _{t} x, \log _{t} y\right) & \leqslant \log _{t}(x+y) \leqslant \max \left(\log _{t} x, \log _{t} y\right)+\log _{t} 2 \\
\log _{t}(x \cdot y) & =\log _{t} x+\log _{t} y
\end{aligned}
$$

Tropical polyhedra vs convex polyhedra

Alternative definition

Tropical polyhedra $=$ limits of deformations of classical polyhedra through the map

$$
\log _{t}: x \mapsto \frac{\log x}{\log t}
$$

Maslov dequantization

$$
\begin{aligned}
\max \left(\log _{t} x, \log _{t} y\right) & \leqslant \log _{t}(x+y) \leqslant \max \left(\log _{t} x, \log _{t} y\right)+\log _{t} 2 \\
\log _{t}(x \cdot y) & =\log _{t} x+\log _{t} y
\end{aligned}
$$

Our goal: tropicalizing the central path
Study the central path of a parametric family of LPs:

$$
\begin{array}{ll}
\text { minimize } & \boldsymbol{c}(t)^{\top} x \\
\text { subject to } & \boldsymbol{A}(t) x \leqslant \boldsymbol{b}(t), x \geqslant 0
\end{array}
$$

and its deformation by the $\operatorname{map} \log _{t}(\cdot)$, when t goes to $+\infty$.

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

- containing the power functions $t \mapsto t^{r}$ for all $r \in \mathbb{R}$,

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

- containing the power functions $t \mapsto t^{r}$ for all $r \in \mathbb{R}$,
- functions are "well-behaved", i.e. definable in a o-minimal structure

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

- containing the power functions $t \mapsto t^{r}$ for all $r \in \mathbb{R}$,
- functions are "well-behaved", i.e. definable in a o-minimal structure

The good properties of \mathbb{K}

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

- containing the power functions $t \mapsto t^{r}$ for all $r \in \mathbb{R}$,
- functions are "well-behaved", i.e. definable in a o-minimal structure

The good properties of \mathbb{K}

- \mathbb{K} is real-closed.

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

- containing the power functions $t \mapsto t^{r}$ for all $r \in \mathbb{R}$,
- functions are "well-behaved", i.e. definable in a o-minimal structure

The good properties of \mathbb{K}

- \mathbb{K} is real-closed. In particular, it is ordered:

$$
f \leqslant g \quad \text { if } \quad f(t) \leqslant g(t) \text { for all } t \gg 1
$$

- elements of \mathbb{K} have "polynomial asymptotics":

$$
f(t) \sim p t^{\alpha} \quad \text { when } \quad t \rightarrow+\infty \quad(p, \alpha \in \mathbb{R}, p \neq 0)
$$

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

- containing the power functions $t \mapsto t^{r}$ for all $r \in \mathbb{R}$,
- functions are "well-behaved", i.e. definable in a o-minimal structure

The good properties of \mathbb{K}

- \mathbb{K} is real-closed. In particular, it is ordered:

$$
f \leqslant g \quad \text { if } \quad f(t) \leqslant g(t) \text { for all } t \gg 1
$$

- elements of \mathbb{K} have "polynomial asymptotics":

$$
f(t) \sim p t^{\alpha} \quad \text { when } \quad t \rightarrow+\infty \quad(p, \alpha \in \mathbb{R}, p \neq 0)
$$

A possible setting for tropicalization

The entries of $\boldsymbol{A}(t), \boldsymbol{b}(t)$ and $\boldsymbol{c}(t)$ belong to the Hardy field \mathbb{K}.

Hardy field

Field of germs at $+\infty$ of real-valued functions $t \mapsto f(t)$:

- containing the power functions $t \mapsto t^{r}$ for all $r \in \mathbb{R}$,
- functions are "well-behaved", i.e. definable in a o-minimal structure

The good properties of \mathbb{K}

- \mathbb{K} is real-closed. In particular, it is ordered:

$$
f \leqslant g \quad \text { if } \quad f(t) \leqslant g(t) \text { for all } t \gg 1
$$

- elements of \mathbb{K} have "polynomial asymptotics":

$$
f(t) \sim p t^{\alpha} \quad \text { when } \quad t \rightarrow+\infty \quad(p, \alpha \in \mathbb{R}, p \neq 0)
$$

Makes sense to consider a LP over \mathbb{K}, which encodes a family of LPs over \mathbb{R} :

$$
\text { minimize } c^{\top} x
$$

$$
\text { minimize } c(t)^{\top} x
$$

$$
\text { subject to } \quad \boldsymbol{A} \boldsymbol{x} \leqslant \boldsymbol{b}, \boldsymbol{x} \in\left(\mathbb{K}_{\geqslant 0}\right)^{n} \quad \text { subject to } \quad \boldsymbol{A}(t) x \leqslant \boldsymbol{b}(t), x \in\left(\mathbb{R}_{\geqslant 0}\right)^{n}
$$

A possible setting for tropicalization (2)

Elements of \mathbb{K} have "polynomial asymptotics":

$$
x(t) \sim p t^{\alpha} \quad \text { when } \quad t \rightarrow+\infty \quad(p, \alpha \in \mathbb{R}, p \neq 0)
$$

A possible setting for tropicalization (2)

Elements of \mathbb{K} have "polynomial asymptotics":

$$
x(t) \sim p t^{\alpha} \quad \text { when } \quad t \rightarrow+\infty \quad(p, \alpha \in \mathbb{R}, p \neq 0)
$$

The valuation map over \mathbb{K} is defined by:

$$
\operatorname{val}(x):=\lim _{t \rightarrow+\infty} \log _{t}|x(t)|
$$

A possible setting for tropicalization (2)

Elements of \mathbb{K} have "polynomial asymptotics":

$$
x(t) \sim p t^{\alpha} \quad \text { when } \quad t \rightarrow+\infty \quad(p, \alpha \in \mathbb{R}, p \neq 0)
$$

