

Adaptive Post-Processing Method to Represent High-Order Numerical Solutions

Vincent Mouysset, Sébastien Pernet

9-11 March 2016

V. Mouysset, S. Pernet Adaptive Post-Processing Method to Represent High-Order Numerical Solut

Figure : P^1 interpolation for $\Delta x = \lambda/10$.

Figure : P^1 interpolation for $\Delta x = \lambda/10$.

Figure : P^2 interpolation for $\Delta x = \lambda/10$.

Figure : P^1 interpolation for $\Delta x = \lambda/10$.

Figure : P^2 interpolation for $\Delta x = \lambda/3$.

Figure : P^2 interpolation for $\Delta x = \lambda/10$.

V. Mouysset, S. Pernet Adaptive Post-Processing Method to Represent High Onite automation view

Figure : P^1 interpolation for $\Delta x = \lambda/10$.

Figure : P^2 interpolation for $\Delta x = \lambda/3$.

Figure : P^2 interpolation for $\Delta x = \lambda/10$.

Figure : P^2 interpolation on a 3λ domain.

What do we call hp methods?

- These methods are characterized by: (one or both)
 - sophisticated functions: high order polynomials, eigen or special functions, approaches of collocation or modal type,
 - \Rightarrow the value at each point is given by a function which is not linear.
 - mesh cells different from simplexes: quadrangle, hexahedra, isogeometric elements...
 - \Rightarrow representation of the element is not linear.
- hp numerical methods have a great potential:
 - Very accurate solutions which can contain lots of physical informations in each cell.
 - They allow to decrease the computational costs.
- Numerous declinations in literature and industrial codes:
 - FEM, DG, high-order FV and FD,
 - isoparametric methods,
 - high-order BEM,...

Issue on the exploitation of hp solutions

- What do we want to do with a hp solution?
 - Depict it.
 - Extract some informations (pointwise values, isolines, slices, gradient,...).
- How?
 - With dedicated subroutines in the computational code,
 - \Rightarrow consumes expensive execution time on servers (cpu efforts and hdd accesses).
 - By mean of a given visualization software (GMSH, PARAVIEW, TECPLOT,...),
 - \Rightarrow post-treatment is led apart from calculus (on different computers).

However

- input formats are not necessarily suited to the considered hp element,
- · common format is "low precision": nodal values on simplexes or other cells,
- there are some "open formats" (GMSH...), transformation to display informations is automated.
- To summarize, two main options are:
 - adapt to what exists \rightarrow we make interpolations/projections to write the *hp*-solution in the chosen format,
 - (when available) use an "open format" allowing to describe the hp solution \rightarrow the visualization software controls itseft the interpolations/projections.

Classical approach to represent a hp solution

Figure : function to depict: a Gauss-Legendre basis function

Figure : Usual depiction: 1 point by dof

Figure : Refined depiction: 2 points by dof (4 times more elements)

Some practical questions:

- How many subdivisions to perform for a given accuracy?
- How many data will be generated?
- Is this representation giving correct analysis tools to interpret (physically) the *hp* results?

ONERA

V. Mouysset, S. Pernet Adaptive Post-Processing Method to Represent High Unite automation water

Is this representation giving correct analysis tool to interpret (physically) the *hp* results?

Choice of the format and extractions

Summary:

- Same function but representations not identical (up to a rotation by 90°)!
- Representations seem affine on simplexes (but data is given on a quadrangle).
- Split of the cell into two triangles independent of the function to represent?
- Isolines and gradients follow or not the depiction.

Is this representation giving correct analysis tool to interpret (physically) the *hp* results?

Choice of the format and extractions

Input format = linear on simplexes \Rightarrow consistent representations and extractions!

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples

Example 1: what happens on basis functions? Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

- Our point of view: usual exploitation of hp solutions are not optimal as
 - the balance accuracy-cost (number of data) required to have a good rendering,
 - the difficulty to give some *a priori* (number of subdivisions, target error) which ensure the quality of rendering.

• Our aims: better exploitation (by a classical visualization software) of data produced by *hp* numerical simulations

- \leftarrow provide a reliable information through the representations,
- \leftarrow developments compatible with different *hp* codes,

 \leftarrow reliable extraction of quantities of interest straightforwardly with the visualization software.

