

Adaptive Post-Processing Method to Represent High-Order Numerical Solutions

Vincent Mouysset, Sébastien Pernet

9-11 March 2016

Figure : P^1 interpolation for $\Delta x = \lambda/10$.

Figure : P^1 interpolation for $\Delta x = \lambda/10$.

Figure : P^2 interpolation for $\Delta x = \lambda/10$.

Figure : P^1 interpolation for $\Delta x = \lambda/10$.

Figure : P^2 interpolation for $\Delta x = \lambda/3$.

Figure : P^2 interpolation for $\Delta x = \lambda/10$.

What do we call hp methods?

- These methods are characterized by: (one or both)
	- sophisticated functions: high order polynomials, eigen or special functions, approaches of collocation or modal type,
		- \Rightarrow the value at each point is given by a function which is not linear.
	- mesh cells different from simplexes: quadrangle, hexahedra, isogeometric elements...
		- \Rightarrow representation of the element is not linear.
- hp numerical methods have a great potential:
	- Very accurate solutions which can contain lots of physical informations in each cell.
	- They allow to decrease the computational costs.
- Numerous declinations in literature and industrial codes:
	- **FEM, DG, high-order FV and FD.**
	- \bullet isoparametric methods.
	- high-order BEM....

Issue on the exploitation of hp solutions

- What do we want to do with a hp solution?
	- **.** Depict it.
	- Extract some informations (pointwise values, isolines, slices, gradient,...).
- How?
	- . With dedicated subroutines in the computational code,
		- \Rightarrow consumes expensive execution time on servers (cpu efforts and hdd accesses).
	- By mean of a given visualization software (GMSH, PARAVIEW, TECPLOT,...),
		- \Rightarrow post-treatment is led apart from calculus (on different computers).

However

- \bullet input formats are not necessarily suited to the considered hp element,
- common format is "low precision": nodal values on simplexes or other cells,
- there are some "open formats" (GMSH...), transformation to display informations is automated.
- To summarize, two main options are:
	- adapt to what exists \rightarrow we make interpolations/projections to write the hp-solution in the chosen format,
	- (when available) use an "open format" allowing to describe the hp solution \rightarrow the visualization software controls itseft the interpolations/projections.

Classical approach to represent a hp solution

Figure : function to depict: a Gauss-Legendre basis function

Figure : Usual depiction: 1 point by dof

Figure : Refined depiction: 2 points by dof (4 times more elements)

Some practical questions:

SARA SERVER SERVERS

- How many subdivisions to perform for a given accuracy?
- How many data will be generated?
- Is this representation giving correct analysis tools to interpret (physically) the hp results?

ONERA

5/45 V. Mouysset, S. Pernet [Adaptive Post-Processing Method to Represent High-Order Numerical Solutions](#page-0-0)

Is this representation giving correct analysis tool to interpret (physically) the hp results?

Choice of the format and extractions

Summary:

- Same function but representations not identical (up to a rotation by 90°)!
- Representations seem affine on simplexes (but data is given on a quadrangle).
- Split of the cell into two triangles independent of the function to represent?
- Isolines and gradients follow or not the depiction.

Is this representation giving correct analysis tool to interpret (physically) the hp results?

Choice of the format and extractions

Input format $=$ linear on simplexes \Rightarrow consistent representations and extractions!

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0)

[Example 1: what happens on basis functions?](#page-31-0) [Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

Aims

• Our point of view: usual exploitation of hp solutions are not optimal as

- the balance accuracy-cost (number of data) required to have a good rendering,
- the difficulty to give some a priori (number of subdivisions, target error) which ensure the quality of rendering.

Our aims: better exploitation (by a classical visualization software) of data produced by hp numerical simulations

- \leftarrow provide a reliable information through the representations,
- \leftarrow developments compatible with different hp codes,

 \leftarrow reliable extraction of quantities of interest straightforwardly with the visualization software.

Our approach to define a well-suited visualization for hp solutions is summarized into 4 objectives:

- (O_1) : The representation f_{vis} of f_{num} is obtained by plotting piecewise affine functions on k-simplexes, where k is the (local) dimension of the (local) support of f_{num} ,
- (O_2) : Error between f_{num} and its representation is controlled in L^{∞} -norm,
- (O_3) : At the prescribed tolerance, the representation shows gaps if and only if f_{num} has.
- $+(O_4)$: Specific control to be defined according to extractions realized from f_{vis} .

Figure : Interpretation with respect to Q^1 -consistent splitting.

 O_1 Representation by piecewise linear functions on *k*-simplexes,

11/45 V. Mouysset, S. Pernet [Adaptive Post-Processing Method to Represent High-Order Numerical Solutions](#page-0-0)

Figure : P^1 -approximation, $\Delta x = \lambda/10$.