The valuation map over \mathbb{K} is defined by:

$$
\operatorname{val}(x):=\lim _{t \rightarrow+\infty} \log _{t}|x(t)|=\alpha
$$

A possible setting for tropicalization (2)

Elements of \mathbb{K} have "polynomial asymptotics":

$$
x(t) \sim p t^{\alpha} \quad \text { when } \quad t \rightarrow+\infty \quad(p, \alpha \in \mathbb{R}, p \neq 0)
$$

The valuation map over \mathbb{K} is defined by:

$$
\operatorname{val}(x):=\lim _{t \rightarrow+\infty} \log _{t}|x(t)|=\alpha
$$

The valuation maps the "classical" laws to the tropical ones: $\forall x, y \in \mathbb{K}_{\geqslant 0}$,

$$
\begin{aligned}
\operatorname{val}(x+y) & =\max (\operatorname{val}(x), \operatorname{val}(y)) \\
\operatorname{val}(x \cdot y) & =\operatorname{val}(x)+\operatorname{val}(y)
\end{aligned}
$$

A possible setting for tropicalization (2)

The valuation map over \mathbb{K} is defined by:

$$
\operatorname{val}(x):=\lim _{t \rightarrow+\infty} \log _{t}|x(t)|
$$

Theorem

Let $\mathcal{P} \subset\left(\mathbb{K}_{\geqslant 0}\right)^{n}$ be a convex polyhedron. Then

$$
\operatorname{val}(\mathcal{P})=\lim _{t \rightarrow+\infty} \log _{t} \mathcal{P}(t)
$$

is a tropical polyhedron.

A possible setting for tropicalization (2)

The valuation map over \mathbb{K} is defined by:

$$
\operatorname{val}(x):=\lim _{t \rightarrow+\infty} \log _{t}|x(t)|
$$

Theorem

Let $\mathcal{P} \subset\left(\mathbb{K}_{\geqslant 0}\right)^{n}$ be a convex polyhedron. Then

$$
\operatorname{val}(\mathcal{P})=\lim _{t \rightarrow+\infty} \log _{t} \mathcal{P}(t)
$$

is a tropical polyhedron.

$$
\begin{aligned}
t^{3} & \leqslant x_{1}+t x_{2} \\
t^{-10} x_{1}+t & \leqslant x_{2} \\
t^{-3} x_{1} & \leqslant x_{2}+t^{4} \\
x_{1}+t^{2} x_{2} & \leqslant t^{8} \\
x_{2}+t^{5} & \leqslant t^{4} x_{1}
\end{aligned}
$$

Outline of the talk

(1) Preliminaries on tropical geometry
(2) Tropicalizing the central path

The central path over the Hardy field

Given $\boldsymbol{A} \in \mathbb{K}^{m \times n}, \boldsymbol{b} \in \mathbb{K}^{m}$ and $\boldsymbol{c} \in \mathbb{K}^{n}$, consider the following LP: minimize $c^{\top} x$ subject to $A x \leqslant b, x \geqslant 0$
$\operatorname{LP}(A, b, c)$
$x \in \mathbb{K}^{n}$

The central path over the Hardy field

Given $\boldsymbol{A} \in \mathbb{K}^{m \times n}, \boldsymbol{b} \in \mathbb{K}^{m}$ and $\boldsymbol{c} \in \mathbb{K}^{n}$, consider the following LP: minimize $c^{\top} x$
subject to $\boldsymbol{A x}+w=\boldsymbol{b}, \boldsymbol{x} \geqslant 0, w \geqslant 0$
$\mathbf{L P}(A, b, c)$

$$
(x, w) \in \mathbb{K}^{n} \times \mathbb{K}^{m}
$$

The central path over the Hardy field

Given $\boldsymbol{A} \in \mathbb{K}^{m \times n}, \boldsymbol{b} \in \mathbb{K}^{m}$ and $\boldsymbol{c} \in \mathbb{K}^{n}$, consider the following LP: minimize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to $A x+w=b, x \geqslant 0, w \geqslant 0$
$\operatorname{LP}(A, b, c)$

$$
(\boldsymbol{x}, \boldsymbol{w}) \in \mathbb{K}^{n} \times \mathbb{K}^{m}
$$

Proposition

For all $\boldsymbol{\mu} \in \mathbb{K}_{>0}$, the log-barrier problem over the Hardy field

$$
\begin{array}{ll}
\text { minimize } & \boldsymbol{c}^{\top} \boldsymbol{x}-\boldsymbol{\mu}\left(\sum_{j=1}^{n} \log \left(\boldsymbol{x}_{j}\right)+\sum_{i=1}^{m} \log \left(\boldsymbol{w}_{i}\right)\right) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}=\boldsymbol{b}, \boldsymbol{x}>0, \boldsymbol{w}>0
\end{array}
$$

has a unique solution $\left(x^{\mu}, w^{\mu}\right)$.

The central path over the Hardy field

Given $\boldsymbol{A} \in \mathbb{K}^{m \times n}, \boldsymbol{b} \in \mathbb{K}^{m}$ and $\boldsymbol{c} \in \mathbb{K}^{n}$, consider the following LP: minimize $\boldsymbol{c}^{\top} \boldsymbol{x}$

$$
\text { subject to } A x+w=b, x \geqslant 0, w \geqslant 0
$$

$$
\operatorname{LP}(A, b, c)
$$

$$
(\boldsymbol{x}, \boldsymbol{w}) \in \mathbb{K}^{n} \times \mathbb{K}^{m}
$$

Proposition

For all $\boldsymbol{\mu} \in \mathbb{K}_{>0}$, the log-barrier problem over the Hardy field

$$
\begin{array}{ll}
\text { minimize } & c^{\top} x-\mu\left(\sum_{j=1}^{n} \log \left(x_{j}\right)+\sum_{i=1}^{m} \log \left(w_{i}\right)\right) \\
\text { subject to } & A x+w=\boldsymbol{b}, \boldsymbol{x}>0, \boldsymbol{w}>0
\end{array}
$$

has a unique solution $\left(x^{\mu}, w^{\mu}\right)$.