Our approach to define a well-suited visualization for hp solutions is summarized into 4 objectives:

- (O_1) : The representation f_{vis} of f_{num} is obtained by plotting piecewise affine functions on k-simplexes, where k is the (local) dimension of the (local) support of f_{num} ,
- (O_2) : Error between f_{num} and its representation is controlled in L^{∞} -norm,
- (O_3) : At the prescribed tolerance, the representation shows gaps if and only if f_{num} has.
- $+(O_4)$: Specific control to be defined according to extractions realized from f_{vis} .

Figure : Interpretation with respect to Q^1 -consistent splitting.

 O_1 Representation by piecewise linear functions on k-simplexes,

Figure : P^1 -approximation, $\Delta x = \lambda/10$.

 \rightarrow fine L2 candidate but associated "colorbar" not matching on expected values.

 O_1 Representation by piecewise linear functions on k-simplexes, O_2 Error control in L^{∞} norm,

Figure : Representation of a continuous function on non-coincident meshes.

Figure : Representation of a function with jump on coincident meshes.

 O_1 Representation by piecewise linear functions on k-simplexes,

- O_2 Error control in L^{∞} norm,
- O_3 Representation of jump if and only if it exists.

Definition of a hp solution

Ingredients of the numerical solution f_{num} :

- \rightarrow mesh: $\mathcal{T}(X)$ is a mesh of X,
- \rightarrow reference cell: $\forall K \in \mathcal{T}(X)$, $g_K : \widehat{K} \rightarrow K$ bijection,
- → basis functions: $\forall K \in \mathcal{T}(X), \forall i = 1 \dots N_K, \varphi_i^K : \widehat{K} \to Y$ (at least continuous).

Then, for each $K \in \mathcal{T}(X)$, the definition of f_{num} on K, noted f_{num}^{K} , is expressed by means of coefficients (degrees of freedom) f_i^K via the following decomposition

$$\forall x \in K, f_{num}^{K}(x) = \sum_{i=1}^{N_{K}} f_{i}^{K} \varphi_{i}^{K} \left(g_{K}^{-1}(x) \right),$$

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples

Example 1: what happens on basis functions? Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

Ingredients of the representation function f_{vis} :

- f_{num} has a local definition on $\mathcal{T}(X)$ so f_{vis} will be, $(f_{vis}^{K}$ denotes its local representation on $K \in \mathcal{T}(X)$),
- Objective O₁: f^K_{vis} is a linear function on simplexes (when f^K_{num} is more sophisticated) so we introduce
 - \rightarrow (sub)-mesh: a mesh made of simplexes of K, noted $\mathcal{T}(K)$,
 - → basis functions: for any $S \in \mathcal{T}(K)$ let $\mathbb{P}^1(S)$ be the space of polynomial of total degree less than or equal to 1.

```
Thus, f_{vis}^K will verify
```

 $\forall S \in \mathcal{T}(K), f_{vis}^{K} \Big|_{S} \in \mathbb{P}^{1}(S).$

Remark: f_{Vis}^{K} is defined on the physical cell K (the one to be plotted) when f_{num}^{K} is on the reference one \hat{K} .

Definition of f_{vis} : construction of the representation mesh

 $f_{num}^{\mathcal{K}}$ is evaluated from reference cell $\widehat{\mathcal{K}}$ so $\mathcal{T}(\mathcal{K})$ will be constructed from a mesh composed of simplexes $\mathcal{T}(\widehat{\mathcal{K}})$ of $\widehat{\mathcal{K}}$.

The construction of $\mathcal{T}(K)$ is then performed in the following way:

• For $K \in \mathcal{T}(X)$, we define the topology of $\mathcal{T}(\widehat{K})$ by

 $\widehat{\mathcal{N}} := \{ \widehat{N} := (\widehat{N}_i)_{i=1,\dots,n_K+1} : \Lambda(\widehat{N}) \in \mathcal{T}(\widehat{K}) \}$

where Λ associates n + 1 points $P := (P_i)_{i=1,\dots,n+1}$ to the *n*-simplex $\Lambda(P)$. We define the set of nodes of $\mathcal{T}(K)$ as well as its topology by

 $\mathcal{N} := \{ N = (N_i)_{i=1,\ldots,n_K+1} := g_K(\widehat{N}) : \widehat{N} \in \widehat{\mathcal{N}} \}$

with $g_{\mathcal{K}}(\widehat{N}) := (g_{\mathcal{K}}(\widehat{N}_i))_{i=1,...,n_{\mathcal{K}}+1}$ où $\widehat{N} := (\widehat{N}_i)_{i=1,...,n_{\mathcal{K}}+1}$.

