
Sparsity and asynchrony in distributed optimization:
models and convergence results

Arda Aytekin, Hamid Reza Feyzmahdavian, Sarit Khirirat and Mikael Johansson
KTH - Royal Institute of Technology

Optimization for large-scale learning

f1(·) f2(·) f3(·) fm(·)

x

n

m

minimize
x∈X

m

i=1

fi(x)

f(x)

+h(x)

Large-scale: at least one of n and m is very large.

Issues:

• centralized vs distributed storage and computations

• synchronized vs. asynchronous algorithms

• simplicity - predictability - performance

M. Johansson (KTH) Magnet Workshop, September 2017 2 / 41

Achiving scalability in a post-Moore era

Single-thread performance increases are long gone

Key is now more processing elements (threads, cores, sockets, . . . )

M. Johansson (KTH) Magnet Workshop, September 2017 3 / 41

Shared-memory architectures

Multiple computation units (cores) able to address the same memory space

L2 L2

L3

L1

L2

Core 1
L1

L2
L1

L2
L1

L2
L1

L3 (shared)

GPU

Main memory

CPU

Shared memory

CPU

CPU

CPU

Core 2 Core 3 Core 4

Maximal efficiency when all cores are kept busy, computing all the time.

Speed-ups limited by access to shared resource (decision-vector)

• Consistency guaranteed if only one core writes/reads memory at a time

• Risks having other cores idling, waiting for memory access

M. Johansson (KTH) Magnet Workshop, September 2017 4 / 41



Distributed memory architectures

Increasingly often impossible/impractical to move data to central location

Geographically dispersed data, heterogenous compute resources

M. Johansson (KTH) Magnet Workshop, September 2017 5 / 41

Distributed memory architectures

Natural with master-worker solutions:

• master maintains decision vector, queries workers in parallel

• workers return delayed gradients of their data loss

∇f1(xk−10)

xk+1 ∇f3(xk)

xk+2

Q: What is the impact of time-varying delays on the algorithm convergence?

M. Johansson (KTH) Magnet Workshop, September 2017 6 / 41

Distributed memory architectures

More general: network of parameter servers and workers (data stores)

Additional influence of coordination graph (topology, delays, reliability . . . )

M. Johansson (KTH) Magnet Workshop, September 2017 7 / 41

Contents

• Motivation

• Theory for asynchronous and lock-free computations

• Exploiting sparsity to speed up convergence

• Conclusions

M. Johansson (KTH) Magnet Workshop, September 2017 8 / 41



Lock-free implementations: consistent and inconsistent read

0 0

1 0

1 1

1 0

0 _

0 0

0 00 _

0 1

Shared 
memory

Consistent
read 

Inconsistent
read 

= write = read

M. Johansson (KTH) Magnet Workshop, September 2017 9 / 41

Time-delay models of asynchronism

Consistent read of vector x into variable z at time t:

• z(t) has existed in shared memory at some time

z(t) = x(t− d(t))

homogeneous time delay for all components of z

Inconsistent read of x into z at time t:

• complete vector z(t) has never existed in memory, only its components

zi(t) = xi(t− di(t))

heterogeneous delays

We will assume that information delays are bounded, arbitrarily time-varying.

M. Johansson (KTH) Magnet Workshop, September 2017 10 / 41

Lyapunov analysis of synchronous algorithms

Convergence rates often derived using standard results for sequences.

Example. Gradient method with strongly convex objective satisfies

Vk+1 ≤ ρVk + r

which allows to conclude that Vk ≤ ρkV0 + e where e = r/(1− ρ).

Example. Gradient method for Lipschitz gradients analyzed by establishing

Vk+1 ≤ Vk − αV 2
k

which implies that Vk ≤ V0/(1 + αkV0).

M. Johansson (KTH) Magnet Workshop, September 2017 11 / 41

Lyapunov analysis of asynchronous algorithms

Asynchronous algorithms result in sequences on the form

Vk+1 ≤ f(Vk, Vk−1, . . . , Vk−dmax
) + ek

Much harder to analyze, much less theoretical support.

Coming up: two sequence lemmas and an application

– allow for simple and uniform treatment of asynchronous algorithms

– balance simplicity, applicability and power; support analytical results

M. Johansson (KTH) Magnet Workshop, September 2017 12 / 41



Convergence results for delayed sequences

Lemma 1. Let {Vk} be a sequence of real numbers satisfying

Vk+1 ≤ pVk + q max
k−dk≤j≤k

Vj + r

for some non-negative numbers p, q and r. If p+ q < 1 and

0 ≤ dk ≤ dmax

for all k, then

Vk ≤ ρkV (0) + e

where ρ = (p+ q)1/(1+dmax) and e = r/(1− p− q).

