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The time harmonic scalar wave equation

An heterogeneous Helmholtz equation

;

div()\(x)Vu(x)) + ou(x)u(x) = 0 inQ

u(x) = gp(x) on 0Q2p
A(X)g:(x) = gn(x) on 0Qy
/\(x)g:(x) + Z(x)u(x) = gr(x) on 0SQF.

@ the wave number k is included in A and u
@ Other boundary condition can be as well considered

@ The physical parameter function A and p are piecewise
constant.

@ The domain € is two or three dimensional with boundary 99
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The Classical IPDG method

The Interior Penalty Discontinuous Galerkin method
@ It has been ivented by Arnold in 1982
@ It has been intensively studied during the last decade

@ The main Advantages in frequency domain
e High oscillation of the coefficients can be considered
o Every tetrahedron is connected only to four neighbors
(important for direct methods like LU)
o Less dispersive than Continuous Finite Element

@ Drawbacks

e Hard to code

o The unknowns at the interface between two elements are
doubled (this has been corrected by the Hybridizable
Discontinuous Galerkin method)
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The IPDG method

P; Continuous Galerkin P1 Discontinuous Galerkin
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The IPDG method

On each triangle K, we have the variational equation
ak(u,v) =0

with the bilinear forms
ak(u,v) = / Ak Vu(x) - Vv(x)dx — / Pk (X)v(x)dsx,
K oK
- /uKu(x) v(x) dx
K

and
pk(x) = Ak Vu(x) - ng
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The IPDG method

Summing over all the tetrahedra of the mesh, we have
a(u,v) =0 (1)

with the bilinear forms

a(u,v) = Z/ Ak Vu(x) - Vv(x)dx
- Z /M P (x)v(x)dss, )
- ZK:/K,LLKU(X v(x)d

(

with K the tetrahedra.
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The IPDG (Neumann boundary condition)

The interface term in the bilinear form is eval-
uated by taking into account the Neumann
boundary condition and in remarking that ev-
ery face is considered twice

;AJWMW&ZELMWWM
3

with

POV()] = peva(x) + pvo(x)  (4)

and K the tetrahedra and T the interior faces.
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The IPDG method

Due to the transmission conditions

p+(x) = — p-(x) = {p} (5)
It follows that (v is discontinuous across the interface)
[p(x)v(x)] = {p} [v] (6)
with
[v] = vp—v;
(7)

pi(x) — p-(x)
{p} %
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The IPDG method

The bilinear form a takes the form
(u,v) = Z/ Ak Vu(x) - Vv(x) — pxu(x)v(x)dx
/ {p}[v]ds (8)
T JT

@ The initial bilinear form is unsymmetric and not coercive
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The IPDG method

The bilinear form a takes the form

.

a(u,v) = EK:/K Ak Vu(x) - Vv(x) — pxu(x)v(x)dx

SYRCIEES
- ZT:/T{q}[U]de with g = AVv - n

@ The initial bilinear form is unsymmetric and not coercive

@ The bilinear form is symmetrized
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The IPDG method

The bilinear form a takes the form

a(u,v) = EK:/K Ak Vu(x) - Vv(x) — pxu(x)v(x)dx
> [ toHv1es

- ZT:/T{q}[u]dsx with g = A\Vv-n

4 ;ar /T[u][v]dsx

(8)

@ The initial bilinear form is unsymmetric and not coercive
@ The bilinear form is symmetrized

@ An interior penalization is added in order to ensure the
positivity. The coefficient a7 is a parameter which should be
chosen large enough.
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The IPDG-BEM method

@ First point of view: A discontinuous Galerkin method whose
shape functions are quasi solution of the Helmholtz equation
(constructed thanks to a Boundary element method)

e This type of method is called Trefftz method
o Classically, we use either plane wave basis inside each element
or Bessel function

@ Second point of view: A domain decomposition method for
boundary element method with weak transmission condition
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The mesh

The degree of freedom of the Galerkin space

A smart finite element method
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A smart finite element method
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Trial and test functions