The mesh in simplexes of K is defined by

 $\mathcal{T}(K) := \{\Lambda(N) : N \in \mathcal{N}\}.$

Remark: one can have $\widetilde{K} := \bigcup_{S \in \mathcal{T}(K)} S \neq K$ and $f_{vis}^{K}(\widetilde{K}) \neq f_{num}^{K}(K)$

Definition of f_{vis} : construction of the representation mesh

Lemma (identification of $\mathcal{T}(K)$)

For all $K \in \mathcal{T}(X)$, the \mathbb{P}^1 interpolation of g_K constructed from $\mathcal{T}(\widehat{K})$, noted P^1g_K , is

- **(**) a bijective function between $\mathcal{T}(\widehat{K})$ and $\mathcal{T}(K)$,
- (2) a bijective function between the sets $\widehat{\mathcal{N}}$ and $\mathcal{N},$
- 3 a surjective function from \widehat{K} onto \widetilde{K} .

Remark : This construction does not ensure the injectivity of P^1g_K from \widehat{K} onto \widetilde{K} .

Figure : possible loss of injectivity in the construction of $\mathcal{T}(\widehat{K})$.

The function f_{vis}^{K} is then defined on each simplex $\Lambda(N)$ of $\mathcal{T}(K)$ by:

• for each node $N_i \in N$, $f_{vis}^K(N_i) := f_{num}^K(N_i)$,

(a) f_{vis}^{K} is an affine function on $\Lambda(N)$ and is defined by

$$x = \sum_{i=1}^{n_{\mathcal{K}}+1} x_i N_i \in \Lambda(N) \longmapsto f_{vis}^{\mathcal{K}}(x) = \sum_{i=1}^{n_{\mathcal{K}}+1} x_i f_{num}^{\mathcal{K}}(N_i),$$

where $(x_i)_{i=1,...,n_K+1} \in [0,1]^{n_K+1}$.

 \Rightarrow f_{vis} fulfils the objective O_1 .

Definition of f_{vis}

Figure : Construction of the representation f_{vis} of the hp solution f_{num} .

18/45

V. Mouysset, S. Pernet Adaptive Post-Processing Method to Represent High Unite Represent High Unite Representation and an and a second second

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples

Example 1: what happens on basis functions? Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

Estimate of the visualization error

- f_{num} and f_{vis} have a local definition on each $K \in \mathcal{T}(X) \Rightarrow$ local estimate
- Difficulty : supports are not coinciding in the physical space X ($K \neq \tilde{K}$).
- Solution : the Hausdorff distance (convergence of graphs)

$$d_{H}: (f, f') \in \left(C_{c}^{0}(\mathbb{X}, \mathbb{Y})\right)^{2} \mapsto \max\left(\sup_{x \in \mathrm{Supp}f} \inf_{x' \in \mathrm{Supp}f'} d\left((x, f(x)), (x', f(x'))\right), \sup_{x' \in \mathrm{Supp}f'} \inf_{x \in \mathrm{Supp}f} d\left((x, f(x)), (x', f(x'))\right)\right),$$

where d is a distance on $X \times Y$, with α and β be positive parameters:

$$d:\left((x,y),(x',y')\right)\in (\mathbb{X}\times\mathbb{Y})^2\mapsto \max\left(\alpha\left\|x-x'\right\|_{\mathbb{X}},\beta\left\|y-y'\right\|_{\mathbb{Y}}\right).$$

- But, it is too expensive to be calculated.
- Idea: "localization" (inside K)!