Proof

The expansion of our o-minimal structure with the function \log is also o-minimal (van den Dries et al., 1994).
\Longrightarrow the resulting Hardy field still has nice model theoretic properties.

The central path over the Hardy field

Given $\boldsymbol{A} \in \mathbb{K}^{m \times n}, \boldsymbol{b} \in \mathbb{K}^{m}$ and $\boldsymbol{c} \in \mathbb{K}^{n}$, consider the following LP: minimize $\boldsymbol{c}^{\top} \boldsymbol{x}$

$$
\text { subject to } A x+w=b, x \geqslant 0, w \geqslant 0
$$

$$
\operatorname{LP}(A, b, c)
$$

$$
(\boldsymbol{x}, \boldsymbol{w}) \in \mathbb{K}^{n} \times \mathbb{K}^{m}
$$

Proposition

For all $\boldsymbol{\mu} \in \mathbb{K}_{>0}$, the log-barrier problem over the Hardy field

$$
\begin{array}{ll}
\text { minimize } & \boldsymbol{c}^{\top} \boldsymbol{x}-\boldsymbol{\mu}\left(\sum_{j=1}^{n} \log \left(\boldsymbol{x}_{j}\right)+\sum_{i=1}^{m} \log \left(\boldsymbol{w}_{i}\right)\right) \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}=\boldsymbol{b}, \boldsymbol{x}>0, \boldsymbol{w}>0
\end{array}
$$

has a unique solution $\left(x^{\mu}, w^{\mu}\right)$.

Proof

The expansion of our o-minimal structure with the function \log is also o-minimal (van den Dries et al., 1994).
\Longrightarrow the resulting Hardy field still has nice model theoretic properties.
The proposition is valid over the reals, so it is still valid over the Hardy field.

The tropical central path

Two points of view:

- over the Hardy field, the central path of $\mathbf{L P}(A, b, c)$

$$
\boldsymbol{\mu} \mapsto \mathcal{C}(\boldsymbol{\mu})
$$

- over the reals, the central path $\mu \mapsto \mathcal{C}_{t}(\mu)$ of

$$
\operatorname{LP}(\boldsymbol{A}(t), \boldsymbol{b}(t), \boldsymbol{c}(t)) \equiv \min \left\{\boldsymbol{c}(t)^{\top} x \mid \boldsymbol{A}(t) x+w=\boldsymbol{b}(t), x, w \geqslant 0\right\}
$$

The tropical central path

Two points of view:

- over the Hardy field, the central path of $\operatorname{LP}(A, b, c)$

$$
\boldsymbol{\mu} \mapsto \mathcal{C}(\boldsymbol{\mu})
$$

- over the reals, the central path $\mu \mapsto \mathcal{C}_{t}(\mu)$ of

$$
\operatorname{LP}(\boldsymbol{A}(t), \boldsymbol{b}(t), \boldsymbol{c}(t)) \equiv \min \left\{\boldsymbol{c}(t)^{\top} x \mid \boldsymbol{A}(t) x+w=\boldsymbol{b}(t), x, w \geqslant 0\right\}
$$

Proposition

For all $\boldsymbol{\mu} \in \mathbb{K}_{>0}$, we have

$$
\operatorname{val}(\mathcal{C}(\boldsymbol{\mu}))=\lim _{t \rightarrow+\infty} \log _{t} \mathcal{C}_{t}(\boldsymbol{\mu}(t))
$$

and the latter quantity only depends on the valuation of μ.

The tropical central path

Proposition

For all $\boldsymbol{\mu} \in \mathbb{K}_{>0}$, we have

$$
\operatorname{val}(\mathcal{C}(\boldsymbol{\mu}))=\lim _{t \rightarrow+\infty} \log _{t} \mathcal{C}_{t}(\boldsymbol{\mu}(t))
$$

and the latter quantity only depends on the valuation of μ.

$C_{t}($.

$\log _{t} \mathcal{C}_{t}(\cdot)$

The tropical central path

Proposition

For all $\boldsymbol{\mu} \in \mathbb{K}_{>0}$, we have

$$
\operatorname{val}(\mathcal{C}(\boldsymbol{\mu}))=\lim _{t \rightarrow+\infty} \log _{t} \mathcal{C}_{t}(\boldsymbol{\mu}(t))
$$

and the latter quantity only depends on the valuation of μ.

$\mathcal{C}_{t}(\cdot)$

$\log _{t} \mathcal{C}_{t}(\cdot)$

Definition

The tropical central path is defined as the map

$$
\lambda \mapsto \mathcal{C}^{\operatorname{trop}}(\lambda):=\operatorname{val}\left(\mathcal{C}\left(t^{\lambda}\right)\right)
$$

The tropical central path

Proposition

For all $\boldsymbol{\mu} \in \mathbb{K}_{>0}$, we have

$$
\operatorname{val}(\mathcal{C}(\boldsymbol{\mu}))=\lim _{t \rightarrow+\infty} \log _{t} \mathcal{C}_{t}(\boldsymbol{\mu}(t))
$$

and the latter quantity only depends on the valuation of μ.

