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Abstract
We study a cross-diffusion model for a Physical Vapor Deposition process
[A.Bakhta, V.Ehrlacher, ’18]. The problem is set in a one-dimensional mov-
ing domain. We are able to stabilize the linearized system around uniform
steady states in arbitrary time. To our knowledge, this is one of the first
control results for cross-diffusion systems. For the analysis, we adapt the
backstepping technique [J-M.Coron, H-M.Nguyen, ’17] to a case where the
domain extends with time. This work should be seen as a fundamental brick
on the way to the local stabilization of the nonlinear system.

Statement of the problem
In the model, a solid layer is composed of n + 1 different chemical species
(volumic fraction ui ≥ 0,

∑n
i=0 ui = 1) and occupies a domain of the form

(0, e(t)), where e(t) > 0 denotes the thickness of the layer and is deter-
mined by the fluxes φi of atoms that are absorbed at the surface of the layer:
e(t) = e0 +

∫ t
0
∑n

i=0 φi(s)ds.

The cross-diffusion equation in the bulk, together with the flux boundary
conditions, form the system set on (0, e(t)):

∂tu− ∂x(A(u)∂xu) = 0, x ∈ (0, e(t)), t > 0,
(A(u)∂xu)(t, 0) = 0, t > 0,

(A(u)∂xu)(t, e(t)) + e′(t)u(t, e(t)) = ϕ(t), t > 0,
u(0, x) = u0(x),

(1)

where u ∈ Rn is the volumic fraction vector, ϕ ∈ Rn
+ is the incoming flux

at the boundary and A(u) ∈ Rn×n is the diffusion matrix that is formally
derived from a stochastic lattice hopping model and satisfies: (Kij > 0)

(A(u)∂xu)i =
∑

1≤j 6=i≤n

(Kij −Ki0)(uj∂xui − ui∂xuj) + Ki0∂xui.

Bakhta and Ehrlacher proved existence of weak solutions and long-time
asymptotics for (1) in the case of constant external fluxes ϕ: the solu-
tion converges in a rescaled L1 sense to the uniform steady state ū with
speed at least 1√

t
. Numerical tests suggested a convergence rate of 1

t.

Objective : derive a feedback control ϕ(t, u(t)) to stabilize (1) in
finite time around the target state (ū, ē) .

After linearization of (1) around ū with respect to the fluxes δϕ = ϕ − ϕ
and the volumic fractions δu := u − ū, and after showing, thanks to the
entropic structure of the system, that A(ū) can be diagonalized with positive
eigenvalues, it remains to analyze the scalar problem: (σ > 0, v̄ > 0)

∂tz − σ∂2
xxz = 0, x ∈ (0, ē(t)), t > 0,

σ∂xz(t, ē(t)) + v̄z(t, ē(t)) = δψ(t), t > 0,
σ(∂xz)(t, 0) = 0, t > 0,

z(0, x) = z0(x), x ∈ (0, ē0).

(2)

where δψ(t) := δϕ(t)− δe′(t)ū.

Backstepping approach
The idea is to map the original equation (2) to a stable target equation and
to get the result using the reverse transformation. We consider a kernel
transformation of the form

g(t, x) := z(t, x)−
∫ x

0
k(t, x, y)z(t, y)dy, (3)

and show that it is invertible as:

z(t, x) = g(t, x) +
∫ x

0
l(t, x, y)g(t, y)dy. (4)

It is natural here to consider as a target the same problem with an additional
damping term λg and homogeneous boundary conditions, which provides
λ−exponential stability in L2 norm for g. The assignment of homogeneous
boundary conditions for g imposes the form of the feedback:

δψλ(t) := σkλ(t; ē(t), ē(t))zλ(t, ē(t)) +
∫ ē(t)

0
[σ∂xkλ(t; ē(t), y) + v̄kλ(t; ē(t), y)] zλ(t, y)dy.

(5)
We show that then the kernels k and l must solve similar problems (up to
the sign of λ in the PDE): (Dt := {(x, y) ∈ (R+)2 , 0 < y ≤ x < e(t)}.)

∂2
xxlλ(t;x, y)− ∂2

yylλ(t;x, y) = −λ
σ
lλ(t;x, y) (x, y) ∈ Dt,

∂ylλ(t;x, 0) = 0 x ∈ (0, ē(t)),
d

dx
lλ(t;x, x) = − λ

2σ
x ∈ (0, ē(t)),

lλ(t; 0, 0) = 0.

(6)

According to (4) and since the target problem is stable, it holds:

‖zλ(t)‖L2(0,ē(t)) ≤
(
1 + ‖lλ(t)‖L2(Dt)

)
‖gλ(t)‖L2(0,ē(t)) ≤

(
1 + ‖lλ(t)‖L2(Dt)

)
e−λt‖g0

λ‖L2(0,ē0)

≤ C
(
1 + ‖lλ(t)‖L2(Dt)

)
e−λt‖z0‖L2(0,ē0)).

Hence it suffices to show well-posedness for (6) and to obtain estimates on
||l(t)||L2 to get stability of zλ in L2.

Main result
Adapting the method from Coron and Nguyen, we are able to show finite
time stabilization by applying this technique for well-chosen sequences of
time intervals [tn−1, tn) and increasing associated damping rates λn:
Theorem.Problem (2) is stabilizable in L2, in any finite time T > 0. More
precisely, for any T > 0, there exist some sequences of times (tn)→ T− and
λn→∞ such that, if the feedback is defined as δψλn in (5) in time intervals
[tn−1, tn), then there exists a unique weak solution zT in L2 to (2) and it
holds:

‖zT (t, ·)‖L2((0,ē(t))→ 0 as t→ T−.

This result is generalized to abstract volume-filling cross-diffusion systems
with a favorable entropic structure.