We are looking for an approximate solution
define in every element
nK

div()\KVuK(x)) + opkuk(x) = 0in T nK
uk(x) given on OT.
nK

The Neumann trace

PK = )\K VuK~nK on 0T

is the unique solution of the problem of first kind

Vkpkx _ Mkuk
AK 2

— Nkugk

with Vi and Nk the single layer and double layer operators.
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The boundary element method

@ uy is approximated by a P,-continuous function

@ py is approximated by a IP,/-discontinuous function

We have

(Mkuk, qi)ok = /m( uk(x) gi(x)dsy,

(Vkpk:qk)ok = / / pk(x) Gk (x —y) gk (y)dscdsy,

oK Jok
oG,

(Meus g = [ [ pilo) S (x = an(y)dssdsy
\ ok Jok dny
with

exp(ikix|]) . K
G(x) = ZPURKIXI) ith ke = [EK
(x) anfx| K Ak
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The boundary element method

@ uy is approximated by a P,-continuous function

@ py is approximated by a P.,-discontinuous function

e geometric nodes for px

e geometric nodes for ugk

We could not use the same mesh
for uk and pk.

Idea: the Neumann trace should be computed precisely

Remark: pyx needs not to be discontinuous everywhere, only at
the geometric singularity.
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The symmetric variational formulation

The bilinear form a takes the form

/Q)\Vu - Vv — puvdx = /r [pIlv] + {pH{v} dsy + /E)Q pvdsy

2

In the same way, we have

/Q/\Vu - Vv — puvdx = /r [ullgl + {u}{a} dsy + /(99 uqdsy

2

Subtracting the two last equations:

[u]lq] +{u}{q}

0 = /r 5 ds,ﬁ—/aQ uqdsy
[PI[v] + {p}H{v}

B /r 2 o /arz sy

No more volume terms; only boundary terms
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The symmetric variational formulation

We remark that for the exact solution [u] =0 and {p} =0on T
and u = gp on 0Qp and 0,u = gy on 9S2p and O,u+ Zu = gF on
0QF.

( / {ui{a} + {pHv} — [PIIV] — [u]lq]
r 2 g

a(u,piv,q) =

- / pv + uqdsy
9Qp

+ / pv + uqgdsy
oy

+ / pv + uq + 2Zuvds,
90

l1(v,q) = —2/ goqux+2/ g/vvdsx+2/ 8F vdsy
oQp Elo N oQF
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The symmetric variational formulation

Adding the penalization terms ([u] =0 on I and u = g on 99Q):

/ra[u][v]—i-/aQD auv = /E)QD agpv

b(U,p;V,q) EZ(V)

This leads to the formulation

a(u,p;v,q) + b(u,p;v,q) = ti(q) + £2(v).

Why the symmetry is important ?
@ for the linear algebra solver: it needs less memory

@ for boundary element method: it has been observed that these
methods are more stable.
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The Lagrangian formulation

l.

l.

Sparse matrix B Small full matrix
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The reduced formulation

Eliminating p and A

@ Symmetric block sparse matrix

@ No need to assembly the augmented matrix
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The numerical dispersion or the numerical pollution

One dimensional wave equation

1 0%u 0%u
—Q@(Xa t)+@(xa t) = f(x,t) (9)

Time harmonic domain

u(x,t) = %(u(x)exp(—iwt))

(10)
f(x,t) = %(f(x) exp(—iwt))
The functions u satisfies the Helmholtz equation
d?u 5
22 (X)) + K ux) = f(x) (11)
with k the wave number
2
w
k? = = (12)
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Limiting absorption principle

Let f be compactly supported
f(x) =0 for x ¢ [x_, x4] (13)

This problem is not well-posed
@ the associated bilinear form is not coercive
—
du, . dv

= | X) 5 (x) — Ku(x)v(x)dx  (14)

a(u, v)

e no solution in HY(R). Solutions are HL _(R).

e not unique in HL (R).
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Limiting absorption principle

Introduce a perturbation of the wave equation, with € > 0 a small
factor

d?u,

52 (x) + (k+ie)® u(x) = f(x) VxeR. (15)

which can be interpreted as a damping term in time domain

d?u. 1,0
™ (x) — é(a_‘_gc)z u:(x) = f(x) ¥xeR. (16)

The function u is then defined as the limit

u(x) = lim ue(x) (17)

e—0t
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The outgoing Green function is then given by