$\mathcal{C}_{t}(\cdot)$

$\log _{t} \mathcal{C}_{t}(\cdot)$

Definition

The tropical central path is defined as the map

$$
\lambda \mapsto \mathcal{C}^{\operatorname{trop}}(\lambda):=\operatorname{val}\left(\mathcal{C}\left(t^{\lambda}\right)\right)=\lim _{t \rightarrow+\infty} \log _{t} \mathcal{C}_{t}\left(t^{\lambda}\right)
$$

Geometric characterization of the tropical central path

Relies on the notion of barycenter of a tropical polyhedron \mathcal{P}
$=$ greatest point of the set \mathcal{P} for the coordinate-wise order \leqslant

Geometric characterization of the tropical central path

Relies on the notion of barycenter of a tropical polyhedron \mathcal{P} $=$ greatest point of the set \mathcal{P} for the coordinate-wise order \leqslant

Let \mathcal{P} be the feasible set of $\mathbf{L P}(A, b, c) \equiv \min \left\{\boldsymbol{c}^{\top} \boldsymbol{x} \mid A x+w=\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{w} \geqslant 0\right\}$ Assume, for simplicity, $b, c \geqslant 0$.

Geometric characterization of the tropical central path

Relies on the notion of barycenter of a tropical polyhedron \mathcal{P}
$=$ greatest point of the set \mathcal{P} for the coordinate-wise order \leqslant
Let \mathcal{P} be the feasible set of $\mathbf{L P}(A, b, c) \equiv \min \left\{\boldsymbol{c}^{\top} \boldsymbol{x} \mid \boldsymbol{A x}+\boldsymbol{w}=\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{w} \geqslant 0\right\}$ Assume, for simplicity, $b, c \geqslant 0$.

Tropical notation
$\mathcal{P}:=\operatorname{val}(\mathcal{P}), \quad c:=\operatorname{val}(c)$

Geometric characterization of the tropical central path

Relies on the notion of barycenter of a tropical polyhedron \mathcal{P}
$=$ greatest point of the set \mathcal{P} for the coordinate-wise order \leqslant
Let \mathcal{P} be the feasible set of $\mathbf{L P}(A, b, c) \equiv \min \left\{\boldsymbol{c}^{\top} \boldsymbol{x} \mid A x+w=\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{w} \geqslant 0\right\}$ Assume, for simplicity, $b, c \geqslant 0$.

Tropical notation
$\mathcal{P}:=\operatorname{val}(\mathcal{P}), \quad c:=\operatorname{val}(c)$

Theorem

The point $\mathcal{C}^{\text {trop }}(\lambda)$ of the tropical central path is given by the barycenter of

$$
\mathcal{P} \cap\left\{(x, w) \in\left(\mathbb{R}_{\max }\right)^{n+m} \mid c^{\top} \odot x \leqslant \lambda\right\}
$$

Geometric characterization of the tropical central path

Relies on the notion of barycenter of a tropical polyhedron \mathcal{P}
$=$ greatest point of the set \mathcal{P} for the coordinate-wise order \leqslant
Let \mathcal{P} be the feasible set of $\mathbf{L P}(A, b, c) \equiv \min \left\{c^{\top} x \mid A x+w=b, x, w \geqslant 0\right\}$ Assume, for simplicity, $b, c \geqslant 0$.

Tropical notation
$\mathcal{P}:=\operatorname{val}(\mathcal{P}), \quad c:=\operatorname{val}(c)$

Theorem

The point $\mathcal{C}^{\text {trop }}(\lambda)$ of the tropical central path is given by the barycenter of

$$
\mathcal{P} \cap\left\{(x, w) \in\left(\mathbb{R}_{\max }\right)^{n+m} \mid c^{\top} \odot x \leqslant \lambda\right\}
$$

Remark

The tropical central path does not depend on the representation of \mathcal{P}.

Geometric characterization of the tropical central path (2)

$$
\begin{aligned}
& \operatorname{minimize} \quad x_{1}+t^{3} x_{2} \\
& x_{1}+x_{2} \leqslant 2 \\
& t x_{1} \leqslant 1+t^{2} x_{2} \\
& t x_{2} \leqslant 1+t^{3} x_{1} \\
&(\mathcal{P}) \quad x_{1} \leqslant t^{2} x_{2} \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

minimize $\max \left(x_{1}, 3+x_{2}\right)$

$$
\max \left(x_{1}, x_{2}\right) \leqslant 0
$$

$$
1+x_{1} \leqslant \max \left(0,2+x_{2}\right)
$$

$$
1+x_{2} \leqslant \max \left(0,3+x_{1}\right)
$$

$$
x_{1} \leqslant 2+x_{2}
$$

Geometric characterization of the tropical central path (2)

$$
\begin{aligned}
& \operatorname{minimize} \quad x_{1}+t^{3} x_{2} \\
& x_{1}+x_{2} \leqslant 2 \\
& t x_{1} \leqslant 1+t^{2} x_{2} \\
& t x_{2} \leqslant 1+t^{3} x_{1} \\
&(\mathcal{P}) \quad x_{1} \leqslant t^{2} x_{2} \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

minimize $\max \left(x_{1}, 3+x_{2}\right)$

$$
\max \left(x_{1}, x_{2}\right) \leqslant 0
$$

$$
1+x_{1} \leqslant \max \left(0,2+x_{2}\right)
$$

$$
1+x_{2} \leqslant \max \left(0,3+x_{1}\right)
$$

$$
x_{1} \leqslant 2+x_{2}
$$

Geometric characterization of the tropical central path (2)

minimize $x_{1}+t^{3} x_{2}$

$$
x_{1}+x_{2} \leq 2
$$

$$
t x_{1} \leqslant 1+t^{2} x_{2}
$$

$$
(\mathcal{P}) \quad t x_{2} \leqslant 1+t^{3} x_{1}
$$

$$
x_{1} \leqslant t^{2} x_{2}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

$$
\begin{aligned}
& \operatorname{minimize} \quad \max \left(x_{1}, 3+x_{2}\right) \\
& \max \left(x_{1}, x_{2}\right) \leqslant 0 \\
& 1+x_{1} \leqslant \max \left(0,2+x_{2}\right) \\
& 1+x_{2} \leqslant \max \left(0,3+x_{1}\right) \\
& x_{1} \leqslant 2+x_{2}
\end{aligned}
$$

