JOSO 2016 March 9-11 2015

Nonlinear Wave Theory for Transport Phenomena

ILYA PESHKOV

CHLOE, University of Pau, France

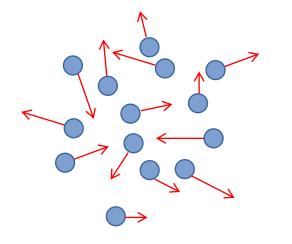
EVGENIY ROMENSKI MICHAEL DUMBSER OLINDO ZANOTTI

Sobolev Institute of Mathematics, Novosibirsk, Russia

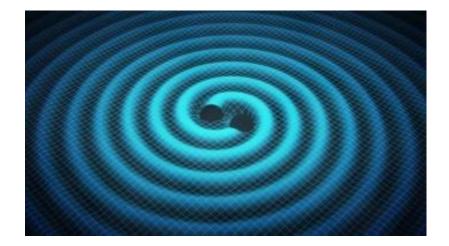
BSER University of Trento, Trento, Italy

University of Trento, Trento, Italy

Motivation for a New Fluid Dynamics

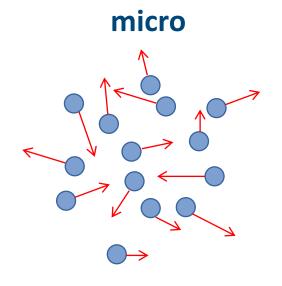


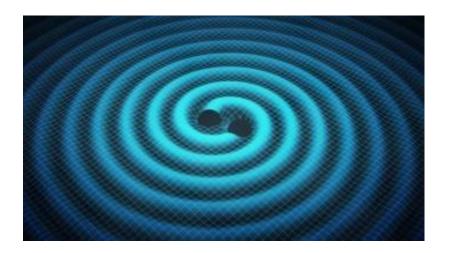
micro



macro

Motivation for a New Fluid Dynamics





macro

Classical **parabolic** transport theories (Navier-Stokes, Fourier, Fick) **are not "wave" theories** in a rigorous sense.

Classical **Kirchhoff** equation (dispersion relation for NS) says that at **high** frequencies $\frac{1}{2}$

$$V pprox \omega^{1/2}$$

Unified hyperbolic model for fluids and solids

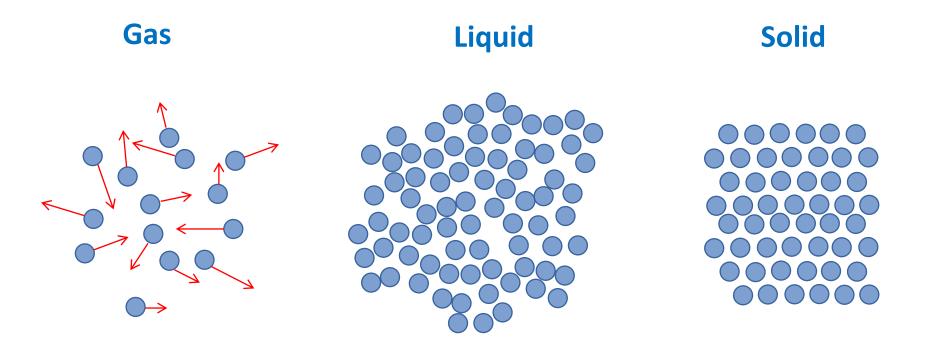
First order **Hyperbolic** model (genuinely wave theory)

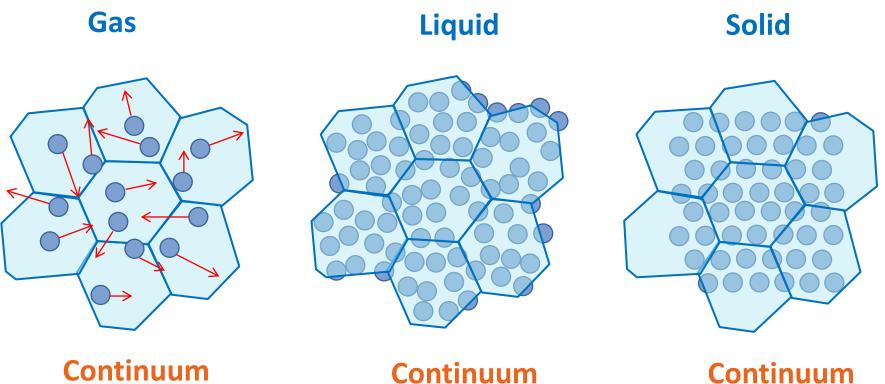
Can describe **fluids and solids** in a one system of PDEs

Free of empirical steady-state transport relations (Newton's law of viscosity, Fourier heat conduction law etc.)

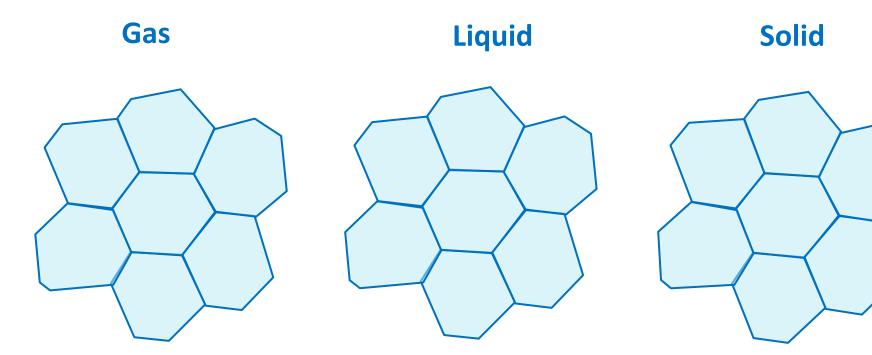
Applicable to non-Newtonian, non-Fourier, non-Fickian transport

Has less numerical issues than parabolic theory (mesh quality, discontinuities, singularities)

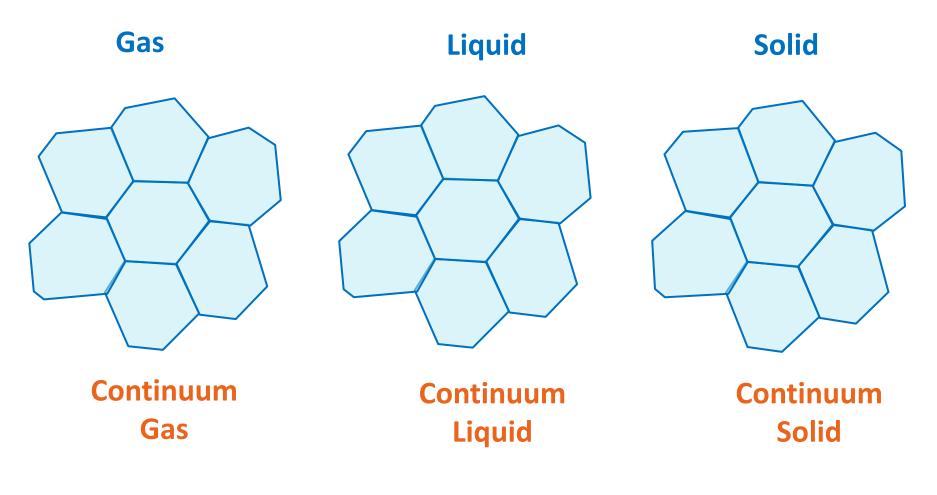




Continuum Gas Continuum Liquid Continuum Solid



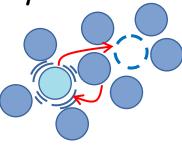
Continuum Gas Continuum Liquid Continuum Solid