 \rightarrow fine L2 candidate but associated "colorbar" not matching on expected values.

 O_1 Representation by piecewise linear functions on *k*-simplexes, O_2 Error control in L^{∞} norm,

Figure : Representation of a continuous function on non-coincident meshes.

Figure : Representation of a function with jump on coincident meshes.

 O_1 Representation by piecewise linear functions on *k*-simplexes,

- O_2 Error control in L^{∞} norm,
- O_3 Representation of jump if and only if it exists.

Definition of a hp solution

Ingredients of the numerical solution f_{num} :

- \rightarrow mesh: $\mathcal{T}(X)$ is a mesh of X,
- \rightarrow reference cell: ∀K ∈ $\mathcal{T}(X)$, g_K : $\widehat{K} \rightarrow K$ bijection,
- \rightarrow basis functions: ∀K ∈ $\mathcal{T}(X), \forall i = 1 \dots N_K, \varphi_i^K : \widehat{K} \rightarrow Y$ (at least continuous).

Then, for each $K\in \mathcal{T}(X)$, the definition of f_{num} on K , noted f_{num}^K , is expressed by means of coefficients (degrees of freedom) f_i^K via the following decomposition

$$
\forall x \in K, f_{num}^K(x) = \sum_{i=1}^{N_K} f_i^K \varphi_i^K \left(g_K^{-1}(x) \right),
$$

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0)

[Example 1: what happens on basis functions?](#page-31-0) [Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

Ingredients of the representation function f_{vis} :

- f_{num} has a local definition on $\mathcal{T}(X)$ so f_{vis} will be, $(f_{vis}^K$ denotes its local representation on $K \in \mathcal{T}(X)$),
- Objective O_1 : f_{vis}^K is a linear function on simplexes (when f_{num}^K is more sophisticated) so we introduce
	- \rightarrow (sub)-mesh: a mesh made of simplexes of K, noted $\mathcal{T}(K)$,
	- \rightarrow <code>basis functions:</code> for any $S \in \mathcal{T} (K)$ let $\mathbb{P}^1 (S)$ be the space of polynomial of total degree less than or equal to 1.

```
Thus, f_{vis}^{K} will verify
```
 $\forall S \in \mathcal{T}(K), \left. f_{\mathsf{vis}}^{\mathsf{K}} \right|_{\mathcal{S}} \in \mathbb{P}^1(\mathcal{S}).$

Remark: f_{vis}^K is defined on the physical cell K (the one to be plotted) when f_{num}^K is on the reference one \widehat{K} .

Definition of f_{vis} : construction of the representation mesh

 f_{num}^K is evaluated from reference cell \hat{K} so $\mathcal{T}(K)$ will be constructed from a mesh composed of simplexes $T(\widehat{K})$ of \widehat{K} .

The construction of $T(K)$ is then performed in the following way:

• For $K \in \mathcal{T}(X)$, we define the topology of $\mathcal{T}(\widehat{K})$ by

 $\widehat{\mathcal{N}} := {\widehat{\mathcal{N}}} := (\widehat{N}_i)_{i=1},\ldots,n_k + 1 : \Lambda (\widehat{N}) \in \mathcal{T} (\widehat{K})\}$

where Λ associates $n + 1$ points $P := (P_i)_{i=1,\cdots,n+1}$ to the *n*-simplex $\Lambda(P)$. \bullet We define the set of nodes of $\mathcal{T}(K)$ as well as its topology by

 $\mathcal{N} := \{N = (N_i)_{i=1,\ldots,n_K+1} := g_K(\widehat{N}) : \widehat{N} \in \widehat{\mathcal{N}}\}$

with $g_K(\widehat{N}) := (g_K(\widehat{N}_i))_{i=1}$, $g_{\nu+1}$ où $\widehat{N} := (\widehat{N}_i)_{i=1}$, $g_{\nu+1}$.

 \bullet The mesh in simplexes of K is defined by

 $T(K) := \{\Lambda(N) : N \in \mathcal{N}\}.$

Remark: one can have $\widetilde{K} := \cup_{S \in \mathcal{T}(K)} S \quad \neq K$ and $f_{vis}^K(\widetilde{K}) \neq f_{num}^K(K)$

Definition of f_{vis} : construction of the representation mesh

Lemma (identification of $\mathcal{T}(K))$

For all $K \in \mathcal{T}(X)$, the \mathbb{P}^1 interpolation of g_K constructed from $\mathcal{T}(\widehat{K})$, noted P^1g_K , is

- **•** a bijective function between $T(\widehat{K})$ and $T(K)$,
- \bullet a bijective function between the sets $\widehat{\mathcal{N}}$ and \mathcal{N} .
- **3** a surjective function from \widehat{K} onto \widetilde{K} .