Geometric characterization of the tropical central path (2)

minimize $x_{1}+t^{3} x_{2}$

$$
x_{1}+x_{2} \leq 2
$$

$$
t x_{1} \leqslant 1+t^{2} x_{2}
$$

$$
(\mathcal{P}) \quad t x_{2} \leqslant 1+t^{3} x_{1}
$$

$$
x_{1} \leqslant t^{2} x_{2}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

Geometric characterization of the tropical central path (2)

minimize $x_{1}+t^{3} x_{2}$

$$
x_{1}+x_{2} \leq 2
$$

$$
t x_{1} \leqslant 1+t^{2} x_{2}
$$

$$
(\mathcal{P}) \quad t x_{2} \leqslant 1+t^{3} x_{1}
$$

$$
x_{1} \leqslant t^{2} x_{2}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

$$
\begin{aligned}
& \operatorname{minimize} \quad \max \left(x_{1}, 3+x_{2}\right) \\
& \max \left(x_{1}, x_{2}\right) \leqslant 0 \\
& 1+x_{1} \leqslant \max \left(0,2+x_{2}\right) \\
& 1+x_{2} \leqslant \max \left(0,3+x_{1}\right) \\
& x_{1} \leqslant 2+x_{2}
\end{aligned}
$$

Geometric characterization of the tropical central path (2)

$$
\begin{aligned}
& \operatorname{minimize} \quad x_{1}+t^{3} x_{2} \\
& x_{1}+x_{2} \leqslant 2 \\
& t x_{1} \leqslant 1+t^{2} x_{2} \\
& t x_{2} \leqslant 1+t^{3} x_{1} \\
&(\mathcal{P}) \quad x_{1} \leqslant t^{2} x_{2} \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

minimize $\max \left(x_{1}, 3+x_{2}\right)$

$$
\max \left(x_{1}, x_{2}\right) \leqslant 0
$$

$$
1+x_{1} \leqslant \max \left(0,2+x_{2}\right)
$$

$$
1+x_{2} \leqslant \max \left(0,3+x_{1}\right)
$$

$$
x_{1} \leqslant 2+x_{2}
$$

Geometric characterization of the tropical central path (2)

$$
\begin{aligned}
& \operatorname{minimize} \quad x_{1}+t^{3} x_{2} \\
& x_{1}+x_{2} \leqslant 2 \\
& t x_{1} \leqslant 1+t^{2} x_{2} \\
& t x_{2} \leqslant 1+t^{3} x_{1} \\
&(\mathcal{P}) \quad x_{1} \leqslant t^{2} x_{2} \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

minimize $\max \left(x_{1}, 3+x_{2}\right)$

$$
\max \left(x_{1}, x_{2}\right) \leqslant 0
$$

$$
1+x_{1} \leqslant \max \left(0,2+x_{2}\right)
$$

$$
1+x_{2} \leqslant \max \left(0,3+x_{1}\right)
$$

$$
x_{1} \leqslant 2+x_{2}
$$

Geometric characterization of the tropical central path (2)

minimize $x_{1}+t^{3} x_{2}$

$$
x_{1}+x_{2} \leq 2
$$

$$
t x_{1} \leqslant 1+t^{2} x_{2}
$$

$$
(\mathcal{P}) \quad t x_{2} \leqslant 1+t^{3} x_{1}
$$

$$
x_{1} \leqslant t^{2} x_{2}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

$$
\begin{aligned}
& \operatorname{minimize} \quad \max \left(x_{1}, 3+x_{2}\right) \\
& \max \left(x_{1}, x_{2}\right) \leqslant 0 \\
& 1+x_{1} \leqslant \max \left(0,2+x_{2}\right) \\
& 1+x_{2} \leqslant \max \left(0,3+x_{1}\right) \\
& x_{1} \leqslant 2+x_{2}
\end{aligned}
$$

Geometric characterization of the tropical central path (2)

minimize $\quad x_{1}+t^{3} x_{2}$

$$
x_{1}+x_{2} \leqslant 2
$$

$$
t x_{1} \leqslant 1+t^{2} x_{2}
$$

$(\mathcal{P}) \quad t x_{2} \leqslant 1+t^{3} x_{1}$
$x_{1} \leqslant t^{2} x_{2}$

$$
x_{1}, x_{2} \geqslant 0
$$

$$
\begin{aligned}
& \operatorname{minimize} \quad \max \left(x_{1}, 3+x_{2}\right) \\
& \max \left(x_{1}, x_{2}\right) \leqslant 0 \\
& 1+x_{1} \leqslant \max \left(0,2+x_{2}\right) \\
& 1+x_{2} \leqslant \max \left(0,3+x_{1}\right) \\
& x_{1} \leqslant 2+x_{2}
\end{aligned}
$$

Geometric characterization of the tropical central path (2)

minimize $x_{1}+t^{3} x_{2}$

$$
x_{1}+x_{2} \leqslant 2
$$

$$
t x_{1} \leqslant 1+t^{2} x_{2}
$$

$$
(\mathcal{P}) \quad t x_{2} \leqslant 1+t^{3} x_{1}
$$

$$
x_{1} \leqslant t^{2} x_{2}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

$$
\begin{aligned}
& \operatorname{minimize} \quad \max \left(x_{1}, 3+x_{2}\right) \\
& \max \left(x_{1}, x_{2}\right) \leqslant 0 \\
& 1+x_{1} \leqslant \max \left(0,2+x_{2}\right) \\
& 1+x_{2} \leqslant \max \left(0,3+x_{1}\right) \\
& x_{1} \leqslant 2+x_{2}
\end{aligned}
$$

Sketch of the proof

Let us fix $\lambda \in \mathbb{R}$, and let $\mu:=t^{\lambda}$.
Consider the penalized function

$$
\Phi(x, w)=\frac{c^{\top} x}{\mu} \quad-\quad\left(\sum_{j=1}^{n} \log \left(x_{j}\right)+\sum_{i=1}^{m} \log \left(w_{i}\right)\right)
$$

defined over the (relative) interior of \mathcal{P}.