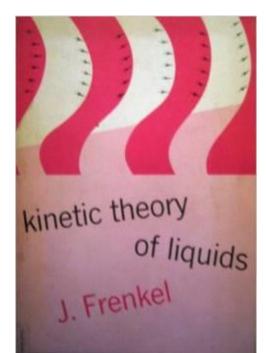


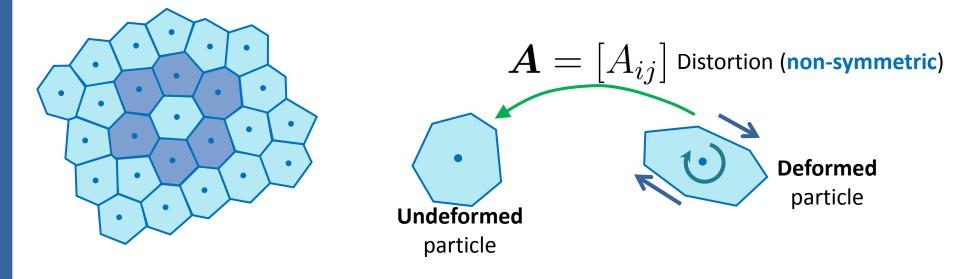
Flow is the Particle Rearrangement process

Particle rearrangements is a way to the Unified Flow Theory

• Frenkel's idea to describe fluidity of liquids is to introduce time $\,\mathcal{T}\,$







Main ingredients

Distortion field
$$oldsymbol{A} = [A_{ij}]$$

Energy potential (equation of state):

Equation of State

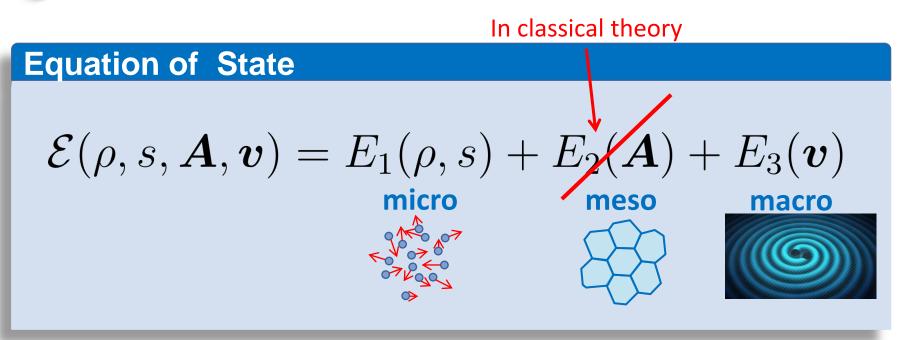
$$\mathcal{E}(\rho, s, \boldsymbol{A}, \boldsymbol{v}) = E_1(\rho, s) + E_2(\boldsymbol{A}) + E_3(\boldsymbol{v})$$

$$\overset{\text{micro}}{\longleftarrow} \qquad \overset{\text{meso}}{\longleftarrow} \qquad \overset{\text{macro}}{\longleftarrow} \quad \overset{\text{macro}}{$$

Main ingredients

Distortion field
$$oldsymbol{A} = [A_{ij}]$$

Energy potential (equation of state):



Governing equations

Momentum:

$$\frac{\partial \rho v_i}{\partial t} + \frac{\partial (\rho v_i v_k + \rho^2 \mathcal{E}_{\rho} \delta_{ik} + \rho A_{mi} \mathcal{E}_{A_{mk}})}{\partial x_k} = 0$$

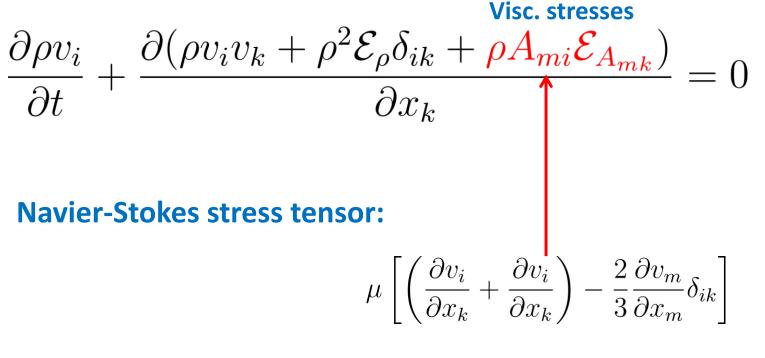
Equation for the distortion:

$$\frac{\partial A_{ik}}{\partial t} + \frac{\partial A_{im}v_m}{\partial x_k} = -v_j \left(\frac{\partial A_{ik}}{\partial x_j} - \frac{\partial A_{ij}}{\partial x_k}\right) - \frac{\mathcal{E}_{A_{ij}}}{\tau}$$

$$\mathcal{E}(\rho, s, \boldsymbol{A}, \boldsymbol{v}) = E_1(\rho, s) + E_2(\boldsymbol{A}) + E_3(\boldsymbol{v})$$

Governing equations

Momentum:



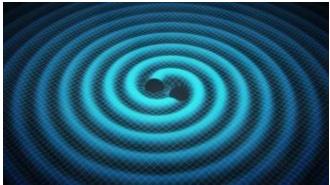
$$\mathcal{E}(\rho, s, \boldsymbol{A}, \boldsymbol{v}) = E_1(\rho, s) + E_2(\boldsymbol{A}) + E_3(\boldsymbol{v})$$