G(x) = engIi’X’) (18)
The solution is given by:
ux) = G+ = [ G-y (19
R
u(x) = () + u-(x) (20)

Propagative term with direction x growing

uy(x) = (/XOO f(y)ez%—iky))dy exp(ikx) (21)

Propagative term with direction x decreasing

u_(x) = (/XJFOO f(y)z;::(lky)) dy exp(—ikx) (22)
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Plane wave

For f compactly supported
f(x) =0 for x ¢ [x_, x4] (23)

The exact solution of the Helmholtz equation is given by

X+
u(x) = / f(y)expik(x — y)dx = Uy exp(ikx) if x > x4,

X4
u(x) = / f(y)exp—ik(x — y)dx = U_ exp(—ikx) if x < x_,

To understand the direction of propagation, these expressions
should be multiplyed by exp(—iwt)

direction x growing exp(ikx — iwt)

direction x decreasing exp(—ikx — iwt) (24)

At infinity, the solution is a plane with speed ¢ = +w/k
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Second order finite differences on infinite grid

Xp—1 Xn Xn+1

The sequence u, aims in approximating the fonction u at
Xp=nh (25)
For the Helmholtz equation, it reads

Upt1 — 2Up + Up—1
h2
In £2(Z), this equation is not well-posed

+ kK> u, =1, (26)

*(7) = {(u,,ec ez - Z |up|? <+oo} (27)

n—=—oo
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A discrete absorption principle

Adding a damping term which will tend to 0 with factor € > 0, we
have

Ue n+1 — ZUE,n + Ugn—1
h2

— (k+ie)ue, = f, YneZ. (28)

This problem becomes well posed in Ez(Z) since one can apply the
Lax-Milgram theorem.

The outgoing solution is then defined by:

= i 29
n = i e 29)
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The discrete Green function

The source term is of the form
fo=1 and f,=0forn#0 (30)
For n > 0, we have the birecurrent sequence
U1 — (2 — kK*h®)up + up_1 = 0. (31)
Characteristic equation
rP—(2-Kkhr)yr+1=0 (32)

For h small, A = (2 — k?h?)2 — 4 < 0. The two roots associated
to this equation are given by
" =exp(iap) and r; = exp(—iap) (33)
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The discrete Green function

We have two solutions
exp(iapn) and exp(—iapn). (34)
To better understand this expression we introduce kp = ap/h
exp(ikpxn) and exp(—ikpxp). (35)

and we multiply both terms by exp(—iwt)

exp(iknxn — iwt) and exp(—ikpxp, — iwt) (36)

@ The first wave is a numerical wave propagating in the
direction x-growing with speed ¢, = kp/w

@ The second wave is a numerical wave propagating in the
direction x-decreasing with speed ¢, = kp/w
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The discrete Green function

To summarize we have for n >0
u, = Pexp(iknxn). (37)
In the same way, we have for n <0
up = 7 exp(—iknxn). (38)

We determine 8 and -y thanks to the realtion

Up+ = Up-—
(39)
u_1—(2— kzhz)uO +u = h?
This leads to "
u, = exp(l h|Xl7‘) (40)

2 exp(ikph) — 2 + k2h?
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The discrete Green function

The discrete Green function is exactly the function which has been
computed. Let us denote it by G,

h? exp(ikp|xa|)
2 exp(iknh) — 2 + K22

G, = (41)

Let us now consider the solution of the problem with a general
source term (defined by the absorption principle)

Upt1 — 2Up + Up_1
h2

- Ku, = f, VneZ. (42)
Acting by linearity, we have

up = Z Gp—p f, (discrete convolution operator) (43)
PEZ
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The notion of discrete Green function

Let us now consider a source term with compact support included
in [x_,x3]. We have f, =0 if x, ¢ [x_, x4].
The expression

u, = Z Gn—p fp (discrete convolution operator) (44)
pEZ

can be simplified for n such that x, > x4

Un = A exp(iknx) (45)
and such that x < x_

up = By exp(—ikpxn) (46)

