
Privacy-Preserving	Distributed	
Linear	Regression

on	High-Dimensional	Data

Borja Balle
Amazon Research Cambridge

(work done at Lancaster University)

Based on joint work with Adria Gascon, Phillipp Schoppmann, Mariana 
Raykova, Jack Doerner, Samee Zahur, and David Evans



Motivation

Treatment	
Outcome

Medical Data Census	Data Financial	Data

Attr. 1 Attr. 2 … Attr. 4 Attr. 5 … Attr. 7 Attr. 8 …

-1.0 0 54.3 … North 34 … 5 1 …

1.5 1 0.6 … South 12 … 10 0 …

-0.3 1 16.0 … East 56 … 2 0 …

0.7 0 35.0 … Centre 67 … 15 1 …

3.1 1 20.2 … West 29 … 7 1 …

Note:	This	is	vertically-partitioned	data;	similar	problems	with	horizontally-partitioned



PMPML: Private Multi-Party Machine 
Learning

Assumptions
• Parameters	of	the	model	will	be	received	by	all	parties
• Parties	can	engage	in	on-line	secure	communications
• External	parties	might	be	used	to	outsource	
computation	or	initialize	cryptographic	primitives

Problem
• Two	or	more	parties	want	to	jointly	learn	a	model	of	
their	data

• But	they	can’t	share their	private	data	with	other	parties



The	Trusted	Party assumption:

• Introduces	a	single	point	of	failure (with	
disastrous	consequences)

• Relies	on	weak	incentives (especially	when	
private	data	is	valuable)

• Requires agreement between	all	data	providers

=>	Useful	but	unrealistic. Maybe	can	be	simulated?

The Trusted Party “Solution”
Receives	plain-text	data,	runs	algorithm,	returns	result	to	parties



Secure Multi-Party Computation (MPC)

f(x1, x2, . . . , xp) = y

Public:

xiPrivate:	
(party	i)

Goal: Compute	f	in	a	way	that	each	party	
learns	y	(and	nothing	else!)

Tools: Oblivious	Transfers	(OT),	Garbled	Circuits	(GC),	
Homomorphic	Encryption	(HE),	etc

Guarantees: Honest	but	curious	adversaries,	malicious	adversaries,	
computationally	bounded	adversaries,	coalitions



In This Talk

A	PMPML	system	for	vertically	partitioned	linear	regression

Features:
• Scalable	to	millions	of	records	and	hundreds	of	dimensions
• Formal	privacy	guarantees
• Open	source	implementation

Tools:
• Combine	standard	MPC	constructions	(GC,	OT,	TI,	…)
• Efficient	private	inner	product	protocols
• Conjugate	gradient	descent	robust	to	fixed-point	encodings



FAQ: Why is PMPML…

Exciting?
Can	provide	access	to	previously	”locked”	data

Hard?
Privacy	is	tricky	to	formalize,	hard	to	implement,	
and	inherently	interdisciplinary

Worth?
Better	models	while	avoiding	legal	risks	and	bad	
PR	
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Ref Crypto Linear	Solver Examples Features Running	
Time Accuracy

[1] HE Newton 50K 22 2d YES

[2] HE+GC Cholesky 2K 20 6m YES

[3] TI/HE Newton 50K 223 “7h” NO

[4] SS Gauss/Chol/CGD 10K 10 11s NO



Functionality: Multi-Party Ridge Regression

Y 2 Rn

X = [X1 X2] 2 Rn⇥d

Training	Data Private	Inputs

Party	1:
X2Party	2:
X1, Y

min
✓2Rd

kY �X✓k2 + �k✓k2

(X>X + �I)✓ = X>Y
Ridge	

Regression
(optimization)

(closed-form	solution)
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Aggregation and Solving Phases

O(nd2)

O(d3)

A = X>X + �I

b = X>Y
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✓ = A�1b

X>X =

"
X>

1 X1 X>
1 X2

X>
2 X1 X>

2 X2

#

(cross-party	products)

(eg.	Cholesky)

O(kd2)
(eg.	k-CGD)