[Feyzmahdavian, Aytekin and Johansson, 2014]

M. Johansson (KTH) Magnet Workshop, September 2017 13 / 41

Convergence results for delayed sequences

Lemma 2. Assume that the non-negative sequences {Vk} and {wk} satisfy

Vk+1 ≤ ρVk − bwk + a

k∑
j=k−dmax

wj , (1)

for some real numbers ρ ∈ (0, 1) and a, b ≥ 0, and some integer dmax ≥ 0.
Assume also that wk = 0 for k < 0, and that

a

1− ρ
1− ρdmax+1

ρdmax
≤ b .

Then, Vk ≤ ρkV0 for all k ≥ 0.

[Aytekin, Feyzmahdavian, Johansson, 2016]

M. Johansson (KTH) Magnet Workshop, September 2017 14 / 41

Convergence results for delayed sequences

Several recent improvements.

First lemma extended to unbounded delays

• allows to analyze totally asynchronous iterations in arbitrary norms

• convergence rates if we can bound how fast delays grow large

Second lemma

• extended to non-strongly convex and non-convex optimization

• sharpened when sequences {Vk} and {wk} related.

[Feyzmahdavian et al., 2017]

M. Johansson (KTH) Magnet Workshop, September 2017 15 / 41

Problem formulation

minimize
x∈Rd

∑m
i=1 fi(x) + h(x)

• m samples, decision vector x ∈ Rn

• fi(x) loss of sample i for decision x; h(x) is regularizer

Assumptions:

• each fi is convex, differentiable with Lipschitz continuous gradient

•
∑
i fi is strongly convex

• h is proper convex (but may be non-smooth, extended-real valued)

Examples: `1-regularized least-squares, constrained logistic regression, . . .

M. Johansson (KTH) Magnet Workshop, September 2017 16 / 41



The proximal incremental aggregate gradient algorithm

Idea:

• compute (incremental) gradient with respect to a subset of data

• maintain (aggregate of) most recent gradient for each data point

• update x using prox-step w.r.t aggregate gradient and regularizer

gk =

m∑
i=1

∇fi
(
xk−dik

)
xk+1 = argmin

x

{
〈gk, x− xk〉+

1

2α
‖x− xk‖22 + h(x)

}
.

Motivation: fewer calculations per iteration, faster wall-clock convergence
(cf. SAG (Le Roux et al. 2012 ), IAG (Gürbüzbalaban et al. 2015), . . . )

M. Johansson (KTH) Magnet Workshop, September 2017 17 / 41

Related work

Blatt et al. (2007):

• convex quadratic loss, no regularizer, synchronous

• rate of convergence, but no explicit step-size or convegence factors

Tsen and Yun (2014)

• convex loss with Lipschitz gradient, simple regularizer, asynchronous

• rate of convergence, but no explicit step-size or convegence factors

Gürbüzbalaban et al. (2015)

• strongly convex loss with Lipschitz gradient, no regularizer, asynch.

• explicit step-sizes and convergence factors

and more (e.g. stochastic average gradient, . . . )

M. Johansson (KTH) Magnet Workshop, September 2017 18 / 41

Proximal incremental aggregate gradient on parameter server

gk =

m∑
i=1

∇fi
(
xk−dik

)
(2)

xk+1 = argmin
x

{
〈gk, x− xk〉+

1

2α
‖x− xk‖22 + h(x)

}
. (3)

Natural parameter-server implementation:

• Data distributed over multiple workers ({1, . . . ,m} = I1 ∪ I2, . . . )
• Master node maintains iterate x, queries nodes for gradients

Time-varying, heterogeneous delays dik between master and worker i.

M. Johansson (KTH) Magnet Workshop, September 2017 19 / 41

Proximal incremental aggregate gradient on parameter server

Each worker w:

• receives new iterate from master, computes gradients of local data loss,∑
i∈Iw

∇fi(xk)

• pushes this quantity to master (arrives with total delay dnk )

Master:

• maintains aggregate gradient

gk =

m∑
i=1

∇fi(xk−dik)

• updates iterate via prox-step, pushes xk+1 to workers

M. Johansson (KTH) Magnet Workshop, September 2017 20 / 41



PIAG on the parameter server

∇f1(xk−10)

xk+1 ∇f3(xk)

xk+2

M. Johansson (KTH) Magnet Workshop, September 2017 21 / 41

Main result

Theorem. Assume that each ∇fi is Li-Lipschitz continuous,
∑
i fi is

µ-strongly convex, and dik ≤ dmax for all i. If the step-size α satisfies:

α ≤
dmax+1

√
1 + µ

L
1

dmax+1 − 1

µ
,

where L =
∑N
n=1 Ln, then the iterates generated by (2), (3) satisfy:

‖xk − x?‖22 ≤
(

1

µα+ 1

)k
‖x0 − x?‖22 .

