Privacy-Preserving Distributed
Linear Regression
on High-Dimensional Data

Borja Balle

Motivation

Treatment
Sutcome ___
s

-1.0 54.3 North

1.5 1 0.6 South 12
-0.3 1 16.0 East 56
0.7 0 35.0 Centre 67
3.1 1 20.2 West 29

Note: This is vertically-partitioned data; similar problems with horizontally-partitioned

PMPML: Private Multi-Party Machine
Learning

Problem

 Two or more parties want to jointly learn a model of
their data
* But they can’t share their private data with other parties

Assumptions

* Parameters of the model will be received by all parties

* Parties can engage in on-line secure communications

* External parties might be used to outsource
computation or initialize cryptographic primitives

The Trusted Party “Solution”

Receives plain-text data, runs algorithm, returns result to parties

The assumption:

* Introduces a (with
disastrous consequences)

* Relies on (especially when
private data is valuable)

* Requires between all data providers

=> Useful but unrealistic. Maybe

Secure Multi-Party Computation (MPC)

Public: f(z1,Z2,...,2p) =Y

Prlvatg: X
(party i)

Compute f in a way that each party

Goal: learns y (and nothing else!)

Tools: Oblivious Transfers (OT), Garbled Circuits (GC),
Homomorphic Encryption (HE), etc

Guarantees: Honest but curious adversaries, malicious adversaries,
computationally bounded adversaries, coalitions

In This Talk

A PMPML system for vertically partitioned linear regression

Features:

e Scalable to millions of records and hundreds of dimensions
 Formal privacy guarantees
* Open source implementation

Tools:

 Combine standard MPC constructions (GC, OT, Tl, ...)
» Efficient private inner product protocols
* Conjugate gradient descent robust to fixed-point encodings

FAQ: Why is PMPML...

Exciting?
Can provide access to previously "locked” data

Privacy is tricky to formalize, hard to implement,
and inherently interdisciplinary

Worth?

Better models while avoiding legal risks and bad
PR

Related Work

Ref | Crypto Linear Solver Accuracy
[1] HE Newton 50K 22 2d YES
[2] HE+GC Cholesky 2K 20 6m YES
[3] TI/HE Newton 50K 223 “Th” NO
[4] SS Gauss/Chol/CGD 10K 10 11s NO

[1] Hall et al. (2011). Secure multiple linear regression based on homomorphic encryption. Journal of Official Statistics.
[2] Nikolaenko et al. (2013). Privacy-preserving ridge regression on hundreds of millions of records. In Security and Privacy (SP).

[3] Cock et al. (2015). Fast, privacy preserving linear regression over distributed datasets based on pre-distributed data.
In Workshop on Artificial Intelligence and Security.

[4] Bogdanov et al. (2016). Rmind: a tool for cryptographically secure statistical analysis. IEEE Transactions on Dependable and
Secure Computing.

Functionality: Multi-Party Ridge Regression

Training Data Private Inputs
X =[X; X,] € R**¢ Party1: XY
Y ¢ R" Party 2: X,

min ||Y — X0||% + |0
Ridge HERd (optimization)

Regression (XTX + A0 = X'y

(closed-form solution)

Aggregation and Solving Phases

A:XTX—|—)\] - |:X1TX1|X1TX2|:|
X X =

O (nd2) (cross-party products)

0=A"1b

2
Approximate O (k d)
O (dg) (eg. Cholesky) iterative solver (eg. k-CGD)

Challenges and Trade-offs

\VIPC protocols: out of the box vs. tailored

Encoding real numbers: speed vs. accuracy

Scalability: n, d, # parties

Privacy guarantees: semi-honest vs. malicious

External parties: speed vs. privacy

Interaction: off-line vs. on-line

Protocol Overview

Crypto Computing
Provider Provider

Data ‘; Data

Provider Provider

Data
Provider

Alternative: CrP and CoP simulated
by non-colluding parties

Aggregation Phase

. CrP distributes correlated

randomness

. DPs run multiple inner

product protocols to get
additive share of (A,b)

Solving Phase

. CoP get GC for solving

linear system from CrP

. DPs send garbled shares of

(A,b) to CoP

. CoP executes GC and

returns solution to DPs

Aggregation Phase — Two Protocols

Xl—l_XQ a— f(ZCl)'CEQ) — <$17$2>

(matrix product) (inner product b/w columns)

* External pre-processing: inner product protocol
leveraging correlated randomness supplied by
Trusted Initializer (TI)

* Stand-alone: 2-party inner product protocol based
on Oblivious Transfers (OT)

O(log(n/e)) bits = error <c¢

Aggregation Phase - Experiments

* OT: stand-alone, out-of-the-box MPC
* Tl: pre-processing, external party, faster

Number of parties

n d 2 3 5

OT TI oT TI oT TI
54 107 20 1mb0s 1s 1m32s 2s 1mT7s 2s
5+ 107 100 42m12s 298 34m39s 32s 24mbH8s 37s
5+ 10° 20 18m18s 15s 14m?29s 18s 12m10s 21s
5.10° 100 7h3mb6s 4m4dT7s 5h20mb2s 6mls 4h17m8&s 6mb8s
1-10° 100 - 10mls - 12m42s - 14m48s
1-10% 200 - 39ml6s - 49mb56s - H9m22s

* AWS C4 instances, 1Gbps

Solving Phase — Garbled Circuits

A0 =10 (A;, b;)

(PSD linear system) (party i’s input)

A=) A b=> b

Solver implemented in a Garbled Circuit

Floating-point computation -- 32 bit floating point
. . . Year Device / Paper multiplication
with GC is not feasible (yet) (ms)