Sketch of the proof

Let us fix $\lambda \in \mathbb{R}$, and let $\mu:=t^{\lambda}$.
Consider the penalized function

$$
\begin{aligned}
\Phi(x, w)= & \frac{\boldsymbol{c}^{\top} x}{\boldsymbol{\mu}}-\left(\sum_{j=1}^{n} \log \left(x_{j}\right)+\sum_{i=1}^{m} \log \left(w_{i}\right)\right) \\
& \sim \gamma t^{(\operatorname{val}(c) \odot \operatorname{val}(x))-\lambda} \quad=\left(\sum_{j=1}^{n} \operatorname{val}\left(x_{j}\right)+\sum_{i=1}^{m} \operatorname{val}\left(w_{i}\right)\right) \log t+O(1)
\end{aligned}
$$

defined over the (relative) interior of \mathcal{P}.

Sketch of the proof

Let us fix $\lambda \in \mathbb{R}$, and let $\mu:=t^{\lambda}$.
Consider the penalized function

$$
\begin{aligned}
\Phi(x, w)= & \frac{\boldsymbol{c}^{\top} x}{\mu}-\left(\sum_{j=1}^{n} \log \left(x_{j}\right)+\sum_{i=1}^{m} \log \left(w_{i}\right)\right) \\
& \sim \gamma t^{(\operatorname{val}(c) \odot \operatorname{val}(x))-\lambda} \quad=\left(\sum_{j=1}^{n} \operatorname{val}\left(x_{j}\right)+\sum_{i=1}^{m} \operatorname{val}\left(w_{i}\right)\right) \log t+O(1)
\end{aligned}
$$

defined over the (relative) interior of \mathcal{P}.

- if $\operatorname{val}(c) \odot \operatorname{val}(x)>\lambda$,

$$
[\Phi(x, w)](t) \sim \gamma t^{(\operatorname{val}(c) \odot \operatorname{val}(x))-\lambda} \quad(\gamma>0)
$$

Sketch of the proof

Let us fix $\lambda \in \mathbb{R}$, and let $\mu:=t^{\lambda}$.
Consider the penalized function

$$
\begin{aligned}
\Phi(x, w)= & \frac{c^{\top} x}{\mu}-\left(\sum_{j=1}^{n} \log \left(x_{j}\right)+\sum_{i=1}^{m} \log \left(w_{i}\right)\right) \\
& \sim \gamma t^{(\operatorname{val}(c) \odot \operatorname{val}(x))-\lambda} \quad=\left(\sum_{j=1}^{n} \operatorname{val}\left(x_{j}\right)+\sum_{i=1}^{m} \operatorname{val}\left(w_{i}\right)\right) \log t+O(1)
\end{aligned}
$$

defined over the (relative) interior of \mathcal{P}.

- if $\operatorname{val}(c) \odot \operatorname{val}(x)>\lambda$,

$$
[\Phi(x, w)](t) \sim \gamma t^{(\operatorname{val}(c) \odot \operatorname{val}(x))-\lambda} \quad(\gamma>0)
$$

- if $\operatorname{val}(c) \odot \operatorname{val}(x) \leqslant \lambda$, then

$$
[\Phi(x, w)](t)=-\left(\sum_{j=1}^{n} \operatorname{val}\left(x_{j}\right)+\sum_{i=1}^{m} \operatorname{val}\left(w_{i}\right)\right) \log t+O(1)
$$

Sketch of the proof

Let us fix $\lambda \in \mathbb{R}$, and let $\mu:=t^{\lambda}$.
Consider the penalized function

$$
\begin{aligned}
& \Phi(x, w)= \frac{\boldsymbol{c}^{\top} x}{\mu}-\left(\sum_{j=1}^{n} \log \left(x_{j}\right)+\sum_{i=1}^{m} \log \left(w_{i}\right)\right) \\
& \sim \gamma t^{(\operatorname{val}(c) \odot \operatorname{val}(x))-\lambda} \quad=\left(\sum_{j=1}^{n} \operatorname{val}\left(x_{j}\right)+\sum_{i=1}^{m} \operatorname{val}\left(w_{i}\right)\right) \log t+O(1)
\end{aligned}
$$

defined over the (relative) interior of \mathcal{P}.
\Longrightarrow the (unique) minimal point $\left(x^{\mu}, w^{\mu}\right)$ of Φ has to satisfy $\operatorname{val}(c) \odot \operatorname{val}\left(x^{\mu}\right) \leqslant \lambda$

Sketch of the proof

Let us fix $\lambda \in \mathbb{R}$, and let $\mu:=t^{\lambda}$.
Consider the penalized function

$$
\begin{aligned}
\Phi(x, w)= & \frac{\boldsymbol{c}^{\top} x}{\mu}-\left(\sum_{j=1}^{n} \log \left(x_{j}\right)+\sum_{i=1}^{m} \log \left(w_{i}\right)\right) \\
& \sim \gamma^{(v a l(c) \odot \operatorname{val}(x))-\lambda} \quad=\left(\sum_{j=1}^{n} \operatorname{val}\left(x_{j}\right)+\sum_{i=1}^{m} \operatorname{val}\left(w_{i}\right)\right) \log t+O(1)
\end{aligned}
$$

defined over the (relative) interior of \mathcal{P}.
\Longrightarrow the (unique) minimal point $\left(x^{\mu}, w^{\mu}\right)$ of Φ has to satisfy $\operatorname{val}(c) \odot \operatorname{val}\left(x^{\mu}\right) \leqslant \lambda$

+ the point $\operatorname{val}\left(x^{\mu}, w^{\mu}\right)$ maximizes the function

$$
(x, w) \mapsto \sum_{j=1}^{n} x_{j}+\sum_{i=1}^{m} w_{i}
$$

over the tropical polyhedron $\mathcal{P} \cap\left\{c^{\top} \odot x \leqslant \lambda\right\}$.

