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Multiscale mod

We seek a numerical approximation of the first eigencouple (u°, A%) of the reaction-diffusion

problem:
1 . AT
—0°u" —div(A*Vu®) = u® in Q, wu® =0o0ndQ
€ €
Solution u®:

Finite element method (e.g. ;)

e Solution on a coarse mesh is wrong
even on the macroscopic scale

e We would need a very fine mesh
to get an accurate solution:
prohibitively computationally

expensive
A% and o° vary on a small scale ¢

We could use the homogenization theory in a periodic framework, but we do not want to
restrict ourselves to this framework, or to the ¢ < 1 framework. 1



MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

Domain Q:

e We discretize our domain 2 using a coarse mesh T.
Each element of that coarse mesh is itself discretized
on a fine mesh (H > ¢ and h < ¢).

e Instead of using IP; basis functions, we associate to

each node / of the coarse mesh Ty, a well adapted
basis function ¢;.

I g e The basis functions ¢; are computed off-line by
solving local problems posed on each element of the

coarse mesh (using the fine mesh discretization).




MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

’ 1. Offline stage: compute local basis functions (expensive) ‘

2. Online stage: one coarse global problem (inexpensive) ‘




MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

’ 1. Offline stage: compute local basis functions (expensive) ‘

£
Multiscale basis functions: b5
F(¢5) =0 in K

VK e Ty,
-+Boundary conditions on 0K

where .7 ¢ is the operator of local problems we have to define. .
2. Online stage: one coarse global problem (inexpensive) ‘




MsFEM

Multiscale Finite Element Method — MsFEM (Hou and Wu 1997)

’ 1. Offline stage: compute local basis functions (expensive) ‘

Multiscale basis functions: i
F(p7) =10 in K
VK € Ty, (97) N
-+Boundary conditions on 0K
where .7 ¢ is the operator of local problems we have to define.

’2. Online stage: one coarse global problem (inexpensive) ‘

Variational Formulation: Find uf € V,; = span {(bf} Ay eR
s.t. Vof :

1 Ay
5 [ o+ [ Avuip-voi = 2 [ uis
Q




Homogenization in a periodic framework

Theorem 1 (G. Allaire, Y. Capdeboscq, 2000)

Let (1(y), A>°) be the first eigencouple of the cell problem:

a(y)¢(y) — div(A()VY(y)) = A%(y) in Y,y (y) Y-periodic

Then,

and
X =A%+ 0(e?)

(v,v) is the first eigencouple of the homogenized problem:
—div(A*Vv)=vv inQ, v=0 on 0Q (1)

where A* is the constant homogenized matrix, depending only on the coefficients A and o.



Preliminary MsFEM approach

U (x) = v(x) (g) +o(1)
The basis functions have to encode the microscopic behaviour of the solution.

e As a preliminary step, we first assume we know the eigenfunction ¢/ (we

compute it off-line on a fine mesh).
e This function 1 is then used to construct the basis functions qf’w.

ngg Variational Formulation
Construction Solution of ¥
(0 (—>—> — ¢57¢_> s
e of i global H
basis functions problem
5




Preliminary MsFEM approach: Construction of basis functions

e We seek the first eigencouple (u®, A¥) of the problem:
1 €
—0 (i) u® —div (A (i) Vus) = )\—2uE inQ, u®=0o0n0dN
€ € € €
where A and o are periodic functions.

c

e With the change of variables v¢ = % we get a generalized purely diffusive eigenvalue
(=
problem: :
—div (’l/)z (i) A (i) va) = %@/ﬂ <§> viin Q, v. =0 surdQ
€ € € €
e We can solve this problem with the MsFEM-lin basis functions x7:
~div (v? () A(2) Vi) =0 inK
VK e 7 iv (1 (5) . X; in

X; = X[,-Pl on 0K

e We use for the initial problem the basis functions | ¢"¥ = X?W(g) !
Spoiler: it works very nicely ! 6




Actual numerical approach (1/3): A first (bad) idea

We now need to find a proxy for ¢(-/¢):

For each element K of the coarse mesh

Ty, we construct a square-shaped

oversampling patch S.

02

A possible idea: We consider the first eigencouple (;;,Xg) of the problem on S:

1 e e . exT € )‘g e - " H H
50" U5 — div (A sz) = Z505inS, x5 S-periodic

e If S contains an integer number of periodic cells, then 7:/;‘,} = 5|k = P(2).
e If not, then ¢ can be very different of (=) !