Remark : This construction does not ensure the injectivity of P^1g_K from \hat{K} onto \hat{K} .

Figure : possible loss of injectivity in the construction of $\mathcal{T}(\hat{K})$.

The function f_{vis}^K is then defined on each simplex $\Lambda(N)$ of $\mathcal{T}(K)$ by:

1 for each node $N_i \in N$, $f_{vis}^K(N_i) := f_{num}^K(N_i)$,

 \bullet $f_{\textit{vis}}^{\textit{K}}$ is an affine function on $\Lambda(\textit{N})$ and is defined by

$$
x=\sum_{i=1}^{n_K+1}x_iN_i\in\Lambda(N)\longmapsto f_{vis}^K(x)=\sum_{i=1}^{n_K+1}x_if_{num}^K(N_i),
$$

where $(x_i)_{i=1,...,n_K+1} \in [0,1]^{n_K+1}$.

 \Rightarrow f_{vis} fulfils the objective O_1 .

Definition of f_{vis}

Figure : Construction of the representation f_{vis} of the hp solution f_{num} .

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0)

[Example 1: what happens on basis functions?](#page-31-0) [Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

Estimate of the visualization error

- f_{num} and f_{vis} have a local definition on each $K \in \mathcal{T}(X) \Rightarrow$ local estimate
- Difficulty : supports are not coinciding in the physical space X ($K \neq \widetilde{K}$).
- Solution : the Hausdorff distance (convergence of graphs)

$$
d_H: (f, f') \in (C_c^0(\mathbb{X}, \mathbb{Y}))^2 \mapsto \max \left(\sup_{x \in \text{Supp} f} \inf_{x' \in \text{Supp} f'} d\left((x, f(x)), (x', f(x')) \right),
$$

$$
\sup_{x' \in \text{Supp} f'} \inf_{x \in \text{Supp} f} d\left((x, f(x)), (x', f(x')) \right) \right),
$$

where d is a distance on $X \times Y$, with α and β be positive parameters:

$$
d: ((x,y),(x',y')) \in (\mathbb{X} \times \mathbb{Y})^2 \mapsto \max\left(\alpha \left\|x-x'\right\|_{\mathbb{X}}, \beta \left\|y-y'\right\|_{\mathbb{Y}}\right).
$$

- But, it is too expensive to be calculated.
- \bullet Idea: "localization" (inside K)!

Proposition (local a posteriori estimate)

Let $K \in \mathcal{T}(X)$. The following estimate holds:

$$
d_H\left(f_{num}^K, f_{vis}^K\right) \leq \delta_{\mathcal{T}(K)}\left(f_{num}^K, f_{vis}^K\right),
$$

where d_H is the Hausdorff distance and

$$
\delta_{\mathcal{T}(K)}:(f,\widetilde{f})\in C^{0}(K,\mathbb{Y})\times C^{0}(\widetilde{K},\mathbb{Y})\mapsto \sup_{\widehat{x}\in \widehat{K}} \max\left(\alpha \left\|g(\widehat{x})-P^1g(\widehat{x})\right\|_{\mathbb{X}},\beta\left\|(f\circ g)(\widehat{x})-\left(\widetilde{f}\circ P^1g\right)(\widehat{x})\right\|_{\mathbb{Y}}\right),
$$

with α and β be dimensioning constants.

Lemma (Generic fulfilment of objectives)

If for all cell $K \in \mathcal{T}(X)$, one has

- $\delta_{\mathcal{T}(K)}\left(f_{\textit{num}}^K, f_{\textit{vis}}^K\right) \leq \varepsilon$,
- $\forall K' \in \mathcal{T}(X) \, : \, F := \partial K \cap \partial K' \neq \emptyset$, meshes $\mathcal{T}(K)$ and $\mathcal{T}(K')$ lead to

$$
\mathcal{T}(F)=\mathcal{T}(F')
$$

where $T(F)$ and $T'(F)$ are the meshes in simplexes of F obtained by restriction of those of K and K' , respectively.

Then the representation f_{vis} of f_{num} fulfils the objectives (O_1) , (O_2) and (O_3) .