1961 IBM 1620E 17.7
1980 Intel 8086 CPU (software)
1980 Intel 8087 FPU 0.019

2015 Puloneneta.@FC&DS 32
MPC
2015 Demmercta.@CCS 82

Solving Phase — Two Methods

* Cholesky: exact, cubic, used in [Nikolaenko et al.’13]

14

* Conjugate Gradient Decent (CGD): approximated, “quadratic

1012

~—— Cholesky
= CGD5

10"« CGD 10
CGD 15
CGD 20

mlo [

Circuit size (gates)

s
—
e

10%

l()T L . ad 1 N
10 20 50 100 200 500

Fixed-point + Conjugate Gradient Descent

Textbook CGD
g0 -— AX() —b
Po ‘= 80
repeatfork =1...K
O g]I Pk
PEAPk

Xk+1 = Xk — XkPx
gk+1 ‘= 8k — X Apy
Bk — plIAgk—i—l
PIAPk

Pk+1 = 8k+1 — PxPx

Fixed-point CGD

g0 -— AX() —b

Po := 8o//8o]|
repeat for k =1...K

Xk+1 -— Xk — XxPx

gk+1 = 8k — Xk Apy

By = PIA(gk?/HngHoo)
Py Apy

Pk+1 = gk+1/Hgk+1 Hoo — Bxpx

log . o(r'esid ual)

Fixed-point + Conjugate Gradient Descent

Textbook CGD (d=50, bits=64)

Fixed Point CGD (d=50, bits=64)

CGD Iterations

2r
—Ni=8
-4- _Ni=9
Ni=10
~ -6} —Ni= 11
g —Ni= 12
2 .8t
"
]
LS
5 -10f
o
— -I2-
-14F _
—Ni=12 —
'y 'l ' A ' | -I6 1 1 2 2 3
0 10 20 30 40 50 0 10 20 30 40 50

CGD Iterations

Bits = Ni + Nf + 1
Ni = number of integer bits
Nf = number of fractional bits

Experiments with UCI Datasets

'd Name Reference 4 " ¢ 70-30 train-test random split

1 Student Performance [11, 14] 30 395 ° Regularization tuned in the clear

2 Ao MPG [72] ’ 398 Implemented in Obliv-C

3 Commu.nltles an.d Crime [61, 62] 122 1994 . 242 parties, 20 CGD iterations

4 Wine Quality [12, 13] 11 4898 . . L

. Bike Sharing Dataset (23, 24] o 17370 e Data standardization inside protocol

6 Blog Feedback [8, 9] 280 52397

7 CT slices [33] 384 53500 e (CGD faster ford > 100

8 Year Prediction MSD (5] 90 515345 e 32 bits prgvide good accuracy

9 Gas sensor array [26, 27] 16 4208261

id Optimal FP-CGD (32 bits) Cholesky (32 bits) FP-CGD (64 bits) Cholesky (64 bits)
RMSE time RMSE time RMSE time RMSE time RMSE

O© 0O N O~ WND =

4.65 19s 4.65 (-0.0%
3.45 2s 3.45 (-0.0%
0.14 4m27s 0.14 (0.3% 4m35s 0.14 (-0.0% 24m24s 0.14 (0.2% 26m31s 0.14 (-0.0%
0.76 3s 0.76 (-0.0% Os 0.80 (4.2% 23s 0.76 (-0.0% 4s 0.76 (-0.0%

) 55 4.65 (-0.0%)))
))))
))))
))))
145.06 4s 145.07 (0.0%) 1s 145.07 (0.0%) 26s 145.06 (0.0%) 4s 145.06 (0.0%)
))))
))))
))))
))))

Os 3.45 (-0.0%

1m53s 4.65 (-0.0%
13s 3.45(0.0%

35s 4.65(-0.0%
1s 3.45(0.0%

(
(((
31.89 24m5s 31.90 (0.0% 53m24s 32.19 (0.9% 2h3m39s 31.90 (0.0% 4h40m23s 31.89 (-0.0%
8.31 44m46s 8.34 (0.4%) 2h13m31s 8.87 (6.7%) 3h51mb51s 8.32 (0.1%) 11h49m40s 8.31 (-0.0%
9.56 4m16s 9.56 (0.0% 3m50s 9.56 (0.0% 16m43s 9.56 (0.0% 13m28s 9.56 (0.0%
90.33 48s 95.05 (5.2% 42s 95.06 (5.2% (

1m4is 90.35 (0.0% 1m9s 90.35 (0.0%

Conclusion

Summary

* Full system is accurate and fast, available as open source

* Scalability requires hybrid MPC protocols and non-trivial engineering
* Robust fixed-point CGD inside GC has many other applications

Extensions

* Security against malicious adversaries
* C(lassification with quadratic loss

* Kernel ridge regression

» Differential privacy at the output

Future Work

Models without a closed-form solution (eg. logistic regression, DNN)
Library of re-usable ML components, complete data science pipeline

Read It, Use It

http://eprint.iacr.org/2016/892

Privacy-Preserving Distributed Linear
Regression on High-Dimensional Data

Adria Gascén'®, Phillipp Schoppmann?, Borja Balle?; Mariana Raykova?,
Jack Doerner®; Samee Zahut®, and David Evans”

! “University of Edinburgh
2 Humboldt University of Berlin
3 Lancaster University
4 Yale University
® Northeastern University
5 Google
T University of Virginia

https://github.com/schoppmp/linreg-mpc

schoppmp / linreg-mpc @Unwatch~ 6 | Y Star 1 YFork 1
<> Code Issues 1 Pull requests 0 Projects 0 Wiki Pulse Graphs
A Secure Multiparty Computation (MPC) protocol for computing linear regression on vertically distributed datasets

{p 388 commits ¥ 3 branches © O releases 422 4 contributors sfs GPL-3.0
| |