€



Actual numerical approach (2/3): A filter idea

Suppose we want to approximate the average of g a 1-periodic function on R
but we only have access to the function g€ := g(=) over the domain Q = (0, 1).

13

1
e If — is an integer, then:
€

e In general we have:

= The idea now is to add a filter function to "mitigate” the fact that we are off
by a certain fraction of a period at the boundary of the domain.



Actual numerical approach (2/3): A filter idea

Suppose we want to approximate the average of g a 1-periodic function on R
but we only have access to the function g° := g(<) over the domain Q = (0, 1).
e Let 79 a function so that

70 >0 in (0,1) 7o(x)

/0 To(x)dx =1
70(0) = 70(1) = 0

X

0 1

1/ : 1/ 2
— | 108" — < | gl =0(e
|\Q| Q" YY‘ ()

e Then we have:



Actual numerical approach (2/3): A filter idea

Suppose we want to approximate the average of g a 1-periodic function on R
but we only have access to the function g° := g(<) over the domain Q = (0, 1).
e Let 79 a function so that

70 >0 in (0,1) To(x)

/0 To(x)dx =1
7'0(0) == 7'0(1) =0

X

0 1

1/ . 1/ 5
— [ 108" — < | gl =0(e
S v e

o And if 7$P(0) = 7{P)(1) = 0 for 0 < p < P, then the error is of order O("+2).

e Then we have:



Actual numerical approach: MsFEM with oversampling

e The initial idea: We consider the first eigencouple ([;,Xg) € (H.,(S),R) s.t.

per
e HL, (S), /Safq/ingre?/sAqu/?g Vv = Ag/sq/igv

e We define a filter 7 on S, such that 7 and V7 are zero on JS.

e The new idea: We consider the first eigencouple 15 € H*(Q2), \° € R (the smallest
eigenvalue) and p° € R? (Lagrange multiplier) such that
Vv € HY(Q), u € RY:

62/TA€V1Z§~VV+ /Tag{/zgv:/\s/ﬂzngr/TVv./f’
S JS S S
/TV’IZ%'MIO
S

Recall that in 1D, [, Vg = 0 is equivalent to periodic BC. We note 9 := 9%/« on K.



Recall the Preliminary MsFEM method

5%0 (g) u® —div (A (g) VUE) = gue inQ, v =0o0ndN

Assuming we know 1),

e We introduce the MsFEM-lin basis functions x5:

irea |TEAG) ) =0 ik

e We then use the basis functions | ¢;” Y= x5y (ﬁ) .

= And we now have at our disposal an accurate approximation of (%) !

10



Actual MsFEM method

We proceed as in the preliminary approach, replacing everywhere (- ) by z/)
e Rather than considering the MsFEM-lin basis functions x::
—div (UQ (;>A (7) fo) =0 inK
VK e Ty, € €
X; = X],I-ml on OK
we consider the functions 75:
—div (({z?f) ( )v ): in K

X; = Xi on 0K

VK e Ty,

e For the preliminary method we use the basis functions | ¢’ v = X5 (

)|

o |

e For the actual method we use the basis functions | ¢;’ . =X; 1/)

11



H! relative error (periodic coefficients)

A(x,y) =6+ 5cos (2m(x + 2y))sin (2w (x — y))  o(x,y) =20 (2 + cos (27(x — 2y)) sin 27(x — y)))

10
—=— Pp-method
—=— MsFEM-method
—e— Preliminary-method
0.8
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i
o
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2H/e

H* error around 15-20% 12



H! relative error (Quasi-periodic coefficients)

A%(x, ) = (54125 (cos () + cos (222)) (sin (222) + sin (2/22¢) )
o°(x,y) =40 (2 +0.25 (cos (32*) + cos (@)) (sin (Q’r?y) + sin (@)))

1.0

—e— MsFEM-method
—e— P-method

0.8

Relative Error
o
o

I
IS

0 \\\\

0.0

2H[e

H* error around 15-20% again 13



Multi-query contexts

MsFEM (as any multiscale numerical approach) is beneficial in multi-query problems. Here, the

multi-query context comes:

® In the time-dependent setting, from the fact that we consider several time steps.

® For the eigenproblem, from the fact that we can consider several eigencouples (and not
only the first one).

® For the eigenproblem, with a spatial recombination of the diffusion and reaction

coefficients.

