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hp methods

Figure : P1 interpolation for ∆x = λ/10.

Figure : P2 interpolation for ∆x = λ/10.

Figure : P2 interpolation for ∆x = λ/3.

Figure : P2 interpolation on a 3λ domain.
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What do we call hp methods?

These methods are characterized by: (one or both)

sophisticated functions: high order polynomials, eigen or special functions, approaches of
collocation or modal type,

⇒ the value at each point is given by a function which is not linear.

mesh cells different from simplexes: quadrangle, hexahedra, isogeometric elements...

⇒ representation of the element is not linear.

hp numerical methods have a great potential:

• Very accurate solutions which can contain lots of physical informations in each cell.

• They allow to decrease the computational costs.

• Numerous declinations in literature and industrial codes:

FEM, DG, high-order FV and FD,

isoparametric methods,

high-order BEM,...
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Issue on the exploitation of hp solutions

What do we want to do with a hp solution?

Depict it.

Extract some informations (pointwise values, isolines, slices, gradient,...).

How?

With dedicated subroutines in the computational code,

⇒ consumes expensive execution time on servers (cpu efforts and hdd accesses).

By mean of a given visualization software (GMSH, PARAVIEW, TECPLOT,...),

⇒ post-treatment is led apart from calculus (on different computers).

However

input formats are not necessarily suited to the considered hp element,

common format is ”low precision”: nodal values on simplexes or other cells,

there are some ”open formats” (GMSH...), transformation to display informations is automated.

To summarize, two main options are:

adapt to what exists → we make interpolations/projections to write the hp-solution in
the chosen format,

(when available) use an ”open format” allowing to describe the hp solution → the
visualization software controls itseft the interpolations/projections.
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Classical approach to represent a hp solution

Figure : function to depict: a
Gauss-Legendre basis function

Figure : Usual depiction: 1
point by dof

Figure : Refined depiction: 2
points by dof (4 times more
elements)

Some practical questions:

How many subdivisions to perform for
a given accuracy?

How many data will be generated?

Is this representation giving correct
analysis tools to interpret (physically)
the hp results?
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Is this representation giving correct analysis tool to interpret
(physically) the hp results?
Choice of the format and extractions

Configurations Software P. Software G.

Summary:

Same function but representations not identical (up to a rotation by 90◦)!

Representations seem affine on simplexes (but data is given on a quadrangle).

Split of the cell into two triangles independent of the function to represent?

Isolines and gradients follow or not the depiction.
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Is this representation giving correct analysis tool to interpret
(physically) the hp results?
Choice of the format and extractions

Software P. Software G.

Input format = linear on simplexes ⇒ consistent representations and extractions!
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Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples
Example 1: what happens on basis functions?
Example 2: what happens when combining basis functions?
Example 3: what happens on more realistic simulations?

Perspectives
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Aims

Our point of view: usual exploitation of hp solutions are not optimal as

the balance accuracy-cost (number of data) required to have a good rendering,

the difficulty to give some a priori (number of subdivisions, target error) which ensure the
quality of rendering.

Our aims: better exploitation (by a classical visualization software) of data
produced by hp numerical simulations

← provide a reliable information through the representations,

← developments compatible with different hp codes,

← reliable extraction of quantities of interest straightforwardly with the
visualization software.
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Formalisation of objectives

Our approach to define a well-suited visualization for hp solutions is summarized into 4
objectives:

(O1): The representation fvis of fnum is obtained by plotting piecewise affine functions on
k-simplexes, where k is the (local) dimension of the (local) support of fnum,

(O2): Error between fnum and its representation is controlled in L∞-norm,

(O3): At the prescribed tolerance, the representation shows gaps if and only if fnum has.

+(O4): Specific control to be defined according to extractions realized from fvis .
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↗ ⇔

↘ ⇔

Figure : Interpretation with respect to Q1-consistent splitting.

O1 Representation by piecewise linear functions on k-simplexes,

O2 Error control in L∞ norm,

O3 Representation of jump if and only if it exists.
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Figure : P1-approximation, ∆x = λ/10.

→ fine L2 candidate but associated ”colorbar” not matching on expected values.

O1 Representation by piecewise linear functions on k-simplexes,

O2 Error control in L∞ norm,

O3 Representation of jump if and only if it exists.
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Figure : Representation of a continuous function
on non-coincident meshes.

Figure : Representation of a function with jump
on coincident meshes.

O1 Representation by piecewise linear functions on k-simplexes,

O2 Error control in L∞ norm,

O3 Representation of jump if and only if it exists.