Proposition (local *a posteriori* estimate)

Let $K \in \mathcal{T}(X)$. The following estimate holds:

$$d_{H}\left(f_{num}^{K}, f_{vis}^{K}\right) \leq \delta_{\mathcal{T}(K)}\left(f_{num}^{K}, f_{vis}^{K}\right),$$

where d_H is the Hausdorff distance and

$$\begin{split} \delta_{\mathcal{T}(\mathcal{K})} &: (f, \widetilde{f}) \in C^{0}(\mathcal{K}, \mathbb{Y}) \times C^{0}(\widetilde{\mathcal{K}}, \mathbb{Y}) \\ &\mapsto \sup_{\widehat{x} \in \widetilde{\mathcal{K}}} \max\left(\alpha \left\| g(\widehat{x}) - P^{1}g(\widehat{x}) \right\|_{\mathbb{X}}, \beta \left\| (f \circ g)(\widehat{x}) - \left(\widetilde{f} \circ P^{1}g\right)(\widehat{x}) \right\|_{\mathbb{Y}} \right), \end{split}$$

with α and β be dimensioning constants.

Lemma (Generic fulfilment of objectives)

If for all cell $K \in \mathcal{T}(X)$, one has

•
$$\delta_{\mathcal{T}(K)}\left(f_{num}^{K}, f_{vis}^{K}\right) \leq \varepsilon$$
,

• $\forall K' \in \mathcal{T}(X)$: $F := \partial K \cap \partial K' \neq \emptyset$, meshes $\mathcal{T}(K)$ and $\mathcal{T}(K')$ lead to

$$\mathcal{T}(F) = \mathcal{T}(F')$$

where $\mathcal{T}(F)$ and $\mathcal{T}'(F)$ are the meshes in simplexes of F obtained by restriction of those of K and K', respectively.

Then the representation f_{vis} of f_{num} fulfils the objectives (O_1) , (O_2) and (O_3) .

 \rightarrow we need to grant $\mathcal{T}(F) = \mathcal{T}(F')!$

Fulfilment of the objective O_3 : decomposition in lower dimensions

Figure : $\widetilde{\mathcal{T}}_{3D}(X)$ (left), $\widetilde{\mathcal{T}}_{2D}(X)$ (center) et $\widetilde{\mathcal{T}}_{1D}(X)$ (right)

One decomposes $\mathcal{T}(X)$ into sets of elements of lower dimension $\widetilde{\mathcal{T}}_{iD}(X)$ for i = 1, ..., 3:

$$\widetilde{\mathcal{T}}_{3D}(X) := \mathcal{T}_{3D}(X)$$
$$\widetilde{\mathcal{T}}_{2D}(X) := \mathcal{T}_{2D}(X) \cup \begin{pmatrix} \bigcup_{K \in \mathcal{T}(X) : \dim(K) = 3} \mathcal{F}(K) \end{pmatrix}$$
$$\widetilde{\mathcal{T}}_{1D}(X) := \mathcal{T}_{1D}(X) \cup \begin{pmatrix} \bigcup_{K \in \mathcal{T}(X) : \dim(K) = 2} \mathcal{E}(K) \end{pmatrix} \cup \begin{pmatrix} \bigcup_{K \in \mathcal{T}(X) : \dim(K) = 3} \mathcal{E}(K) \end{pmatrix}$$

where $\mathcal{F}(K)$ and $\mathcal{E}(K)$ are the faces and the edges of K respectively.

Proposition (fulfilment of O_3)

Let $(\mathcal{T}(\Sigma))_{\Sigma \in \widetilde{\mathcal{T}}_{k,D}(X), k=1,2,3}$ be a set of meshes in simplexes satisfying: for k = 2, 3, $\forall \Sigma \in \widetilde{\mathcal{T}}_{k,D}(X),$ $\mathcal{T}(\Sigma)_{k,0} = \bigcup \mathcal{T}(F) avec \widetilde{\Sigma} = \bigcup S$ (2)

$$\mathcal{T}(\Sigma)_{\mid \partial \widetilde{\Sigma}} = \underset{F \in \mathcal{F}(\Sigma)}{\cup} \mathcal{T}(F) \ avec \ \widetilde{\Sigma} = \underset{S \in \mathcal{T}(\Sigma)}{\cup} S$$
(2)

then the representation f_{vis} of f_{num} constructed from $\mathcal{T}(K)$ for $K \in \mathcal{T}_{kD}(X)$ fulfils the objective 0_3

This proposition provides a "simple" algorithm to ensure the objective O_3 :

- **(**) construction of representation meshes of elements of $\widetilde{\mathcal{T}}_{1D}(X)$,
- **e** construction of representation meshes of elements of $\tilde{\mathcal{T}}_{2D}(X)$ from those of $\tilde{\mathcal{T}}_{1D}(X)$ and satisfying (2),
- construction of representation meshes of elements of $\tilde{\mathcal{T}}_{3D}(X)$ from those of $\tilde{\mathcal{T}}_{2D}(X)$ and satisfying (2).