Waves

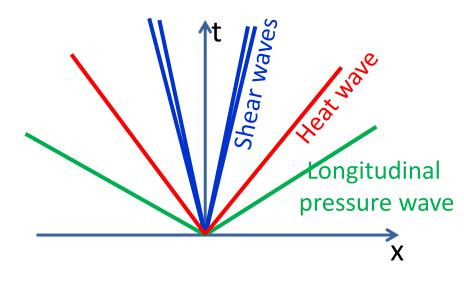
Meso scale

Macro scale

Waves



Macro scale



Meso scale

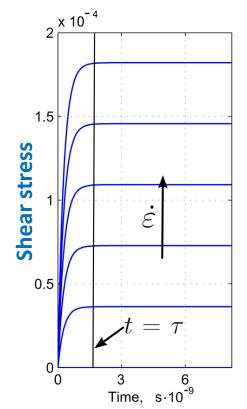
Fluid particles

Wave theory

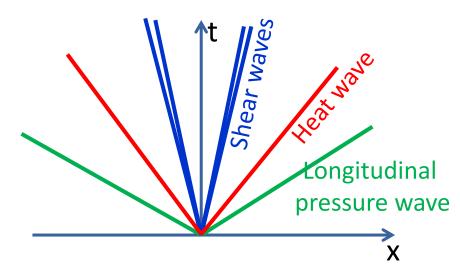
Fluid particles

Waves

Meso scale



Macro scale

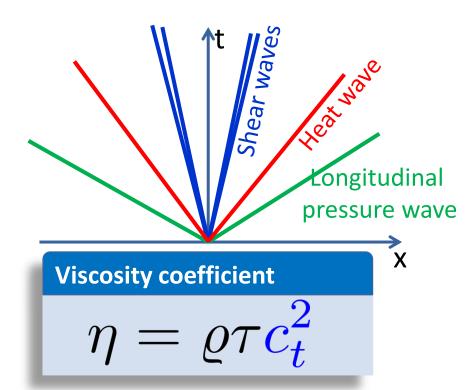


Wave theory

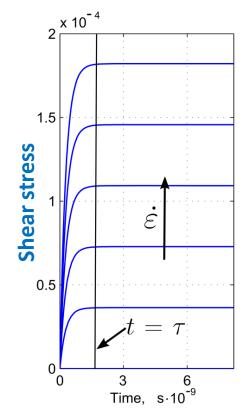
Fluid particles

Waves

Macro scale



Meso scale



Hyperbolic Heat Conduction

$$\frac{\partial \rho J_i}{\partial t} + \frac{\partial \left(\rho J_i v_k + E_s \delta_{ik}\right)}{\partial x_k} = -\frac{\rho E_{J_i}}{\theta}$$

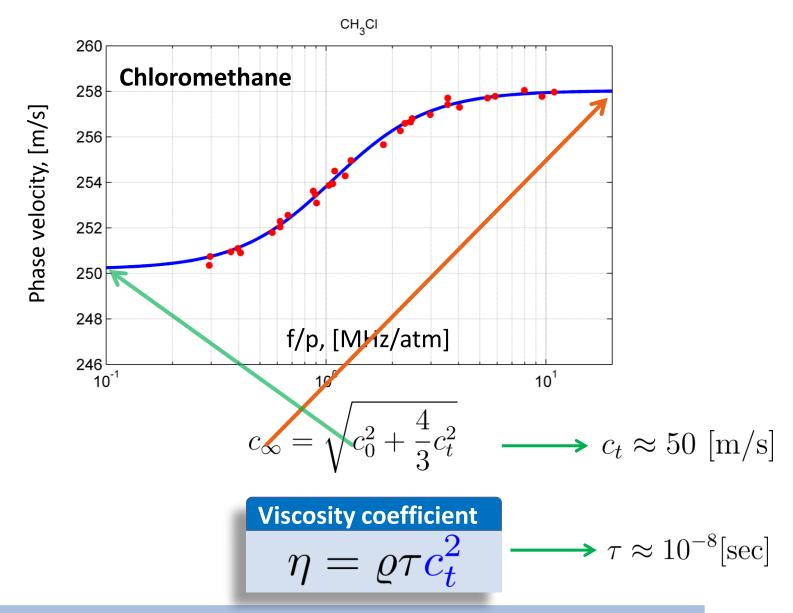
$$\frac{\partial \rho s}{\partial t} + \frac{\partial \left(\rho s v_k + E_{J_k}\right)}{\partial x_k} = \frac{\rho}{\theta E_s} E_{J_i} E_{J_i} \ge 0$$

Equation of State

$$E(\rho, s, \boldsymbol{A}, \boldsymbol{J}, \boldsymbol{v}) = E_1(\rho, s) + E_2(\boldsymbol{A}, \boldsymbol{J}) + E_3(\boldsymbol{v})$$

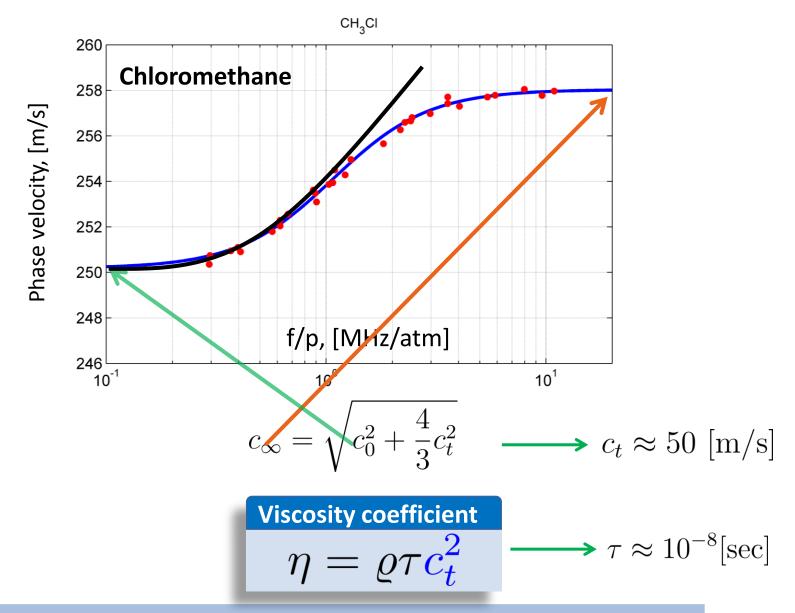
micro meso macro

But how to get the parameters? High frequency measurements



Ref: Data from Sette, Busala, Hubbard, The Journal of Chem. Phys., 23 (5), 1955

But how to get the parameters? High frequency measurements



Ref: Data from Sette, Busala, Hubbard, The Journal of Chem. Phys., 23 (5), 1955

ADER-WENO-FVM-DG framework, (also P_NP_M methods)

$$\frac{\partial \boldsymbol{q}}{\partial t} + \frac{\partial \boldsymbol{F}(\boldsymbol{q})}{\partial x} = \boldsymbol{S}(\boldsymbol{q})$$

$$^{+1} = \boldsymbol{q}_{i}^{n} - \frac{\Delta t}{\Delta x_{i}} \left(\boldsymbol{F}_{i+1/2} - \boldsymbol{F}_{i-1/2} \right) + \Delta t \boldsymbol{S}_{i} \quad \text{Generalized Riemann Problem}$$

$$\overset{\mathbf{GRP}}{\mathbf{GRP}}$$
(smoothed initial data)

- 1. WENO reconstruction (degree N)
- 2. Solve GRP coupled with the source terms (degree M>N) (Cauchy-Kovalevski or DG)
- 3. Update at n+1