14



Multi-query context: consideration of several eigencouples

We can seek a numerical approximation of other eigencouples (u®™, A*>™) of the
reaction-diffusion problem:
e,m

1 A
?aaus’m —div (A*Vus™) = = v in Q, v =0o0n R

where v is the eigenvector associated to the m-th eigenvalue A=,

We have actually the following homogenization result (in the periodic setting):

u(x) = v () (Z) +o(1)

where (v, ™) is the m-th eigencouple of the homogenized problem:

—div(A*Vv)=vv inQ, v=0 on 9dQ (2)

15



Multi-query context: consideration of several eigencouples

H=1/4
10 e The first eigenvalue is simple.
p——— e T S —
oe e Eigenvectors u®! and u®? are
5 —_— associated to the same
SoS T— double eigenvalue.
o T ] . .
goal— e e The eigenvector u®3 is
K —— Ui, msrem = Ukl associated to a simple
0.2) —— |IU;LZV1,M5FEM_u§f2F||H‘10)

€3 £ 3
rum, msrem — UreellH @

— u eigenvalue.

4 4
0.00 —— Jlugum, msrem = UrcrllHi@)

6 8 10 12 14 16 18 20
1/e
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Multi-query context: consideration of several eigencouples

H=1/8
1.0 - "ufr'u}n,MsFEM o e
¢ ||u;l:$-n, wsrem — Ugeellma
0.8- - "ursvll?n,MsFEM - U§E3F||H‘(O)
g - "uri'u‘r‘n, wsrem = Ugetlmia
0.6
—
T -_— .
g ——
= 0.4
£
SR S e S g e ey
0.2
0.0
6 8 10 12 14 16 18 20
l/e
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Multi-query context: consideration of several eigencouples

H=1/16
1.0 - "ufr'u}n,MsFEM o e
¢ ||u;l:$-n, wsrem — Ugeellma
0.8- - "ursvll?n,MsFEM - U§E3F||H‘(O)
g - "uri'u‘r‘n, wsrem = Ugetlmia
0.6
—
T
g
50.4-
£
R e
0.2 '\%
0.0
6 8 10 12 14 16 18 20
l/e
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Multi-query context: consideration of several eigencouples

H=1/32
. L1 .1
1.0 Nufim, msrem = UreellHio
.2 2
o Nupum, msrem — URerllana)
. .3 3
0.8 "urgvum,MsFEM = Ugerllnia
. .4 4
e —— NUfim, msrem — Uer Il
0.6
—
T
g
5 0.4-
£
S

%

o
=)

1/e
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Multi-query context: consideration of several eigencouples

H=1/32

i

"uiblm, wsrem — URgellniay

¥ 2
o Nupim, msrem — Ureellnia

|

.3 .3
lurim, msrem — Urer ko

.4 4
lupium, msrem — Ugee ko

i

1 .1
lurim, p1 = Uger i@

o
-

relative H1 error

%

o
=)

1/e
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Multi-query context: consideration of several eigencouples

H=1/32
. .1 .1
1.0 Nufim, mseem = Uree o
) 2
—— U5, msrem — Urerlli@
. .3 3
0.8 "urgvum,MsFEM = Ugerllnia
. .4 4
e —— Ui, msrem — Urerlliro
o .1 1
— 0.6 = Ui, p1 = URerlIHrQ)
T .2 2
0 —— g, 1 = Ugerliia
5 0.4-
£
4 go—\w
0.2
0.0
6 8 10 12 14 16 18 20
l/e

16



Conclusion

e We have introduced a preliminary MsFEM approach, restricted to the periodic setting. It
yields accurate results and is amenable to an error analysis.

e We have next introduced an approximation of v using filtering ideas, the resulting practical
MsFEM approach yields accurate results (only a small loss wrt preliminary approach).

This MsFEM approach can also be applied to solve the problems (not presented here):
e The time-dependent problem, either with a time-stepping method, or by decomposing the

solution on the eigenvectors of the operator.

e The vectorial reaction diffusion problem (relevant from the application viewpoint;
mathematically challenging because not self-adjoint).

The support from ONR and EOARD is gratefully acknowledged.
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Multi-query context: spatial recombination of the coefficients

Assemblies are reordered to obtain the most
homogeneous neutron flux in the reactor core.

For each spatial combination, the first
eigencouple (u®, A°) has to be computed.

The number of combinations is huge, so MsFEM is going to be really beneficial in this context.
19
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The basis functions are reordered, in the same way as the coefficients, so that we do not have

20

to do any offline computation again.



Appendix

A* is the homogenized matrix defined by:
Al = /1/; ) (Vw; + ¢)) - eidy
where w; are the correctors, solutions of:

—div, (V*A(Vyw;+¢)) =0 inY, y— wy) Y-periodic
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