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Multiscale models

We seek a numerical approximation of the first eigencouple (uε, λε) of the reaction-diffusion

problem:

1

ε2
σεuε − div (Aε∇uε) =

λε

ε2
uε in Ω, uε = 0 on ∂Ω

Aε and σε vary on a small scale ε

Solution uε:
Finite element method (e.g. P1)

• Solution on a coarse mesh is wrong

even on the macroscopic scale

• We would need a very fine mesh

to get an accurate solution:

prohibitively computationally

expensive

We could use the homogenization theory in a periodic framework, but we do not want to

restrict ourselves to this framework, or to the ε≪ 1 framework. 1



MsFEM

Multiscale Finite Element Method – MsFEM (Hou and Wu 1997)

Domain Ω:

H , TH h, Th

ε

• We discretize our domain Ω using a coarse mesh TH .

Each element of that coarse mesh is itself discretized

on a fine mesh (H > ε and h ≪ ε).

• Instead of using P1 basis functions, we associate to

each node i of the coarse mesh TH , a well adapted

basis function ϕεi .

• The basis functions ϕεi are computed off-line by

solving local problems posed on each element of the

coarse mesh (using the fine mesh discretization).
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MsFEM

Multiscale Finite Element Method – MsFEM (Hou and Wu 1997)

1. Offline stage: compute local basis functions (expensive)

Multiscale basis functions:

∀K ∈ TH ,

{
F ε(ϕεi ) = 0 in K

+Boundary conditions on ∂K

where F ε is the operator of local problems we have to define.

2. Online stage: one coarse global problem (inexpensive)

Variational Formulation: Find uεH ∈ V ε
H = span

{
ϕεj

}
, λεH ∈ R

s.t. ∀ϕεi :

1

ε2

∫
Ω

σεuεHϕ
ε
i +

∫
Ω

Aε∇uεH · ∇ϕεi =
λεH
ε2

∫
Ω

uεHϕ
ε
i
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MsFEM
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1. Offline stage: compute local basis functions (expensive)
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P1

i
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Homogenization in a periodic framework

Theorem 1 (G. Allaire, Y. Capdeboscq, 2000)

Let (ψ(y), λ∞) be the first eigencouple of the cell problem:

σ(y)ψ(y)− div (A(y)∇ψ(y)) = λ∞ψ(y) in Y , y 7→ ψ(y) Y -periodic

Then,

uε(x) = v(x)ψ
(x
ε

)
+ o(1)

and

λε = λ∞ + O(ε2)

(v , ν) is the first eigencouple of the homogenized problem:

− div (A∗∇v) = νv in Ω, v = 0 on ∂Ω (1)

where A∗ is the constant homogenized matrix, depending only on the coefficients A and σ.
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Preliminary MsFEM approach

uε(x) = v(x)ψ
(x
ε

)
+ o(1)

The basis functions have to encode the microscopic behaviour of the solution.

• As a preliminary step, we first assume we know the eigenfunction ψ (we

compute it off-line on a fine mesh).

• This function ψ is then used to construct the basis functions ϕε,ψi .

Variational FormulationF ε

uε,ψH

Solution of

global

problem

Construction

of

basis functions

ϕε,ψiψ
( ·
ε

)
5



Preliminary MsFEM approach: Construction of basis functions

• We seek the first eigencouple (uε, λε) of the problem:

1

ε2
σ
(x
ε

)
uε − div

(
A
(x
ε

)
∇uε

)
=
λε

ε2
uε in Ω, uε = 0 on ∂Ω

where A and σ are periodic functions.

• With the change of variables vε =
uε

ψ( ·
ε )

, we get a generalized purely diffusive eigenvalue

problem:

− div
(
ψ2

(x
ε

)
A
(x
ε

)
∇vε

)
=
νε

ε2
ψ2

(x
ε

)
vε in Ω, vε = 0 sur ∂Ω

• We can solve this problem with the MsFEM-lin basis functions χεi :

∀K ∈ TH ,

−div
(
ψ2

( ·
ε

)
A
( ·
ε

)
∇χεi

)
= 0 in K

χεi = χP1

i on ∂K

• We use for the initial problem the basis functions ϕε,ψi = χεi ψ(
·
ε
) .

Spoiler: it works very nicely ! 6



Actual numerical approach (1/3): A first (bad) idea

K
S

∂Ω

We now need to find a proxy for ψ(·/ε):

For each element K of the coarse mesh

TH , we construct a square-shaped

oversampling patch S.