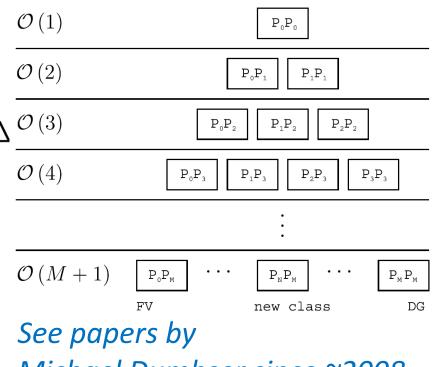
 $oldsymbol{q}_i^n$

See papers by E. Toro, V. Titarev, M. Dumbser since 2000

ADER-WENO-FVM-DG framework, (also P_NP_M methods)

$$\frac{\partial \boldsymbol{q}}{\partial t} + \frac{\partial \boldsymbol{F}(\boldsymbol{q})}{\partial x} = \boldsymbol{S}(\boldsymbol{q})$$

Unified *P_NP_M* family of methods



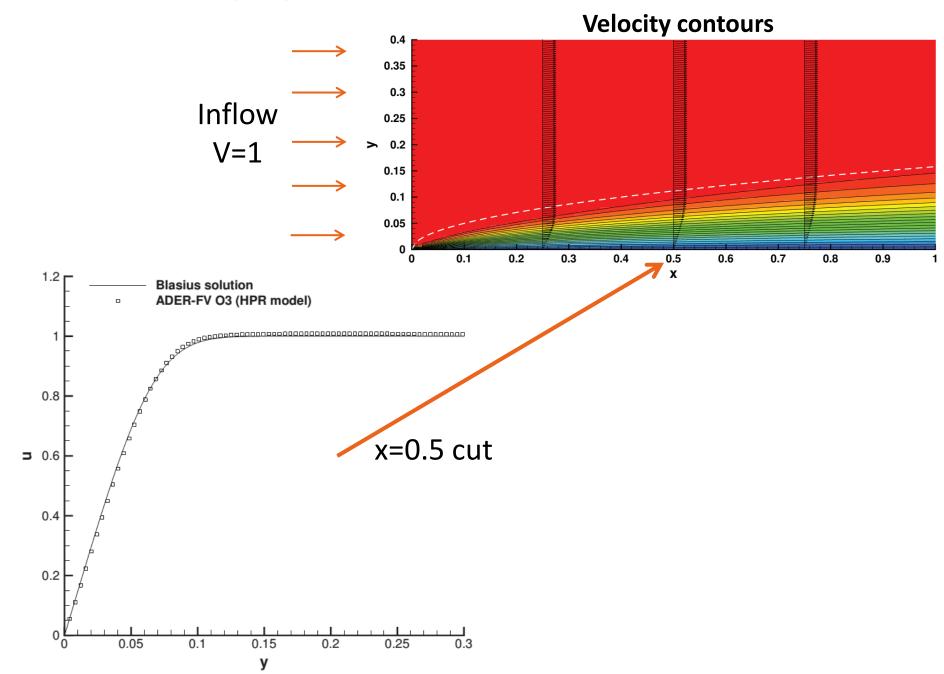
Michael Dumbser since ~2008

$$\boldsymbol{q}_{i}^{n+1} = \boldsymbol{q}_{i}^{n} - \frac{\Delta t}{\Delta x_{i}} \left(\boldsymbol{F}_{i+1/2} - \boldsymbol{F}_{i-1/2} \right) + \Delta_{\perp}$$

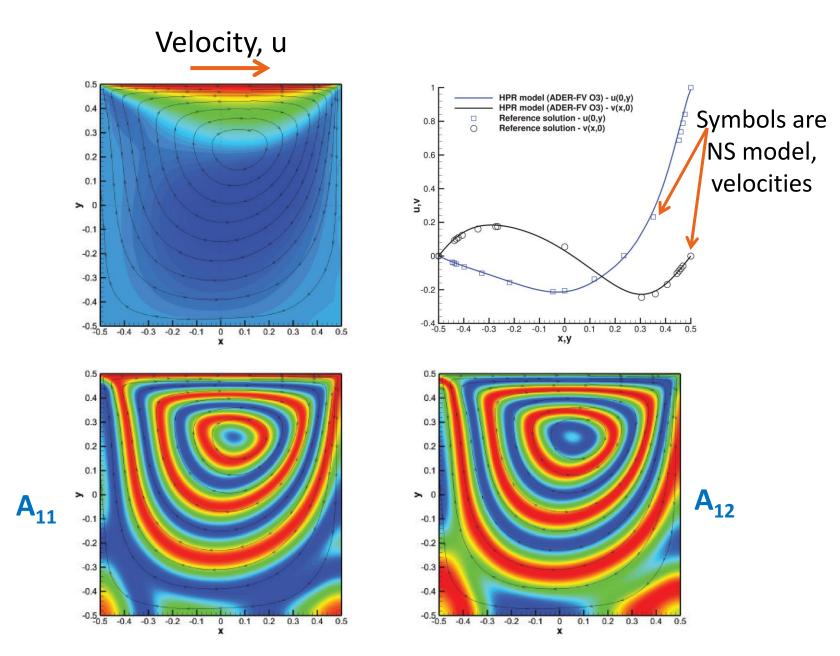
Code characteristics:

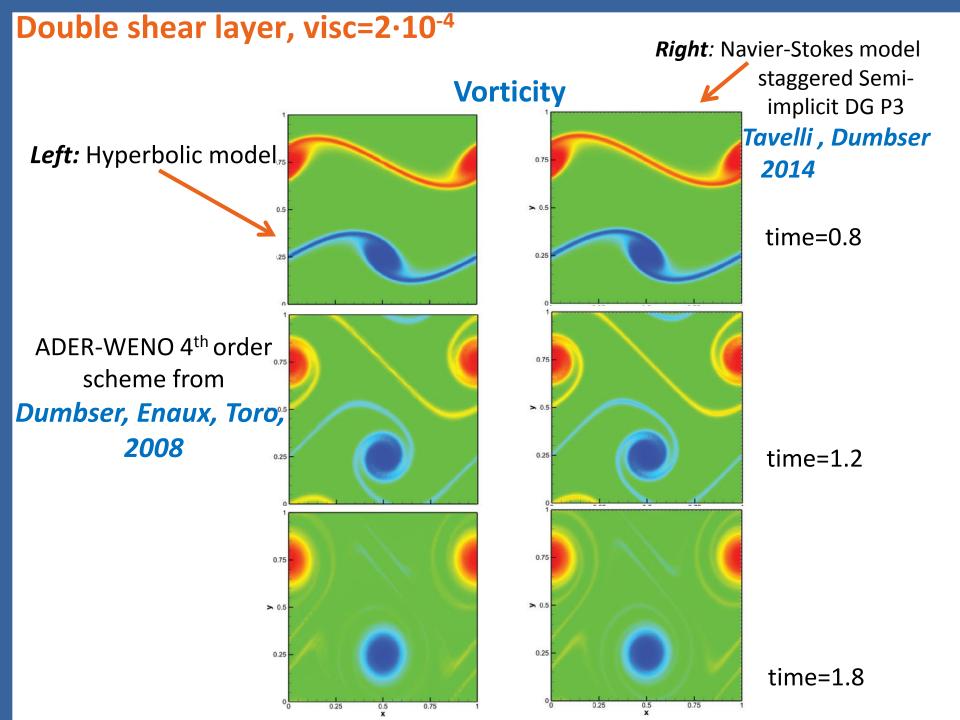
- Explicit globally (implicit locally)
- Massively Parallel
- Arbitrary order (up to 10 implemented)
- Equally High Order in both, space and time
- One step in time
- Robust WENO FV or ultra compact DG
- Unstructured grids (complex geometries)
- Stiff source terms (asymptotic preserving)