Approximate	
iterative	solver



Challenges and Trade-offs

• MPC	protocols:	out	of	the	box	vs. tailored

• Encoding	real	numbers:	speed	vs.	accuracy

• Scalability:	n,	d,	#	parties

• Privacy	guarantees:	semi-honest	vs.	malicious

• External	parties:	speed	vs.	privacy

• Interaction:	off-line	vs.	on-line



Protocol Overview

Data
Provider

Data
Provider

Data
Provider

Crypto
Provider

Computing
Provider 1. CrP distributes	correlated	

randomness
2. DPs run	multiple	inner	

product	protocols	to	get	
additive	share	of	(A,b)

3. CoP get	GC	for	solving	
linear	system	from	CrP

4. DPs send	garbled	shares	of	
(A,b)	to	CoP

5. CoP executes	GC	and	
returns	solution	to	DPs

Aggregation	Phase

Solving	Phase

Alternative:	CrP and	CoP simulated	
by	non-colluding	parties



Aggregation Phase – Two Protocols

X>
1 X2

(matrix	product)

f(x1, x2) = hx1, x2i
(inner	product	b/w	columns)

)
Fixed-point
Encoding O(log(n/")) bits  "error

• External	pre-processing:	inner	product	protocol	
leveraging	correlated	randomness	supplied	by	
Trusted	Initializer	(TI)

• Stand-alone:	2-party	inner	product	protocol	based	
on	Oblivious	Transfers	(OT)



Aggregation Phase - Experiments
Aggregation phase: Two protocols

* AWS C4 instances, 1Gbps

1. Protocol based on external party (TI) distributing randomness
2. 2-party protocol based on Oblivious transfer

Trade-offs • OT:	stand-alone,	out-of-the-box	MPC
• TI:	pre-processing,	external	party,	faster



Solving Phase – Garbled Circuits

(PSD	linear	system)

A✓ = b

A =
X

i

Ai b =
X

i

bi

(Ai, bi)
(party	i’s	input)

Solver	implemented	in	a	Garbled	Circuit
Working with Real Numbers

Year Device / Paper
32 bit floating point 

multiplication
(ms)

1961 IBM 1620E 17.7
1980 Intel 8086 CPU (software) 1.6
1980 Intel 8087 FPU 0.019
2015 Pullonen et al. @ FC&DS 38.2
2015 Demmler et al. @ CCS 9.2 } MPC

Floating-point	computation	
with	GC	is	not	feasible	(yet)Working with Real Numbers

Intel 8087 FPU (1980)
32-bit floating point multiplication: 0.019ms

⌧GC



Solving Phase – Two Methods

• Cholesky:	exact,	cubic,	used	in	[Nikolaenko et	al.’13]

• Conjugate	Gradient	Decent	(CGD):	approximated,	“quadratic”

Experiments (by Phase)

Runtime of Phase 2Runtime of Phase 1

CrP DP
m=1,000 

d=100 0.28s 0.35s
m=50,000 

d=200 53.2s 57.5s
m=500,000 

d=500 3382s 4001s

https://github.com/schoppmp/linreg-mpc



Fixed-point + Conjugate Gradient DescentCGD in Fixed Point Arithmetic

g0 := Ax0 � b

p0 := g0

repeat for k = 1 . . . K
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Textbook CGD

CGD in Fixed Point Arithmetic
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Textbook CGD
g0 := Ax0 � b

p0 := g0/�g0��

repeat for k = 1 . . . K
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Fixed Point CGDTextbook	CGD Fixed-point	CGD



Fixed-point + Conjugate Gradient Descent
CGD in Fixed Point Arithmetic

g0 := Ax0 � b

p0 := g0

repeat for k = 1 . . . K

�k :=
g�

k pk

p�
k Apk

xk+1 := xk � �kpk

gk+1 := gk � �kApk

�k :=
p�

k Agk+1

p�
k Apk

pk+1 := gk+1 � �kpk

Textbook CGD

CGD in Fixed Point Arithmetic

Bits	=	Ni	+	Nf +	1
Ni	=	number	of	integer	bits

Nf =	number	of	fractional	bits



Experiments with UCI DatasetsPrivacy-Preserving Distributed Linear Regression on High-Dimensional Data 14

id Name Reference d n

1 Student Performance [11, 14] 30 395
2 Auto MPG [72] 7 398
3 Communities and Crime [61, 62] 122 1994
4 Wine Quality [12, 13] 11 4898
5 Bike Sharing Dataset [23, 24] 12 17 379
6 Blog Feedback [8, 9] 280 52 397
7 CT slices [33] 384 53 500
8 Year Prediction MSD [5] 90 515 345
9 Gas sensor array [26, 27] 16 4 208 261