First convergence result

Rough description of the algorithm:

- ${\ensuremath{\bullet}}$ decomposition in lower dimensions \rightarrow functions and traces are connected to corresponding element,
- $\begin{array}{ll} \textbf{@} \mbox{ meshing of all 1D cells in } \widetilde{\mathcal{T}}_{1\,D}(X) \mbox{ such that} \\ & \max_{\substack{f_{1D}^{num} \mbox{ connected to the element}}} \delta(f_{num}^{1D},f_{vis}^{1D}) \leq \varepsilon, \end{array}$
- Interior meshing of all 2D cells in $\tilde{T}_{2D}(X)$ boundaries meshed before such that
 $\max_{\substack{f_{2D}^{num} \text{ connected to the element}}} \delta(f_{num}^{2D}, f_{vis}^{2D}) ≤ \varepsilon,$
- same process for 3D cells.

Proposition (Convergence via meshing with respect to dimensions)

If the algorithm of construction implies:

- For all $K \in \mathcal{T}(X)$, the P^1 interpolation of g_K constructed from $\mathcal{T}(\widehat{K})$ is an injective function from \widehat{K} onto \widetilde{K} ,
- 2) The convergence toward the target error ε is achieved.

Then the representation f_{vis} of f_{num} fulfils the objectives (O_1) , (O_2) and (O_3) .

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples

Example 1: what happens on basis functions? Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples

Example 1: what happens on basis functions?

Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

Example 1: what happens on basis functions?

 Q^3 Gauss-Legendre basis function

Figure : Adaptive remeshing $\varepsilon = 10\%$

Figure : Uniform 6×6 (same number of elements than adaptive 10%)

Figure : Uniform 14×14 (same accuracy than adaptive 10%)

Example 1: what happens on basis functions?

 Q^3 Gauss-Legendre basis function

Figure : Adaptive remeshing $\varepsilon = 10\%$

Figure : Uniform 6×6 (same number of elements than adaptive 10%)

Figure : Uniform 14×14 (same accuracy than adaptive 10%)

 $\begin{array}{l} \mbox{Figure}: \mbox{ Adaptive remeshing} \\ \varepsilon = 1\% \end{array}$

Figure : Uniform 18×18 (same number of elements than adaptive 1%)

Figure : Uniform 54×54 (same accuracy than adaptive 1%)

Example 1: what happens on basis functions?

 Q^3 Gauss-Legendre basis function

Meshing	number triangles	relative error
Adaptive 10%	56	9.91%
Uniform 6 \times 6	72	32.27%
Uniform 14 $ imes$ 14	392	11.0%
Adaptive 5%	138	4.88%
Uniform 9 \times 9	162	20.77%
Uniform 22 \times 22	968	5.22%
Adaptive 1%	630	1.00%
Uniform 18×18	648	7.34%
Uniform 54 $ imes$ 54	5832	1.01%

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples Example 1: what happens on basis functions? Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

Simulation of the propagation of a source point by a DG method

Figure : Propagation of a source point in a cavity by DG Q^{10} on 5 \times 5 uniform mesh : adaptive remeshing 1%

Simulation of the propagation of a source point by a DG method

(c) Uniform 9×9 : time 3

(d) Uniform 11×11 : time 4

ONERA

Figure : Propagation of a source point in a cavity by DG Q^{10} on 5 \times 5 uniform mesh : uniform remeshing with same number of elements as adaptive 1%

Simulation of the propagation of a source point by a DG method

(c) Régulier 22 \times 22: time 3

(b) Régulier 25 \times 25: time 2

(d) Régulier 24 \times 24: time 4

ONERA

Figure : Propagation of a source point in a cavity by DG Q^{10} on 5 \times 5 uniform mesh : uniform remeshing with same accuracy as adaptive 1%