Outline of the talk

(1) Preliminaries on tropical geometry
(3) Central paths with large curvature

Our counterexample to the continuous Hirsch conjecture

minimize $\quad \boldsymbol{v}_{0}$
subject to $\quad \boldsymbol{u}_{0} \leqslant t$
$v_{0} \leqslant t^{2}$
$\left.\begin{array}{l}\boldsymbol{u}_{i} \leqslant t \boldsymbol{u}_{i-1} \\ \boldsymbol{u}_{i} \leqslant t \boldsymbol{v}_{i-1} \\ \boldsymbol{v}_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(\boldsymbol{u}_{i-1}+\boldsymbol{v}_{i-1}\right)}\end{array}\right\}$ for $1 \leqslant i \leqslant r$
$\boldsymbol{u}_{r} \geqslant 0, \boldsymbol{v}_{r} \geqslant 0$

Our counterexample to the continuous Hirsch conjecture minimize v_{0}
subject to $\quad \boldsymbol{u}_{0} \leqslant t$
$v_{0} \leqslant t^{2}$
$\left.\begin{array}{l}\boldsymbol{u}_{i} \leqslant t \boldsymbol{u}_{i-1} \\ \boldsymbol{u}_{i} \leqslant t \boldsymbol{v}_{i-1} \\ \boldsymbol{v}_{i} \leqslant t^{1-\frac{1}{2^{i}}}\left(\boldsymbol{u}_{i-1}+\boldsymbol{v}_{i-1}\right)\end{array}\right\}$ for $1 \leqslant i \leqslant r$
$\boldsymbol{u}_{r} \geqslant 0, \boldsymbol{v}_{r} \geqslant 0$

Tropical central path

The point $\mathcal{C}^{\text {trop }}(\lambda)$ is the greatest point of

$$
\left.\begin{array}{l}
v_{0} \leqslant \lambda \\
u_{0} \leqslant 1, \quad v_{0} \leqslant 2 \\
u_{i} \leqslant 1+u_{i-1} \\
u_{i} \leqslant 1+v_{i-1} \\
v_{i} \leqslant\left(1-\frac{1}{2^{i}}\right)+\max \left(u_{i-1}, v_{i-1}\right)
\end{array}\right\} \text { for } 1 \leqslant i \leqslant r
$$

Our counterexample to the continuous Hirsch conjecture

$\operatorname{minimize} \quad v_{0}$
subject to $\quad \boldsymbol{u}_{0} \leqslant t$

$$
\left.\begin{array}{l}
\boldsymbol{v}_{0} \leqslant t^{2} \\
\boldsymbol{u}_{i} \leqslant t \boldsymbol{u}_{i-1} \\
\boldsymbol{u}_{i} \leqslant t \boldsymbol{v}_{i-1} \\
\boldsymbol{v}_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(\boldsymbol{u}_{i-1}+\boldsymbol{v}_{i-1}\right)} \\
\boldsymbol{u}_{r} \geqslant 0, \boldsymbol{v}_{r} \geqslant 0
\end{array}\right\}
$$

Tropical central path

The point $\mathcal{C}^{\text {trop }}(\lambda)$ is given by

$$
\left.\begin{array}{rl}
u_{0} & =1 \\
v_{0} & =\min (\lambda, 2) \\
u_{i} & =1+\min \left(u_{i-1}, v_{i-1}\right) \\
v_{i} & =\left(1-\frac{1}{2^{i}}\right)+\max \left(u_{i-1}, v_{i-1}\right)
\end{array}\right\} \text { for } 1 \leqslant i \leqslant r
$$

Our counterexample to the continuous Hirsch conjecture

$\operatorname{minimize} \quad v_{0}$
subject to $\quad \boldsymbol{u}_{0} \leqslant t$

$$
\left.\begin{array}{l}
\boldsymbol{v}_{0} \leqslant t^{2} \\
\boldsymbol{u}_{i} \leqslant t \boldsymbol{u}_{i-1} \\
\boldsymbol{u}_{i} \leqslant t \boldsymbol{v}_{i-1} \\
\boldsymbol{v}_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(\boldsymbol{u}_{i-1}+\boldsymbol{v}_{i-1}\right)} \\
\boldsymbol{u}_{r} \geqslant 0, \boldsymbol{v}_{r} \geqslant 0
\end{array}\right\}
$$

Tropical central path

The point $\mathcal{C}^{\text {trop }}(\lambda)$ is given by

$$
\left.\begin{array}{rl}
u_{0} & =1 \\
v_{0} & =\min (\lambda, 2) \\
u_{i} & =1+\min \left(u_{i-1}, v_{i-1}\right) \\
v_{i} & =\left(1-\frac{1}{2^{i}}\right)+\max \left(u_{i-1}, v_{i-1}\right)
\end{array}\right\} \text { for } 1 \leqslant i \leqslant r
$$

Our counterexample to the continuous Hirsch conjecture

$\operatorname{minimize} \quad v_{0}$
subject to $\quad \boldsymbol{u}_{0} \leqslant t$

$$
\left.\begin{array}{l}
\boldsymbol{v}_{0} \leqslant t^{2} \\
\boldsymbol{u}_{i} \leqslant t \boldsymbol{u}_{i-1} \\
\boldsymbol{u}_{i} \leqslant t \boldsymbol{v}_{i-1} \\
\boldsymbol{v}_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(\boldsymbol{u}_{i-1}+\boldsymbol{v}_{i-1}\right)} \\
\boldsymbol{u}_{r} \geqslant 0, \boldsymbol{v}_{r} \geqslant 0
\end{array}\right\}
$$