Table 2. Specifications of UCI datasets considered in our evalua-
tion. The number of samples n is split randomly into training (70%)
and test sets (30%).

trary ways. However, we maintain the restriction that they may
not collude (that is, the adversary controls at most one of CSP

and Evaluator). Moreover, as in the the setting used by Niko-
laenko et al. [57], we assume a relaxed notion of malicious
adversary that is willing to deviate from the protocol in any
way, but only without getting caught. Moreover, if the proto-
col terminates successfully, the honest parties can be sure that
their inputs were kept private. This is also known as the covert
threat model, as formally defined by Aumann and Lindell [2].

First, note that for the aggregation phase, we need to use
the inner product protocol based on OT (Section 3.1.1), since
we can no longer assume that the CSP can act as a trusted
initializer. Since neither the CSP nor Evaluator take part in
this aggregation phase, it needs no further analysis.

Recall that the CSP and the Evaluator take the roles of
garbler and evaluator in the garbled circuits protocol. In gen-
eral, garbled circuit constructions provide security against a
malicious evaluator, as garbled input and output values can-
not be forged. The more challenging task is obtaining secu-
rity guarantees against a malicious garbler, since it can pre-
pare a garbled circuit (in step 1 of Figure 2) that implements
a different functionality than the one intended for evaluation.
Hence, in the rest of this section, we focus on the case where
the Evaluator is honest, but the CSP may arbitrarily deviate
from the protocol.

The general approach for constructing two-party compu-
tation based on garbled circuits that provides security against
malicious adversaries employs the so-called cut-and-choose
technique [44, 48]. The basic idea is that the garbler generates
multiple garbled circuits, and the evaluator chooses a subset
of these circuits and checks that they were generated correctly
by the garbler, while the remaining circuits are used for the
secure evaluation. As the garbler does not know which circuits

will be checked in advance, the evaluator gets some confidence
that the garbler is not cheating in the circuit generation.

Nikolaenko et al. [57] made a perceptive observation that
in the setting of linear regression, the correctness of the result
can be verified simply by checking that the solution ◊ of the
system A◊ = b indeed minimizes the least squares expression
of equation (1). This is done by verifying that ◊ evaluates to 0

in the derivative of the least squares function in equation (2),
which is much cheaper than computing ◊ with malicious secu-
rity. Concretely, this means checking that Î2(A◊ ≠ b)Î = 0.
As we are working on a finite ring, the equality check must be
approximated as Î2(A◊ ≠ b)Î œ [≠u, u], for some u chosen
by the parties. We assume that the election of u is done cor-
rectly, in the sense that, if the CSP does not deviate from the
protocol, then Î2(A◊ ≠ b)Î œ [≠u, u] holds. If we consider
the infinity norm, then the verification check of a solution ◊,
corresponds to checking

’i œ [d] : v̨i œ [≠u, u] (5)

where v̨ = A◊ ≠ b, and A, b are additively shared among
the data providers as (A1, b1), . . . , (Ak, bk) as a result of the
aggregation phase. We call this check the verification phase,
which is run after the solving phase to withstand a malicious
CSP. Hence, we use a semi-honest protocol for the solving
phase, and then run a verification protocol with malicious se-
curity.

An important observation is that, by proceeding in this
way, we give up on checking the exact functionality imple-
mented in the semi-honest circuit generated by a malicious
CSP, which has subtle implications for security that were not
explicitly addressed in the work of [57]. We also discuss those
and investigate possible solutions at the end of this section.