M. Johansson (KTH) Magnet Workshop, September 2017 22 / 41

Discussion

Linear convergence, even in presence of proximal term.

In absence of asynchronism, can pick α = 1/L to guarantee

‖xk − x?‖22 ≤
(

L

L+ µ

)k
‖x0 − x?‖22

Graceful slowdown guaranteed, as dmax increases

ρ ≈ 1− c

(1 + dmax)2

(similar to best known estimates for h = 0)

Sharper bounds, shorter and simpler proof than related work.

M. Johansson (KTH) Magnet Workshop, September 2017 23 / 41

Proof sketch

Lemma 2. Assume that the non-negative sequences {Vk} and {wk} satisfy

Vk+1 ≤ aVk − bwk + c

k∑
j=k−dmax

wj ,

for some real numbers a ∈ (0, 1) and b, c ≥ 0, and some integer dmax ≥ 0.
Assume also that wk = 0 for k < 0, and that the following holds:

c

1− a
1− admax+1

admax
≤ b .

Then, Vk ≤ akV0 for all k ≥ 0.

M. Johansson (KTH) Magnet Workshop, September 2017 24 / 41



Proof sketch

Convexity and Lipschitz continuity of gradients imply

m∑
i=1

fi(xk+1) ≤
m∑
i=1

fi(x) + 〈gk, xk+1 − x〉+

m∑
i=1

Li
2
‖xk+1 − xk−dik‖

2
2 ∀x

By strong convexity of
∑
i fi + h, optimality conditions, and Jensen’s ineq

‖xk+1 − x?‖22 ≤
1

µα+ 1
‖xk − x?‖22 −

1

µα+ 1
‖xk+1 − xk‖22+

+
α(dmax + 1)L

µα+ 1

k∑
j=k−dmax

‖xj+1 − xj‖22 .

Now our Lemma applies and allows to conclude linear rate of convergence.

M. Johansson (KTH) Magnet Workshop, September 2017 25 / 41

Parameter-server implementation on AWS

Binary classification via `1-regularized logistic regression on rcv1-v2

minimize
x

1

m

m∑
i=1

(
log
(

1 + exp
(
− bi〈ai, x〉

))
+
λ2
2
‖x‖22

)
+ λ1‖x‖1 ,

Parameter-server implementation of (2), (3) on Amazon AWS:

• 3 compute nodes (c4.2xlarge: 8 CPUs, 15 GB RAM, each),
◦ one in Ireland (EU),
◦ one in North Virginia (US),
◦ one in Tokyo (AP),

• 2 workers in each node (a total of 6 workers)

• Master node on computer at KTH in Stockholm, Sweden.

M. Johansson (KTH) Magnet Workshop, September 2017 26 / 41

Parameter-server implementation on AWS

0 12500 25000 37500 50000
k

10−5

10−4

10−3

10−2

10−1

100
101
102
103

‖x
k
−

x
⋆
‖2 2

Bound
Trace

eu
-1

eu
-2

us
-1

ap
-2

us
-2

ap
-1

Worker

0

10

20

30

40

50

60

70

80

90

τ

M. Johansson (KTH) Magnet Workshop, September 2017 27 / 41

Parameter-server implementation on AWS

Amazon sent us the bill for the figure. . .

Computing: $ 80
Communication: $ 20

Computing far from free, communication surprisingly expensive.

Communication also impairs performance – important to reduce!

M. Johansson (KTH) Magnet Workshop, September 2017 28 / 41



Contents

• Motivation

• Theory for asynchronous and lock-free computations

• Exploiting sparsity to speed up convergence

• Conclusions

M. Johansson (KTH) Magnet Workshop, September 2017 29 / 41

An observation

When solving large-scale optimization problems on the form

minimize
∑
i fi(x) + h(x)

Existing theory gives conservative tuning, performance.

Particularly pronounced on large-scale data sets.

Q: Are we missing anything in our analysis? What about sparsity?

M. Johansson (KTH) Magnet Workshop, September 2017 30 / 41

Traditional use of sparsity: dimensionality reduction

Standard definition: many elements are zero (more than 66%)

• common feature of many large-scale data sets (e.g. in svmlib)

Standard implication: dimensionality reduction

• can store data more efficiently (row, col, val)

• approximate low-rank matrix representations

We will exploit another implication of sparsity. . .

M. Johansson (KTH) Magnet Workshop, September 2017 31 / 41

Data sparsity implies decoupling

Example. Draw columns from matrix A ∈ Rn×m with probability 1/m.