Two sources of errors:
@ error in amplitude A, and Bj do not have a correct value
@ error in phase kj, does not have a correct value (this is the
pollution effect)
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Conclusion for the second order finite differences

k3h?
kn=kn—k = O (—— 47
dkn = kn hao( 7 ) (47)
@ The numerical wave number is larger than the wave number.
@ Phase shift for every wave length
K3h’X 2w
O%h 24 24 (48)
@ 100% error at distance L, defined by
2w
@ 100% error at distance N}, wavelength
kLp 24
N, = — ~ ——. 50
"o T ke (50)
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A numerical simulation

y
Q
X
Au(x) + kK*u(x) =0 inQ
u(x)=1 at x =0,
(51)
gZ(x) ~0 at x = 100 or 200
gZ(x)Jriku(x):O aty=0and A
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Error at every wavelength in Py for 10, 12, 14, 16, 18

segments per A

- 20 segments per )\, 2400 dof per \?
18 segments per A, 1944 dof per \2
16 segments per A, 1536 dof per \2
14 segments per \, 1176 dof per \2

- 12 segments per \, 864 dof per \?

- 10 segments per )\, 600 dof per \2

0 10A 20X\ 30X 40X 50\ 60X 70X 80X 90X 100X
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Error at every wavelength in P, for 10, 12, 14, 16, 18

segments per A

- 20 segments per \, 4800 dof per \?
18 segments per \, 3888 dof per \2
16 segments per A, 3072 dof per \2
14 segments per \, 2352 dof per \2

- 12 segments per )\, 1728 dof per \?

- 10 segments per \, 1200 dof per \?

10% erreur

———=——F == ---F--J---F-——d-——|

0 10>\ 20N 30X 40X 50X\ 60X 70X 80A 90X 100X
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Error at every wavelength in P53 for 4, 6, 8, 10 segments

per A

10 segments per ), 2000 dof per \?
8 segments per \, 1280 dof per \?
- 6 segments per \, 720 dof per \?
- 4 segments per \, 320 dof per \?

0 10A 20X 30X 40X 50X 60X 70X 80X 90X 100X
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DG-BEM: modulus error for a 100 A domain

90 segments per \, 560 dof per \?
- 70 segments per \, 560 dof per \?
- 40 segments per \, 320 ddl per \?

T ———— .

........

---------------
................

S gty
0 10N 20\ 30X 40X 50X 60X 70X 80A 90A 100X
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DG-BEM Phase error for 100 A domain

90 segments per \, 560 dof per \?
. 70 segments per \, 560 dof per \?
- 40 segments per \, 320 dof per \2

................
..........

"""""""

0 10A 20X 30X 40X 50X 60X 70A 80X 90X 100X
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DG-BEM: Phase error for a 100 A domain

90 segments per \, 560 dof per \?
. 70 segments per \, 560 dof per \?
- 40 segments per \, 320 dof per \2

0.4% erreur

—_—_— e e e e e e e e e

....................
.....................
...................
LT

0 10A 20X 30X 40X 50X 60X 70A 80X 90X 100X
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DG-BEM: Phase Error for a 200 A domain

90 segments per \, 560 dof per A2
- 70 segments per \, 560 dof per A2
- 40 segments per \, 320 dof per \?

6% erreur

0.4% erreur

0.2% érreur

e et o B S i Rt S gy
0 20\ 40X 60X 80A 100X\ 120X 140X 160X 180X 200X
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Poly degree nodes per A Method Error at 175\ for P,
Error at 500\ for P3

m=2 12 IPDG 72 %

BEM-STDG 22 %

16 IPDG 67 %

BEM-STDG 5.6 %

24 IPDG 13 %

BEM-STDG 0.8 %

m=3 12 IPDG 19 %

BEM-STDG 1.6 %

18 IPDG 1.7 %

BEM-STDG 0.1%

24 IPDG 03%

BEM-STDG 0.02 %
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Conclusion

@ The IPDG-BEM is low dispersive

@ The inversion of the system analytic accelerator (FMM) and
algebra accelerator (ACA). This has been tested on a triangle

@ The method has also been implemented in 3D

All details in the prepublication:
A Symmetric Trefftz-DG Formulation based on a Local Boundary
Element Method for the Solution of the Helmholtz Equation, H

Barucq and al.

https://hal.inria.fr/hal-01218784
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