In our protocol for the semi-honest case of Figure 3, ◊ is
revealed to the data providers as a result of the solving phase.
Consequently, an additive share of v̨ in (5) can be precom-
puted locally by the parties, and hence securely evaluating (5)
only requires additions and comparisons. Using this, we im-
plemented the verification phase as follows.
1. The data providers generate a uniformly pseudorandom

vector v̨i,1 œ Zd
q and locally compute v̨i,2 = Ai◊ ≠

bi ≠ v̨i,1. Then, they send v̨i,1 to the CSP and v̨i,2 to the
Evaluator.

2. CSP and Evaluator add up their received shares and ob-
tain v̨1 =

qk
i=1 v̨i,1 and v̨2 =

qk
i=1 v̨i,2, and then run

a two-party garbled circuit protocol with malicious secu-
rity. In the circuit, v̨ = v̨1 + v̨2 is recovered, and a single
bit is returned, indicating whether (5) holds.

3. CSP and Evaluator send the result of the verification cir-
cuit to all data providers.
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id
Optimal FP-CGD (32 bits) Cholesky (32 bits) FP-CGD (64 bits) Cholesky (64 bits)

RMSE time RMSE time RMSE time RMSE time RMSE

1 4.65 19s 4.65 (-0.0%) 5s 4.65 (-0.0%) 1m53s 4.65 (-0.0%) 35s 4.65 (-0.0%)
2 3.45 2s 3.45 (-0.0%) 0s 3.45 (-0.0%) 13s 3.45 (0.0%) 1s 3.45 (0.0%)
3 0.14 4m27s 0.14 (0.3%) 4m35s 0.14 (-0.0%) 24m24s 0.14 (0.2%) 26m31s 0.14 (-0.0%)
4 0.76 3s 0.76 (-0.0%) 0s 0.80 (4.2%) 23s 0.76 (-0.0%) 4s 0.76 (-0.0%)
5 145.06 4s 145.07 (0.0%) 1s 145.07 (0.0%) 26s 145.06 (0.0%) 4s 145.06 (0.0%)
6 31.89 24m5s 31.90 (0.0%) 53m24s 32.19 (0.9%) 2h3m39s 31.90 (0.0%) 4h40m23s 31.89 (-0.0%)
7 8.31 44m46s 8.34 (0.4%) 2h13m31s 8.87 (6.7%) 3h51m51s 8.32 (0.1%) 11h49m40s 8.31 (-0.0%)
8 9.56 4m16s 9.56 (0.0%) 3m50s 9.56 (0.0%) 16m43s 9.56 (0.0%) 13m28s 9.56 (0.0%)
9 90.33 48s 95.05 (5.2%) 42s 95.06 (5.2%) 1m41s 90.35 (0.0%) 1m9s 90.35 (0.0%)

Table 3. Results of the evaluation of our system on UCI datasets. For each choice of algorithm and bit width, running time is reported,
and the root mean squared error (RMSE) of the solution obtained by our system and an insecure implementation of ridge regression
using floating point are compared.

Note that since not both CSP and Evaluator cannot be ma-
licious at the same time, the parties only need to check if
both bits they received are 1. We implemented and evaluated
the garbled circuit with malicious security for this verification
phase, as an extension for our solving phase, using the EMP
framework presented in [65]. As expected, it runs extremely
fast: in our experiments, garbling and execution took less than
3 seconds for d Æ 500. This is in contrast with the time needed
for the solving phase for d = 500: 30 minutes, for 10 itera-
tions of CGD and a bit width of 32 bits (see Figure 6 (left)).

The above approach guarantees that a malicious CSP that
generates a circuit for the solving phase that computes a solu-
tion that does not pass the check of the verification phase will
be detected. This provides security against covert CSP when
the computation of the first phase is evaluating an exact solu-
tion that is unique and this is the only value that will pass the
verification. However, if the functionality is interpreted as an
approximation of the linear regression functionality, there is
still a difficulty that must be overcome to formally prove se-
curity: since u is known to the CSP (or at least a lower bound
can be guessed reasonably well), he can change the circuit in
the solving phase to encode some information about some data
provider’s input in the least significant bits of the elements of
◊. If the changes to v are small enough, this would not be de-
tected in the verification phase.