Blasius boundary layer, Re=1000

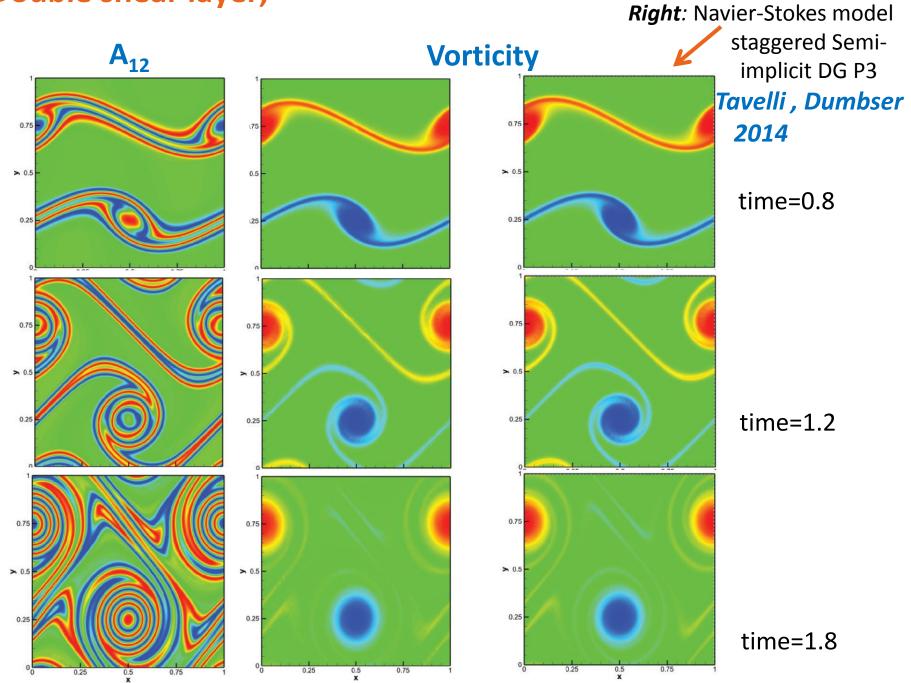


Lid driven cavity flow at Re=100

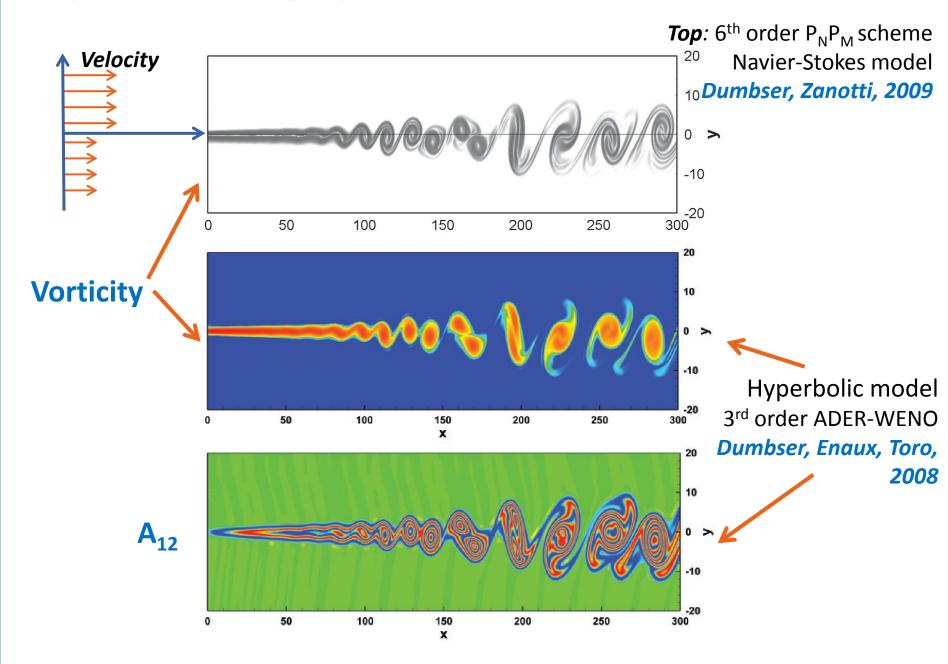




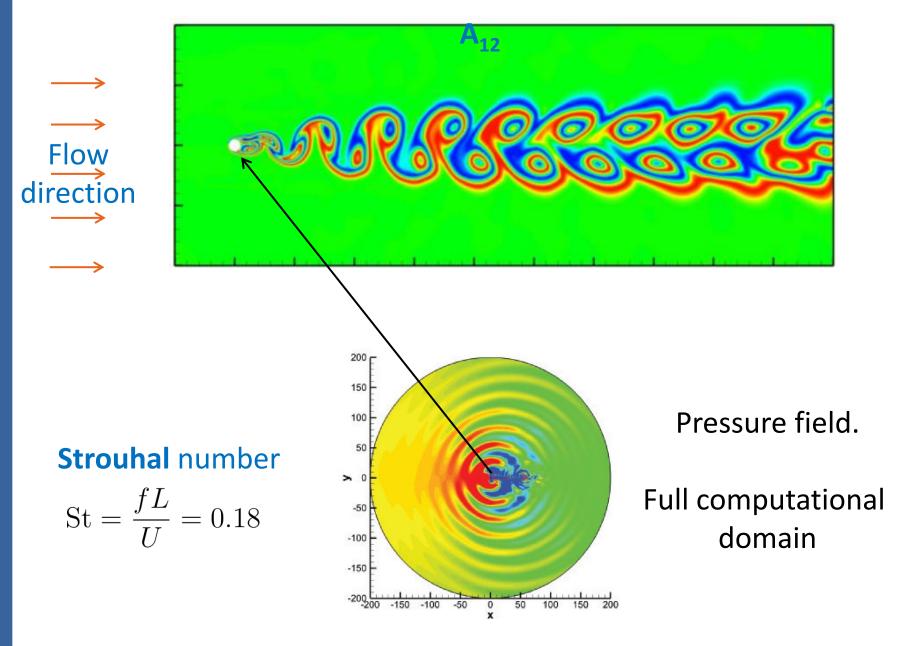
Double shear layer,



Compressible mixing layer, *Re*=250



Flow around a circular cylinder, Re=150

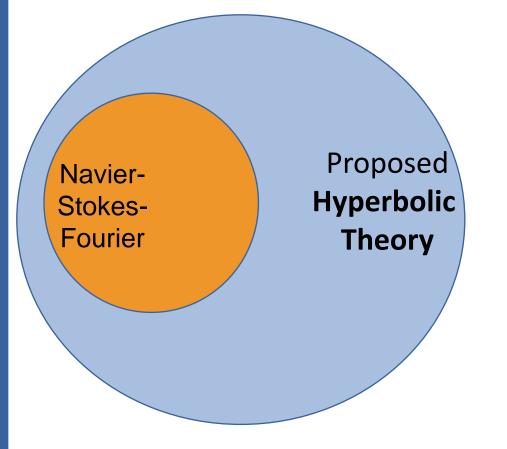


Severe time step restriction in Parabolic problems (explicit scheme) critical for complex flows and HPC

(# turbulence, viscoacoustics, 2-phase pore-scale modeling, etc.)

	2 nd order		1 st order	
	Parabolic		Hyperbolic	
	Navier-Stokes equations		Extended HPR model	
Mesh	time steps	CPU time	time steps	CPU time