E〈ai, aj〉 ≤ E‖ai‖22

Inner product much smaller when A is sparse (can even be zero)!

How can we quantify and exploit this property?

M. Johansson (KTH) Magnet Workshop, September 2017 32 / 41



Graphical representations of sparsity
Sa

m
pl

es

Features

Sa
m

pl
es

Sa
m

pl
es

Fe
at

ur
es

Several graphical representations of sparsity

• bipartite sample-feature graph (edges if sample contains feature)

• sample conflict graph (edges if samples overlap in some feature)

(cf. Mania et al., Richtarik et al.)

Aim: use graphs to compute measure σ such that

E〈ai, aj〉 ≤ σE‖ai‖22
M. Johansson (KTH) Magnet Workshop, September 2017 33 / 41

Graphical representations of sparsity

Sa
m

pl
es

Features

Sa
m

pl
es

Sa
m

pl
es

Fe
at

ur
es

Key quantities:
• maximum feature degree ∆r = maxj |{i : j ∈ supp(ai)}|
• maximum or average conflict degree

∆i
c =

∑
j 1{supp(ai) ∩ supp(aj) 6= 0}

With ∆max = maxi ∆i
c, and ∆c =

∑
i ∆i

c/m, it holds that

E〈ai, aj〉 ≤ min


√

1 + ∆c

m
,

1 + ∆max

m
,

√
∆r

m

E‖ai‖22 := σE‖ai‖22

M. Johansson (KTH) Magnet Workshop, September 2017 34 / 41

How sparse is real-world data?

Sparsity measure σ on data from libsvm (recall: E〈ai, aj〉 ≤ σE‖ai‖22)

Data set name σ
kddb.t 0.255
w4a 0.61
rcv1 0.627
protein.t 0.669
news20 0.727

M. Johansson (KTH) Magnet Workshop, September 2017 35 / 41

How can we use this sparsity in first-order methods?

Many machine-learning problem are on the form

minimize
x∈Rn

∑m
i=1 fi(x) = ϕ(aTi x− bi)

with fi(x) = ϕ(aTi x− bi). Gradients have same sparsity pattern as data.

We will focus on mini-batch gradient descent:

x(t+ 1) = x(t)− Γ
∑
i∈S(t)

γi∇fi(x)

where S(t) is a mini-batch of size M , drawn from {1, . . . ,m}.

M. Johansson (KTH) Magnet Workshop, September 2017 36 / 41



Mini-batch optimization under data sparsity

Assume that each fi is L-Lipschitz continuous, total loss µ-strongly convex.
Form mini-batch by sampling with replacement using probabilities 1/m.

Mini-batch gradient descent generate iterates {x(t)} which satisfy

‖x(t)− x?‖22 ≤ ρt‖x(0)− x?‖22 + e

with

ρ = 1− M

1 + (M − 1)σ

µ

2mL

e =
1

µL

∑
i

‖∇fi(x?)‖22

Recovers classical results in absence of sparsity, improves when σ small.

M. Johansson (KTH) Magnet Workshop, September 2017 37 / 41

Application to binary classification

Binary classification on data set with m = 150000, n = 3000 and ∆r = 400

0 1000 2000 3000 4000 5000 6000
computation time [sec]

0

500

1000

1500
C 1, worker: 1
C 1, worker: 6
C 2, worker: 1
C 2, worker: 6

Significant speed-ups by exploiting sparsity! (but not by adding workers)

M. Johansson (KTH) Magnet Workshop, September 2017 38 / 41

Many extensions

Can allow different Lipschitz constants, bias-convergence trade-off params

Can derive similar results in absence of strong convexity.

Can deal with mini-batch proximal minimization for problems on the form

minimize
x∈Rn

∑m
i=1 fi(x) + h(x)

Possible to combine with stochastic variance reduction (SVRG, etc.)

M. Johansson (KTH) Magnet Workshop, September 2017 39 / 41

Pre-processing effort

Feature-degree practically for free.

Conflict graph very large, costly to form and manipulate

• some data sets in libsvm takes about a day to analyze on standard PC

• tailored GPU code runs in more than 10x faster

Still, in practice, seems reasonable to focus on feature degree.

M. Johansson (KTH) Magnet Workshop, September 2017 40 / 41



Conclusions

Scalability in a big-data, post-Moore world:

• parallel and distributed optimization

• exploiting structure, dealing with asynchronism, respecting architectures

Theory from lock-free and asynchronous computation

• two simple, yet powerful, sequence lemmas

• PIAG: convergence guarantees + cloud implementation

Exploiting data sparsity

• Graphical measures of data sparsity, evaluation on svmlib data

• Significant convergence guarantee improvements for mini-batch GD

M. Johansson (KTH) Magnet Workshop, September 2017 41 / 41