This is a common problem when securely computing
functionalities that implement approximations, and is dis-
cussed in detail in the work of Feigenbaum et al. [25]. The
authors make the observation that the outputs of the evaluation
of an approximation may reveal more than the outputs of the
evaluation of the exact functionality, and that simply round-
ing does not provide security in general. They define the no-
tion of a functionally private approximation, which guarantees
that the outputs of such an approximation are indistinguish-
able from those of a randomly sampled approximation, and

propose a way to make an approximation functionally private
by adding uniform noise to the output.

We can use the techniques proposed by Feigenbaum et
al. [25] in an alternative verification phase in which a func-
tionally private approximation of ◊ is provided to the parties
only if the verification test passes. We leave this extension and
its evaluation in terms of running time of the evaluation phase,
and utility of the constructed model for further work.

8 Discussion

The problem of securely running machine learning algorithms
when the training data is distributed among several parties
is an important milestone for the development of privacy-
preserving data analysis tools. In this paper, we focus on a
linear regression task widely used in practical applications.
Beyond the settings described in this paper, our implemen-
tation of secure conjugate gradient descent with fixed-point
arithmetic and early stopping can also be used to deal with
non-linear regression problems based on kernel ridge regres-
sion, given MPC protocols for evaluating kernel functions typ-
ically used in machine learning. Moreover, as mentioned in
Section 3, an extensive evaluation of MPC techniques for the
task of linear system solving, including our conjugate gradient
descent algorithm, is an interesting continuation of the work
proposed here. From a more theoretical perspective, the prob-
lem of providing security guarantees against malicious adver-
saries for approximate MPC functionalities poses interesting
open challenges both in general and from the perspective of
concrete machine learning tasks.

• 70-30	train-test	random	split
• Regularization	tuned	in	the	clear
• Implemented	in	Obliv-C
• 2+2	parties,	20	CGD	iterations
• Data	standardization	inside	protocol

• CGD	faster	for	d	>	100
• 32	bits	provide	good	accuracy



Conclusion

• Full	system	is	accurate	and	fast,	available	as	open	source
• Scalability	requires	hybrid	MPC	protocols	and	non-trivial	engineering
• Robust	fixed-point	CGD	inside	GC	has	many	other	applications

• Security	against	malicious	adversaries
• Classification	with	quadratic	loss
• Kernel	ridge	regression
• Differential	privacy	at	the	output

• Models	without	a	closed-form	solution	(eg.	logistic	regression,	DNN)
• Library	of	re-usable	ML	components,	complete	data	science	pipeline

Summary

Extensions

Future	Work



Read It, Use It

https://github.com/schoppmp/linreg-mpc

http://eprint.iacr.org/2016/892
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Abstract. We propose privacy-preserving protocols for computing lin-
ear regression models, in the setting where the training dataset is ver-
tically distributed among several parties. Our main contribution is a
hybrid multi-party computation protocol that combines Yao’s garbled
circuits with tailored protocols for computing inner products. Like many
machine learning tasks, building a linear regression model involves solv-
ing a system of linear equations. We conduct a comprehensive evaluation
and comparison of di↵erent techniques for securely performing this task,
including a new Conjugate Gradient Descent (CGD) algorithm. This al-
gorithm is suitable for secure computation because it uses an e�cient
fixed-point representation of real numbers while maintaining accuracy
and convergence rates comparable to what can be obtained with a clas-
sical solution using floating point numbers. Our technique improves on
Nikolaenko et al.’s method for privacy-preserving ridge regression (S&P
2013), and can be used as a building block in other analyses. We im-
plement a complete system and demonstrate that our approach is highly
scalable, solving data analysis problems with one million records and one
hundred features in less than one hour of total running time.

1 Introduction

Predictive modeling is an essential tool in decision making processes in domains
such as policy making, medicine, law enforcement, and finance. To obtain more
accurate models, it is common that organizations cooperate to build joint train-
ing datasets, specially when the analysis at hand involves complex phenomena
whose study requires vast amounts of data. However, collaborative analyses in-
volving private data are often limited by ethical and regulatory constraints. As
an example, consider a research project consisting of a study to predict medical
conditions given data related to socio-economic background. While databases
holding medical, judicial, and tax records linkable by common unique identifiers
(e.g., social security numbers) exist, they are often held by di↵erent institutions.