ADER finite volume scheme (<i>O</i> 3)				
100	1587	18.7	479	98.0
200	5535	112.2	926	298.3
ADER-DG scheme (P3)				
100	87080	2317.2	4545	1743
200	340646	18476	9059	6133
$\Delta t \sim (\Delta x)^2 \qquad \Delta t \sim \Delta x$				

Navier-Stokes-Fourier

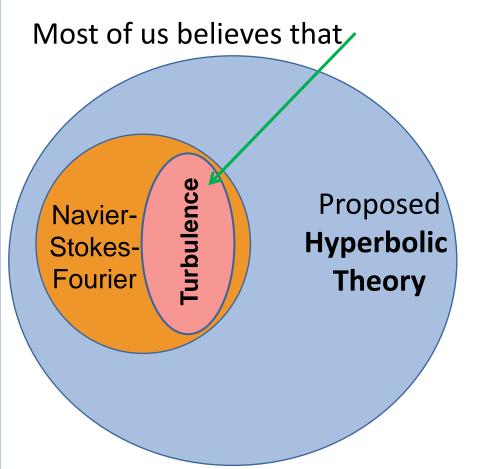


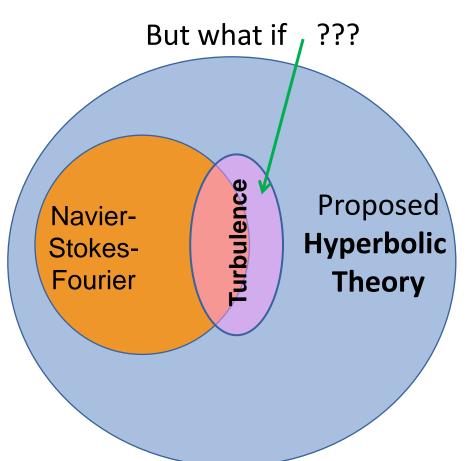
Now we have 2 fundamentally different models

Parabolic vs. Hyperbolic

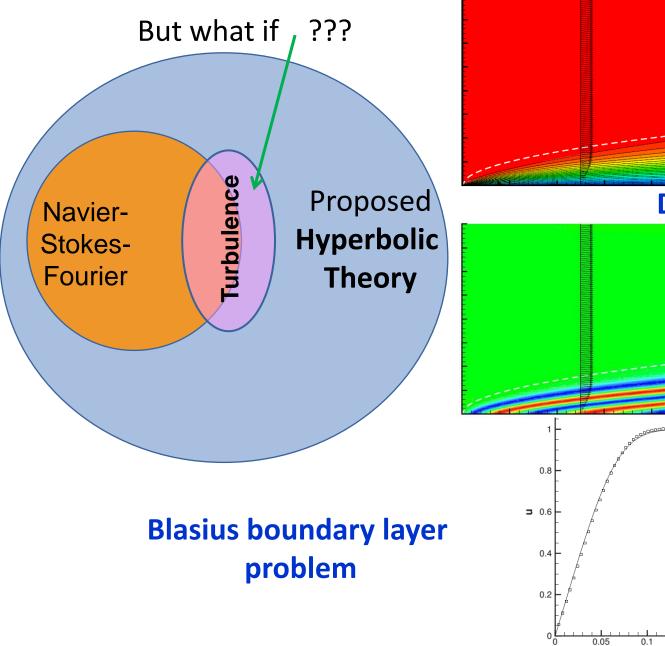
Dumbser, Peshkov, Romenski, Zanotti

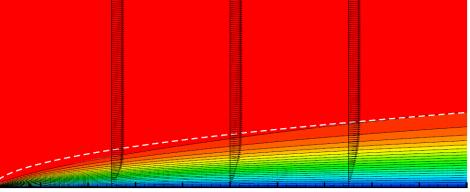
"High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids" Journal of Computational Physics. 2016. (Open access)