 \rightarrow we need to grant $\mathcal{T}(F) = \mathcal{T}(F')!$

Fulfilment of the objective O_3 : decomposition in lower dimensions

Figure : $\widetilde{\mathcal{T}}_{3\,D}(X)$ (left), $\widetilde{\mathcal{T}}_{2\,D}(X)$ (center) et $\widetilde{\mathcal{T}}_{1\,D}(X)$ (right)

One decomposes $\mathcal{T}(X)$ into sets of elements of lower dimension $\widetilde{\mathcal{T}}_{i,D}(X)$ for $i = 1, \ldots, 3$:

$$
\widetilde{\mathcal{T}}_{3D}(X) := \mathcal{T}_{3D}(X)
$$
\n
$$
\widetilde{\mathcal{T}}_{2D}(X) := \mathcal{T}_{2D}(X) \cup \begin{pmatrix} \bigcup_{K \in \mathcal{T}(X) : dim(K) = 3} \mathcal{F}(K) \end{pmatrix}
$$
\n
$$
\widetilde{\mathcal{T}}_{1D}(X) := \mathcal{T}_{1D}(X) \cup \begin{pmatrix} \bigcup_{K \in \mathcal{T}(X) : dim(K) = 2} \mathcal{E}(K) \end{pmatrix} \cup \begin{pmatrix} \bigcup_{K \in \mathcal{T}(X) : dim(K) = 3} \mathcal{E}(K) \end{pmatrix}
$$

where $\mathcal{F}(K)$ and $\mathcal{E}(K)$ are the faces and the edges of K respectively.

Proposition (fulfilment of O_3)

Let $(\mathcal{T}(\mathsf{\Sigma}))_{\mathsf{\Sigma}\in \widetilde{\mathcal{T}}_k}$ ${}_{D}(X),$ $k=1,2,3$ be a set of meshes in simplexes satisfying: for $k=2,3,$ $\forall \Sigma \in \widetilde{\mathcal{T}}_{k} p(X),$ $\mathcal{T}(\Sigma)_{|\partial \widetilde{\Sigma}} = \bigcup_{F \in \mathcal{F}(\Sigma)} \mathcal{T}(F)$ avec $\Sigma = \bigcup_{S \in \mathcal{T}(\Sigma)}$ (2)

then the representation f_{vis} of f_{num} constructed from $T(K)$ for $K \in T_{kD}(X)$ fulfils the objective 03

This proposition provides a "simple" algorithm to ensure the objective O_3 :

- **O** construction of representation meshes of elements of $\widetilde{\mathcal{T}}_{1,0}(X)$,
- \bullet construction of representation meshes of elements of $\widetilde{\mathcal{T}}_{2D}(X)$ from those of $\widetilde{\mathcal{T}}_{1, D}(X)$ and satisfying [\(2\)](#page-28-0),
- **3** construction of representation meshes of elements of $\widetilde{\mathcal{T}}_{3D}(X)$ from those of $\widetilde{T}_{2D}(X)$ and satisfying [\(2\)](#page-28-0).

First convergence result

Rough description of the algorithm:

- \bullet decomposition in lower dimensions \rightarrow functions and traces are connected to corresponding element,
- **2** meshing of all 1D cells in $\overline{\mathcal{T}}_{1 D}(X)$ such that f_{1D}^{num} connected to the element $\delta(f_{num}^{1D}, f_{vis}^{1D}) \leq \varepsilon$,
- **3** interior meshing of all 2D cells in $\mathcal{T}_{2D}(X)$ boundaries meshed before such that $\delta(f_{num}^{2D}, f_{vis}^{2D}) \leq \varepsilon$,
 f_{2D}^{num} connected to the element
- **4** same process for 3D cells.

Proposition (Convergence via meshing with respect to dimensions)

If the algorithm of construction implies:

- \bullet For all $K\in\mathcal{T}(X)$, the P^1 interpolation of g_K constructed from $\mathcal{T}(\widehat{K})$ is an injective function from \widehat{K} onto \widetilde{K} .
- **2** The convergence toward the target error ε is achieved.

Then the representation f_{vis} of f_{num} fulfils the objectives (O_1) , (O_2) and (O_3) .

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0)

[Example 1: what happens on basis functions?](#page-31-0) [Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0)

[Example 1: what happens on basis functions?](#page-31-0)

[Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

Example 1: what happens on basis functions?

 $Q³$ Gauss-Legendre basis function

Figure : Adaptive remeshing $\varepsilon=10\%$

Figure : Uniform 6×6 (same number of elements than adaptive 10%)

Figure : Uniform 14×14 (same accuracy than adaptive 10%)

Example 1: what happens on basis functions?

 $Q³$ Gauss-Legendre basis function

Figure : Adaptive remeshing ε = 10%

Figure : Uniform 6×6 (same number of elements than adaptive 10%)

Figure : Uniform 14×14 (same accuracy than adaptive 10%)

Figure : Adaptive remeshing ε = 1%

Figure : Uniform 18×18 (same number of elements than adaptive 1%)

Figure : Uniform 54×54 (same accuracy than adaptive 1%)

Example 1: what happens on basis functions?