A possible idea: We consider the first eigencouple (ψ̃εS , λ̃
ε
S) of the problem on S:

1

ε2
σεψ̃εS − div

(
Aε∇ψ̃εS

)
=
λεS
ε2
ψ̃εS in S, x 7→ ψ̃εS S-periodic

• If S contains an integer number of periodic cells, then ψ̃εK := ψ̃εS |K = ψ( ·
ε ).

• If not, then ψ̃εK can be very different of ψ( ·
ε ) !

7



Actual numerical approach (2/3): A filter idea

Suppose we want to approximate the average of g a 1-periodic function on R
but we only have access to the function gε := g( ·

ε ) over the domain Ω = (0, 1).

• If
1

ε
is an integer, then:

1

|Ω|

∫
Ω

gε =
1

Y

∫
Y
g

• In general we have:

| 1

|Ω|

∫
Ω

gε − 1

Y

∫
Y
g | = O(ε)

⇒ The idea now is to add a filter function to ”mitigate” the fact that we are off

by a certain fraction of a period at the boundary of the domain.
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Actual numerical approach (2/3): A filter idea

Suppose we want to approximate the average of g a 1-periodic function on R
but we only have access to the function gε := g( ·

ε ) over the domain Ω = (0, 1).

• Let τ0 a function so that
τ0 > 0 in (0, 1)∫ 1

0

τ0(x) dx = 1

τ0(0) = τ0(1) = 0
x

τ0(x)

0 1

• Then we have:

| 1

|Ω|

∫
Ω

τ0g
ε − 1

Y

∫
Y
g | = O(ε2)
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Actual numerical approach (2/3): A filter idea

Suppose we want to approximate the average of g a 1-periodic function on R
but we only have access to the function gε := g( ·

ε ) over the domain Ω = (0, 1).

• Let τ0 a function so that
τ0 > 0 in (0, 1)∫ 1

0

τ0(x) dx = 1

τ0(0) = τ0(1) = 0
x

τ0(x)

0 1

• Then we have:

| 1

|Ω|

∫
Ω

τ0g
ε − 1

Y

∫
Y
g | = O(ε2)

• And if τ
(p)
0 (0) = τ

(p)
0 (1) = 0 for 0 ≤ p ≤ P, then the error is of order O(εP+2).
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Actual numerical approach: MsFEM with oversampling

• The initial idea: We consider the first eigencouple (ψ̃εS , λ̃
ε
S) ∈

(
H1

per (S),R
)
s.t.

∀v ∈ H1
per (S),

∫
S

σεψ̃εSv + ε2
∫
S

Aε∇ψ̃εS · ∇v = λεS

∫
S

ψ̃εSv

• We define a filter τ on S, such that τ and ∇τ are zero on ∂S.

• The new idea: We consider the first eigencouple ψ̃εS ∈ H1(Ω), λε ∈ R (the smallest

eigenvalue) and µε ∈ Rd (Lagrange multiplier) such that

∀v ∈ H1(Ω), µ ∈ Rd :
ε2

∫
S

τAε∇ψ̃εS · ∇v +

∫
S

τσεψ̃εSv = λε
∫
S

τψ̃εSv +

∫
S

τ∇v · µε,∫
S

τ∇ψ̃εS · µ = 0

Recall that in 1D,
∫
S ∇ψ̃

ε
S = 0 is equivalent to periodic BC. We note ψ̃ε := ψ̃εS |K on K .
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Recall the Preliminary MsFEM method

1

ε2
σ
(x
ε

)
uε − div

(
A
(x
ε

)
∇uε

)
=
λε

ε2
uε in Ω, uε = 0 on ∂Ω

Assuming we know ψ,

• We introduce the MsFEM-lin basis functions χεi :

∀K ∈ TH ,

−div
(
ψ2

( ·
ε

)
A
( ·
ε

)
∇χεi

)
= 0 in K

χεi = χP1

i on ∂K

• We then use the basis functions ϕε,ψi = χεi ψ(
·
ε
) .

⇒ And we now have at our disposal an accurate approximation of ψ
( ·
ε

)
!
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Actual MsFEM method

We proceed as in the preliminary approach, replacing everywhere ψ( ·
ε ) by ψ̃

ε.