Velocity





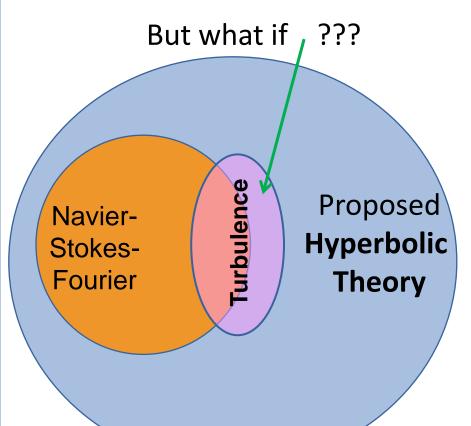
0.15

У

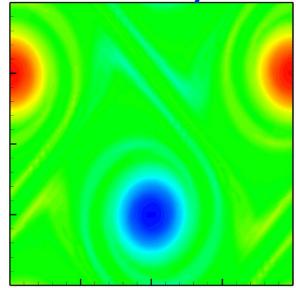
0.2

0.25

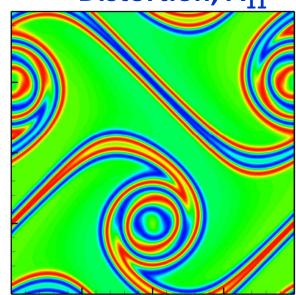
0.3



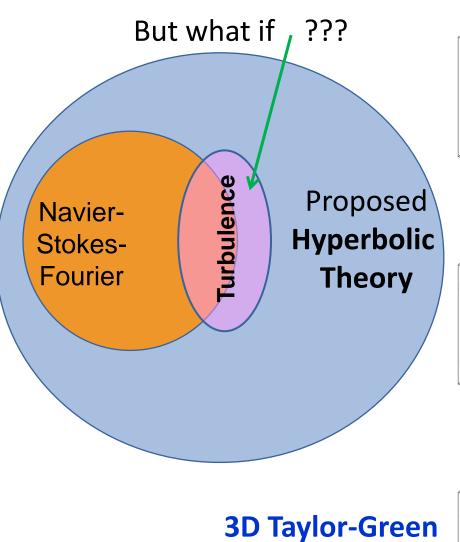
Vorticity



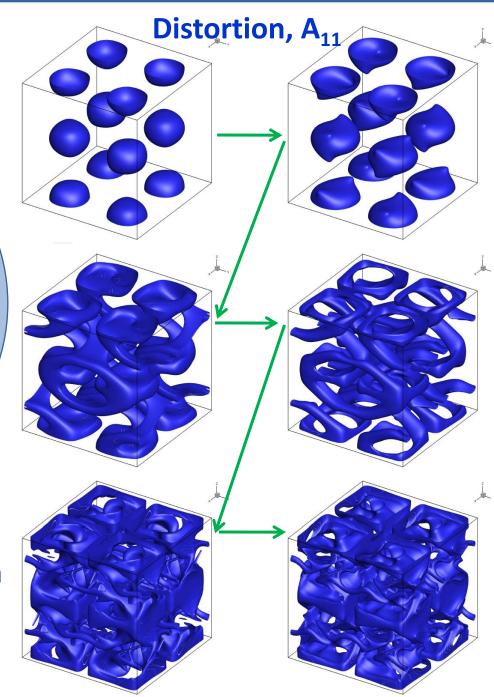
Distortion, A₁₁



Double shear layer problem

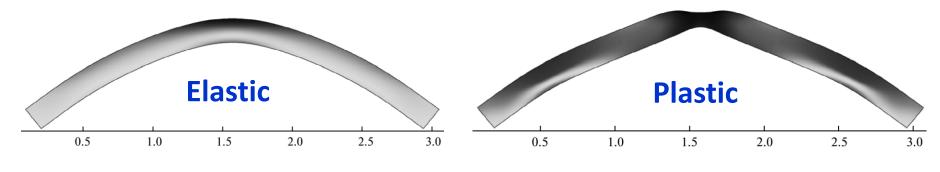


vortex



Solid dynamics

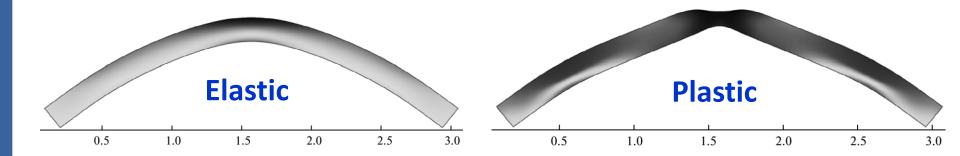
Using the **same(!) system of PDEs** we can simulate **dynamics of solids** as well

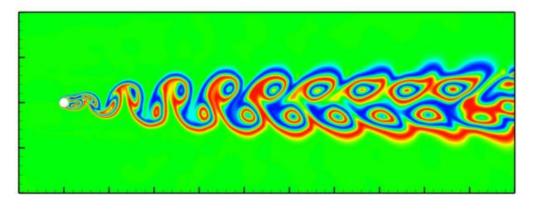


Bending of a plate

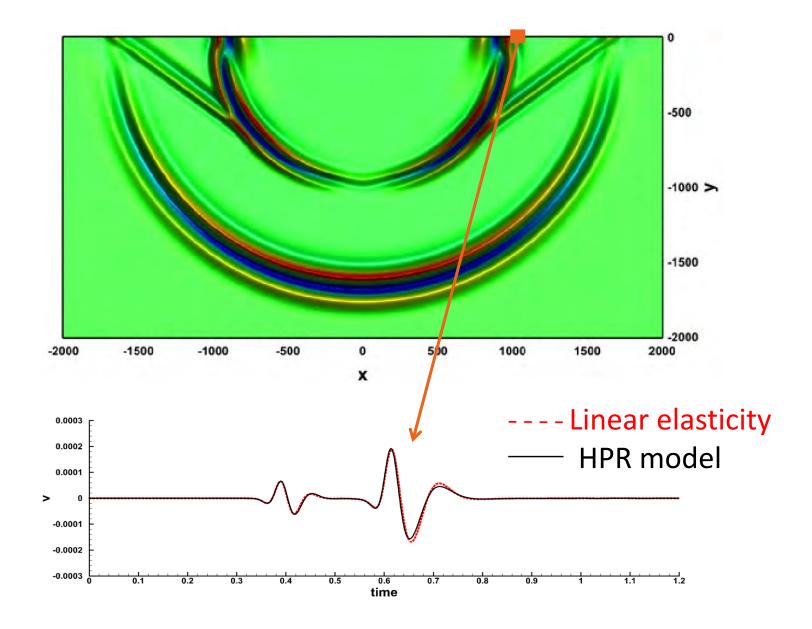
Solid dynamics

Using the **same(!) system of PDEs** we can simulate **dynamics of solids** as well





Seismic wave propagation



Poroelasticity

Biot's Theory

 $\rho_{11}\ddot{\boldsymbol{U}} + \rho_{12}\ddot{\boldsymbol{V}} - (P - N)\nabla\mathrm{div}\boldsymbol{U} - Q\nabla\mathrm{div}\boldsymbol{V} - N\Delta\boldsymbol{U} + b(\dot{\boldsymbol{U}} - \dot{\boldsymbol{V}}) = 0$ $\rho_{22}\ddot{\boldsymbol{V}} + \rho_{12}\ddot{\boldsymbol{U}} - Q\nabla\mathrm{div}\boldsymbol{U} - R\nabla\mathrm{div}\boldsymbol{V} + b(\dot{\boldsymbol{V}} - \dot{\boldsymbol{U}}) = 0$

Drawbacks:

Established as a Linear theory from the very beginning

modification problems (viscoelastic media, fraction time derivative, etc.)