 $Q³$ Gauss-Legendre basis function

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0) [Example 1: what happens on basis functions?](#page-31-0) [Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

Simulation of the propagation of a source point by a DG method

Figure : Propagation of a source point in a cavity by DG Q^{10} on 5 \times 5 uniform mesh : adaptive remeshing 1%

Simulation of the propagation of a source point by a DG method

Figure : Propagation of a source point in a cavity by DG Q^{10} on 5 \times 5 uniform mesh : uniform remeshing with same number of elements as adaptive 1%

32/45 V. Mouysset, S. Pernet [Adaptive Post-Processing Method to Represent High-Order Numerical Solutions](#page-0-0)

Simulation of the propagation of a source point by a DG method

(c) Régulier 22×22 : time 3 (d) Régulier 24×24 : time 4

Figure : Propagation of a source point in a cavity by DG Q^{10} on 5 \times 5 uniform mesh : uniform remeshing with same accuracy as adaptive 1%

33/45 V. Mouysset, S. Pernet [Adaptive Post-Processing Method to Represent High-Order Numerical Solutions](#page-0-0)

Simulation of the propagation of a source point by a DG method

Summary:

- Good stability of the number of triangles created adaptively (not controlled).
- Uniform refinement much less stable \rightarrow the number of refinements is difficult to a priori predict.

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0)

[Example 1: what happens on basis functions?](#page-31-0) [Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

Elastic wave in a three layered medium

(a) Adaptive 1% (b) Uniform 7×7 (1 point per dof)

Figure : Propagation of an elastic wave in a 3 layered medium by DG Q^7 on 24 \times 24 uniform mesh: global view

 \rightarrow No notable differences between those results!?

Elastic wave in a three layered medium

Figure : Propagation of an elastic wave in a 3 layered medium by DG Q^7 on 24 \times 24 uniform mesh: zooming on one cell

 \rightarrow Accuracy problems are expected for later extractions!!

(this cell is meaningful from a physical point of view: interface between two layers with reflection and refraction processes)

Elastic wave in a three layered medium

(a) Adaptive, same number of elements than uniform 7×7

(b) Uniform 7×7

Figure : Propagation of an elastic wave in a 3 layered medium: same cell, comparisons

Elastic wave in a three layered medium

39/45 V. Mouysset, S. Pernet [Adaptive Post-Processing Method to Represent High-Order Numerical Solutions](#page-0-0)

Elastic wave in a three layered medium

Figure : Adatpive 1%: zoom on solution gaps

[Formalization](#page-10-0)

[Linear representation suited to the](#page-17-0) hp solutions

[Construction of the visualization](#page-23-0)

[Examples](#page-30-0)

[Example 1: what happens on basis functions?](#page-31-0) [Example 2: what happens when combining basis functions?](#page-35-0) [Example 3: what happens on more realistic simulations?](#page-40-0)

[Perspectives](#page-46-0)

Perspectives and forthcoming works

- L^{∞} norm \rightarrow no monotonicity.
- Voronoï swaps can yield an increase of the error.
- · Idea: swaps driven by a metric associated to g_K and $f_{num} \circ g_K$.

Perspectives and forthcoming works

Loss of the injectivity of P^1g_K when the point D is added \rightarrow loss of the objective $O_3.$

Solution: add only points in the domain \widehat{V} where P^1g_K is an injective function. Remark: domain \widehat{V} defined by geometry but new points driven by both geometry and f_{num} !

Perspectives and forthcoming works

Figure : Extraction over a rectilinear curve: comparison between L^{∞} and L^{2} approaches.

However, the construction driven by $\delta_{{\cal T}(K)}\left(f_{num}^{K},f_{vis}^{K}\right)$ is not sufficient to control the extractions of quantities of interest:

$$
\leftarrow |f_{\mathsf{vis}} \circ P^1 g_{\mathsf{K}}(\hat{x}) - f_{\mathsf{num}} \circ g_{\mathsf{K}}(\hat{x})| \leq \varepsilon \text{ where } P^1 g_{\mathsf{K}}(\hat{x}) \text{ can be different of } g_{\mathsf{K}}(\hat{x})
$$

 \rightarrow For example, $f_{vis}(x)$ does not necessarily "control" the value $f_{num}(x)$.

Fixed by introducing additional constrained (objective O_4) linked to the quantity of interest and the way it is extracted from linear function on simplexes.

Thank you for your attention.