Simulation of the propagation of a source point by a DG method

Method	tim	e 1	time	e 2	time	≥ 3	time	e 4
	triangles	error	triangles	error	triangles	error	triangles	error
Previsio 1%	3088	1.00%	3728	1.00%	3928	1.00%	5580	1.00%
Uniform 8 \times 8	3200	14.30%	-	-	-	-	-	-
Uniform 35 $ imes$ 35	61250	1.04%	-	-	-	-	-	-
Uniform 9 \times 9	-	-	4050	5.72%	-	-	-	-
Uniform 25 $ imes$ 25	-	-	31250	1.02%	-	-	-	-
Uniform 9 \times 9	-	-	-	-	4050	5.82%	-	-
Uniform 22 \times 22	-	-	-	-	24200	1.07%	-	-
Uniform 11×11	-	-	-	-	-	-	6050	4.43%
Uniform 24 \times 24	-	-	-	-	-	-	28800	1.03%

Summary:

- Good stability of the number of triangles created adaptively (not controlled).
- Uniform refinement much less stable \rightarrow the number of refinements is difficult to *a priori* predict.

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples

Example 1: what happens on basis functions? Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

Elastic wave in a three layered medium

(a) Adaptive 1%

(b) Uniform 7×7 (1 point per dof)

Figure : Propagation of an elastic wave in a 3 layered medium by DG Q^7 on 24 \times 24 uniform mesh: global view

 \rightarrow No notable differences between those results!?

Elastic wave in a three layered medium

Figure : Propagation of an elastic wave in a 3 layered medium by DG Q^7 on 24 \times 24 uniform mesh: zooming on one cell

 \rightarrow Accuracy problems are expected for later extractions!!

(this cell is meaningful from a physical point of view: interface between two layers with reflection and refraction processes)

Elastic wave in a three layered medium

(a) Adaptive, same number of elements than uniform 7 \times 7

(b) Uniform 7×7

Figure : Propagation of an elastic wave in a 3 layered medium: same cell, comparisons

Elastic wave in a three layered medium

	number of triangles	relative error
Uniform 7×7	98	12.65%
Adaptive	97	3.19%
Uniform 14 $ imes$ 14	392	4.10%
Adaptive 1%	453	0.99%
Uniform 30 $ imes$ 30	1800	1.03%
Uniform 70 $ imes$ 70	9800	0.2%
Adaptive 0.2%	2553	0.2%

Elastic wave in a three layered medium

Figure : Adatpive 1%: zoom on solution gaps

Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples

Example 1: what happens on basis functions? Example 2: what happens when combining basis functions? Example 3: what happens on more realistic simulations?

Perspectives

Perspectives and forthcoming works

- L^{∞} norm \rightarrow no monotonicity.
- Voronoï swaps can yield an increase of the error.
- Idea: swaps driven by a metric associated to g_K and f_{num} o g_K.

Perspectives and forthcoming works

Loss of the injectivity of P^1g_K when the point D is added \rightarrow loss of the objective O_3 .

Solution: add only points in the domain \hat{V} where P^1g_K is an injective function. **Remark:** domain \hat{V} defined by geometry but new points driven by both geometry and $f_{num}!$

Perspectives and forthcoming works

Figure : Extraction over a rectilinear curve: comparison between L^∞ and L^2 approaches.

• However, the construction driven by $\delta_{\mathcal{T}(K)} \left(f_{num}^{K}, f_{vis}^{K} \right)$ is not sufficient to control the extractions of quantities of interest:

$$\leftarrow |f_{\textit{vis}} \circ P^1 g_{\mathcal{K}}(\hat{x}) - f_{\textit{num}} \circ g_{\mathcal{K}}(\hat{x})| \leq arepsilon$$
 where $P^1 g_{\mathcal{K}}(\hat{x})$ can be different of $g_{\mathcal{K}}(\hat{x})$

 \rightarrow For example, $f_{vis}(x)$ does not necessarily "control" the value $f_{num}(x)$.

Fixed by introducing additional constrained (objective O_4) linked to the quantity of interest and the way it is extracted from linear function on simplexes.

Thank you for your attention.