Tropical central path

The point $\mathcal{C}^{\text {trop }}(\lambda)$ is given by

$$
\left.\begin{array}{rl}
u_{0} & =1 \\
v_{0} & =\min (\lambda, 2) \\
u_{i} & =1+\min \left(u_{i-1}, v_{i-1}\right) \\
v_{i} & =\left(1-\frac{1}{2^{i}}\right)+\max \left(u_{i-1}, v_{i-1}\right)
\end{array}\right\} \text { for } 1 \leqslant i \leqslant r
$$

Our counterexample to the continuous Hirsch conjecture

$\operatorname{minimize} \quad \boldsymbol{v}_{0}$
subject to $\quad \boldsymbol{u}_{0} \leqslant t$
$v_{0} \leqslant t^{2}$
$\left.\begin{array}{l}\boldsymbol{u}_{i} \leqslant t \boldsymbol{u}_{i-1} \\ \boldsymbol{u}_{i} \leqslant t \boldsymbol{v}_{i-1} \\ \boldsymbol{v}_{i} \leqslant t^{1-\frac{1}{2^{i}}\left(\boldsymbol{u}_{i-1}+\boldsymbol{v}_{i-1}\right)}\end{array}\right\}$ for $1 \leqslant i \leqslant r$
$\boldsymbol{u}_{r} \geqslant 0, \boldsymbol{v}_{r} \geqslant 0$

Tropical central path

The point $\mathcal{C}^{\text {trop }}(\lambda)$ is given by

$$
\left.\begin{array}{l}
u_{0}=1 \\
v_{0}=\min (\lambda, 2) \\
u_{i}=1+\min \left(u_{i-1}, v_{i-1}\right) \\
v_{i}=\left(1-\frac{1}{2^{i}}\right)+\max \left(u_{i-1}, v_{i-1}\right)
\end{array}\right\} \text { for } 1 \leqslant i \leqslant r
$$

Our counterexample to the continuous Hirsch conjecture (2)
In the $\left(u_{r}, v_{r}\right)$-plane, the tropical central path looks like a staircase with 2^{r} steps:

Total curvature

Definition

The total curvature of a curve is defined as

Total curvature

Definition

The total curvature of a curve is defined as

- polygonal curve:

Total curvature

Definition

The total curvature of a curve is defined as

- polygonal curve: sum of the angles

Total curvature

Definition

The total curvature of a curve is defined as

- polygonal curve: sum of the angles
- arbitrary curve:

Total curvature

Definition

The total curvature of a curve is defined as

- polygonal curve: sum of the angles
- arbitrary curve: sup of total curvature of inscribed polygonal curves

Curvature analysis

In the $\left(u_{r}, v_{r}\right)$-plane, the tropical central path looks like:

Curvature analysis

In the $\left(\boldsymbol{u}_{r}, \boldsymbol{v}_{r}\right)$-plane, the preimage under $\log _{t}$ of the tropical central path looks like:

Curvature analysis

In the $\left(\boldsymbol{u}_{r}, \boldsymbol{v}_{r}\right)$-plane, the preimage under $\log _{t}$ of the tropical central path looks like:

Curvature analysis

In the $\left(\boldsymbol{u}_{r}, \boldsymbol{v}_{r}\right)$-plane, the preimage under $\log _{t}$ of the tropical central path looks like:

Curvature analysis

In the $\left(\boldsymbol{u}_{r}, \boldsymbol{v}_{r}\right)$-plane, the preimage under $\log _{t}$ of the tropical central path looks like:

$\Longrightarrow \lim \inf \left(\right.$ total curvature of $\left.\mathcal{C}_{t}\right) \geqslant\left(2^{r}-1\right) \frac{\pi}{2}$ when $t \rightarrow+\infty$.

Thank you!

Long and winding central paths, arXiv:1405.4161
D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear programming. I. Affine and projective scaling trajectories. Trans. Amer. Math. Soc., 314(2):499-526, 1989. ISSN 0002-9947. doi: 10.2307/2001396. URL
http://dx.doi.org/10.2307/2001396.
J.A. De Loera, B. Sturmfels, and C. Vinzant. The central curve in linear programming. Foundations of Computational Mathematics, 12(4):509-540, 2012.
J.-P. Dedieu and M. Shub. Newton flow and interior point methods in linear programming. International Journal of Bifurcation and Chaos, 15(03):827-839, 2005.
J.-P. Dedieu, G. Malajovich, and M. Shub. On the curvature of the central path of linear programming theory. Foundations of Computational Mathematics, 5(2): 145-171, 2005.
A. Deza, T. Terlaky, and Y. Zinchenko. Central path curvature and iteration-complexity for redundant Klee-Minty cubes. In Advances in applied mathematics and global optimization, volume 17 of Adv. Mech. Math., pages 223-256. Springer, New York, 2009. doi: 10.1007/978-0-387-75714-8_7. URL http://dx.doi.org/10.1007/978-0-387-75714-8_7.
N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373-395, December 1984. ISSN 0209-9683. doi: 10.1007/BF02579150. URL http://dx.doi.org/10.1007/BF02579150.
L.G. Khachiyan. Polynomial algorithms in linear programming. USSR

Computational Mathematics and Mathematical Physics, 20(1):53-72, 1980. ISSN 0041-5553. doi: http:/ / dx.doi.org/10.1016/0041-5553(80)90061-0.
L. van den Dries, A. Macintyre, and D. Marker. The elementary theory of restricted analytic fields with exponentiation. Annals of Mathematics, 140(1):183-205, 1994.