• Rather than considering the MsFEM-lin basis functions χεi :

∀K ∈ TH ,

−div
(
ψ2

( ·
ε

)
A
( ·
ε

)
∇χεi

)
= 0 in K

χεi = χP1

i on ∂K

we consider the functions χεi :

∀K ∈ TH ,

−div
(
(ψ̃ε)2A

( ·
ε

)
∇χεi

)
= 0 in K

χεi = χP1

i on ∂K

• For the preliminary method we use the basis functions ϕε,ψi = χεi ψ(
·
ε
) .

• For the actual method we use the basis functions ϕε,ψ̃i = χεi ψ̃
ε .
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H1 relative error (periodic coefficients)

A(x , y) = 6 + 5 cos (2π(x + 2y)) sin (2π(x − y)) σ(x , y) = 20 (2 + cos (2π(x − 2y)) sin (2π(x − y)))

H1 error around 15-20% 12



H1 relative error (Quasi-periodic coefficients)

Aε(x , y) =
(
5 + 1.25

(
cos

(
2πx
ε

)
+ cos

(
2
√
2πx
ε

))(
sin

(
2πy
ε

)
+ sin

(
2
√

2πy
ε

)))
σε(x , y) = 40

(
2 + 0.25

(
cos

(
2πx
ε

)
+ cos

(
2
√
2πx
ε

))(
sin

(
2πy
ε

)
+ sin

(
2
√
2πy
ε

)))

H1 error around 15-20% again 13



Multi-query contexts

MsFEM (as any multiscale numerical approach) is beneficial in multi-query problems. Here, the

multi-query context comes:

• In the time-dependent setting, from the fact that we consider several time steps.

• For the eigenproblem, from the fact that we can consider several eigencouples (and not

only the first one).

• For the eigenproblem, with a spatial recombination of the diffusion and reaction

coefficients.
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Multi-query context: consideration of several eigencouples

We can seek a numerical approximation of other eigencouples (uε,m, λε,m) of the

reaction-diffusion problem:

1

ε2
σεuε,m − div (Aε∇uε,m) =

λε,m

ε2
uε,m in Ω, uε,m = 0 on ∂Ω

where uε,m is the eigenvector associated to the m-th eigenvalue λε,m.

We have actually the following homogenization result (in the periodic setting):

uε,m(x) = vm(x)ψ
(x
ε

)
+ o(1)

where (vm, νm) is the m-th eigencouple of the homogenized problem:

− div (A∗∇v) = νv in Ω, v = 0 on ∂Ω (2)
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Multi-query context: consideration of several eigencouples

• The first eigenvalue is simple.

• Eigenvectors uε,1 and uε,2 are

associated to the same

double eigenvalue.

• The eigenvector uε,3 is

associated to a simple

eigenvalue.
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Multi-query context: consideration of several eigencouples
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Conclusion

• We have introduced a preliminary MsFEM approach, restricted to the periodic setting. It

yields accurate results and is amenable to an error analysis.

• We have next introduced an approximation of ψ using filtering ideas, the resulting practical

MsFEM approach yields accurate results (only a small loss wrt preliminary approach).

This MsFEM approach can also be applied to solve the problems (not presented here):

• The time-dependent problem, either with a time-stepping method, or by decomposing the

solution on the eigenvectors of the operator.

• The vectorial reaction diffusion problem (relevant from the application viewpoint;

mathematically challenging because not self-adjoint).

The support from ONR and EOARD is gratefully acknowledged.
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Multi-query context: spatial recombination of the coefficients

Assemblies are reordered to obtain the most

homogeneous neutron flux in the reactor core.

For each spatial combination, the first

eigencouple (uε, λε) has to be computed.

The number of combinations is huge, so MsFEM is going to be really beneficial in this context.
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Multi-query context: spatial recombination of the coefficients

A(x , y) = 6 + 5 cos(2π(x + 2y)) sin(2π(x − y)) : Recombined diffusion coefficient:

The basis functions are reordered, in the same way as the coefficients, so that we do not have

to do any offline computation again.
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Appendix

A∗ is the homogenized matrix defined by:

A∗
ij =

∫
Y

ψ2(y)A(y) (∇wj + ej) · eidy

where wi are the correctors, solutions of:

− divy
(
ψ2A (∇ywi + ei )

)
= 0 in Y , y 7→ wi (y) Y -periodic
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