Composite elastic modulus **Q** of the whole media (phase coupling parameter)

- measurement problems
- interpretation

Nonlinear Mixture Theory: state parameters

- v_s, v_f Velocities of the solid and fluid phase
- $oldsymbol{F}=oldsymbol{A}^{-1}$ Deformation gradient

 χ_{s} Volume fraction of the solid matrix

$$ho = lpha_{S}
ho_{S} + lpha_{f}
ho_{f}$$
 Mixture density

The missing parameter in the Biot's theory

Nonlinear Mixture Theory: state parameters

$v_s, v_f \longrightarrow w = v_s - v_f$

Solid-Fluid mixture model

$$\frac{\partial \rho v_i}{\partial t} + \frac{(\rho v_i v_k + \rho^2 E_\rho \delta_{ik} + \rho w_i E_{w_k} - \rho F_{km} E_{F_{im}})}{\partial x_k} = 0 \qquad \text{momentum}$$

$$rac{\partial F_{ij}}{\partial t} + rac{(
ho F_{ij}v_k -
ho F_{kj}v_i)}{\partial x_k} = 0$$
 deformation

$$\frac{\partial \rho c_s}{\partial t} + \frac{(\rho c_s v_k + \rho E_{w_k})}{\partial x_k} = 0 \qquad \text{Mass fraction}$$

 $\frac{\partial w_k}{\partial t} + \frac{(v_m w_m + E_{c_s})}{\partial x_k} = e_{klj} \omega_j - \chi E_{w_k}$ Relative velocity

 $rac{\partial
ho lpha_s}{\partial t} + rac{
ho lpha_s v_k}{\partial x_k} = -\lambda
ho E_{lpha_s}$ Volume fraction

$$\frac{\partial \rho}{\partial t} + \frac{\rho v_k}{\partial x_k} = 0$$

Linearised model: single pressure model

$$\frac{\partial q}{\partial t} + A(q^0) \frac{\partial q}{\partial x} = f \qquad q = (v_s, v_f, p, \varepsilon_{ij})$$
$$f = \left(-\frac{\rho_s^0 c_f^0(v_s - v_f)}{\tau}, -\frac{\rho_f^0 c_s^0(v_f - v_s)}{\tau}, 0, 0_{ij}\right)$$

Linearised model: single pressure model

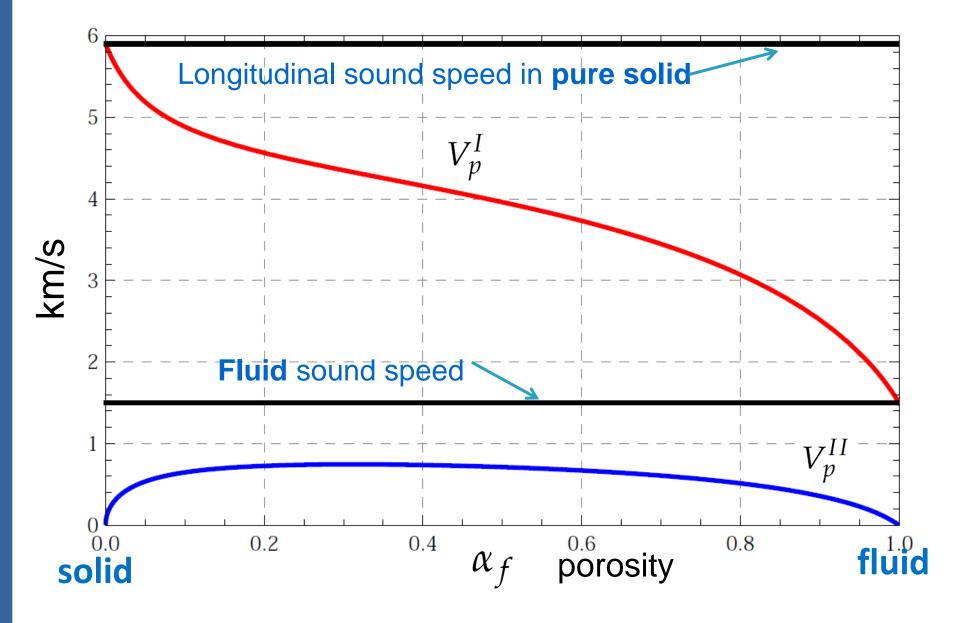
$$\frac{\partial q}{\partial t} + A(q^{0})\frac{\partial q}{\partial x} = f \qquad q = (v_{s}, v_{f}, p, \varepsilon_{ij})$$

$$f = \left(-\frac{\rho_{s}^{0}c_{f}^{0}(v_{s} - v_{f})}{\tau}, -\frac{\rho_{f}^{0}c_{s}^{0}(v_{f} - v_{s})}{\tau}, 0, 0_{ij}\right)$$

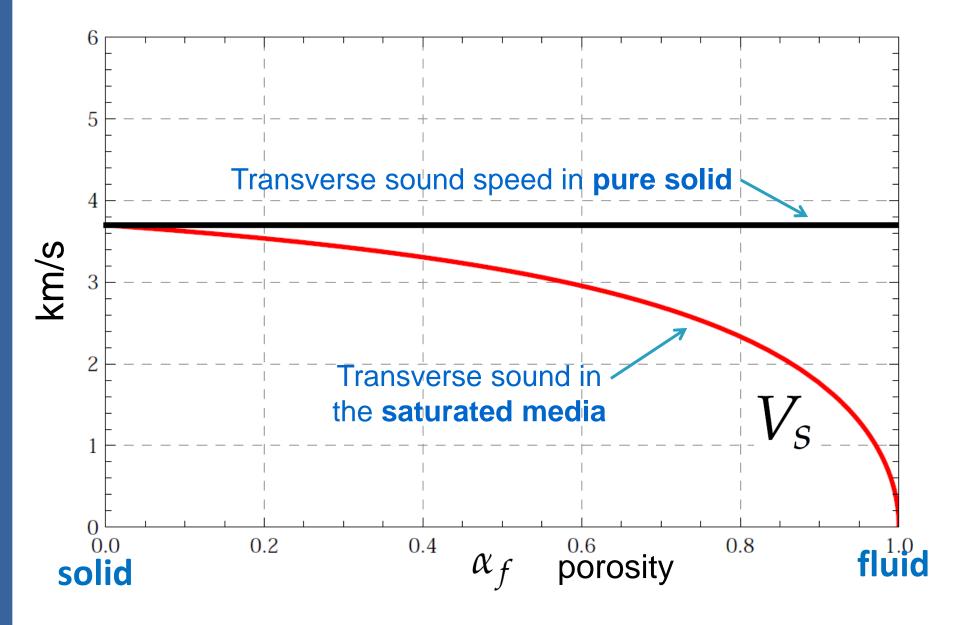
$$\mathcal{A}_{S} \quad \text{Volume fraction of the solid matrix}$$

$$\mathcal{C}_{S} \quad \text{Mass fractions (concentrations)}$$

Two Longitudinal sound waves (P-waves)



Transverse sound wave



Conclusion

Hyperbolic (wave theory) for viscous, heat and mass transport

The unified model can describe fluids and solids in a single system of PDEs

The model was implemented in the **ADER-FVM-DG** code and tested on a large number of test cases

Nonlinear solid-fluid mixture model was presented. Application to poroelasticity is expected

Thank you for your attention