11/45 V. Mouysset, S. Pernet Adaptive Post-Processing Method to Represent High-Order Numerical Solutions



Definition of a hp solution

K̂ ⊂ X̂K K ⊂ X ⊂ X K × f K
num(K) ⊂ X× Y

gK−→
f K
num−→

Ingredients of the numerical solution fnum:

→ mesh: T (X ) is a mesh of X ,

→ reference cell: ∀K ∈ T (X ), gK : K̂ → K bijection,

→ basis functions: ∀K ∈ T (X ), ∀i = 1 . . .NK , ϕ
K
i : K̂ → Y (at least continuous).

Then, for each K ∈ T (X ), the definition of fnum on K , noted f K
num, is expressed by

means of coefficients (degrees of freedom) f K
i via the following decomposition

∀x ∈ K , f K
num(x) =

NK∑
i=1

f K
i ϕK

i

(
g−1

K (x)
)
,

12/45 V. Mouysset, S. Pernet Adaptive Post-Processing Method to Represent High-Order Numerical Solutions



Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples
Example 1: what happens on basis functions?
Example 2: what happens when combining basis functions?
Example 3: what happens on more realistic simulations?

Perspectives
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Definition of fvis

Ingredients of the representation function fvis :

fnum has a local definition on T (X ) so fvis will be, (f K
vis denotes its local

representation on K ∈ T (X )),

Objective O1: f K
vis is a linear function on simplexes (when f K

num is more
sophisticated) so we introduce

→ (sub)-mesh: a mesh made of simplexes of K , noted T (K),

→ basis functions: for any S ∈ T (K) let P1(S) be the space of polynomial of total degree
less than or equal to 1.

Thus, f K
vis will verify

∀S ∈ T (K), f K
vis

∣∣∣
S
∈ P1(S).

Remark: f K
vis is defined on the physical cell K (the one to be plotted) when f K

num is on

the reference one K̂ .
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Definition of fvis : construction of the representation mesh

f K
num is evaluated from reference cell K̂ so T (K) will be constructed from a mesh

composed of simplexes T (K̂) of K̂ .

The construction of T (K) is then performed in the following way:

1 For K ∈ T (X ), we define the topology of T (K̂) by

N̂ := {N̂ := (N̂i )i=1,...,nK +1 : Λ(N̂) ∈ T (K̂)}

where Λ associates n + 1 points P := (Pi )i=1,··· ,n+1 to the n-simplex Λ(P).

2 We define the set of nodes of T (K) as well as its topology by

N := {N = (Ni )i=1,...,nK +1 := gK (N̂) : N̂ ∈ N̂}

with gK (N̂) := (gK (N̂i ))i=1,...,nK +1 où N̂ := (N̂i )i=1,...,nK +1.

3 The mesh in simplexes of K is defined by

T (K) := {Λ(N) : N ∈ N}.

Remark: one can have K̃ := ∪S∈T (K)S 6= K and f K
vis (K̃) 6= f K

num(K)
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Definition of fvis : construction of the representation mesh

Lemma (identification of T (K))

For all K ∈ T (X ), the P1 interpolation of gK constructed from T (K̂), noted P1gK , is

1 a bijective function between T (K̂) and T (K),

2 a bijective function between the sets N̂ and N ,

3 a surjective function from K̂ onto K̃ .

Remark : This construction does not ensure the injectivity of P1gK from K̂ onto K̃ .

Figure : possible loss of injectivity in the construction of T (K̂).
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Definition of fvis

The function f K
vis is then defined on each simplex Λ(N) of T (K) by:

1 for each node Ni ∈ N, f K
vis (Ni ) := f K

num(Ni ),

2 f K
vis is an affine function on Λ(N) and is defined by

x =

nK +1∑
i=1

xi Ni ∈ Λ(N) 7−→ f K
vis (x) =

nK +1∑
i=1

xi f
K

num(Ni ),

where (xi )i=1,...,nK +1 ∈ [0, 1]nK +1.

⇒ fvis fulfils the objective O1.
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Definition of fvis

K̂ ⊂ X̂K

gK

↗

K ⊂ X ⊂ X

f K
num−→

K × f K
num(K) ⊂ X× Y

P1gK

↘

K̃ ⊂ X̃ ⊂ X

f K
vis−→

K̃ × f K
vis (K̃) ⊂ X× Y

Figure : Construction of the representation fvis of the hp solution fnum.
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Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples
Example 1: what happens on basis functions?
Example 2: what happens when combining basis functions?
Example 3: what happens on more realistic simulations?

Perspectives
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Estimate of the visualization error

fnum and fvis have a local definition on each K ∈ T (X ) ⇒ local estimate

Difficulty : supports are not coinciding in the physical space X (K 6= K̃).

Solution : the Hausdorff distance (convergence of graphs)

dH : (f , f ′) ∈
(
C 0

c (X,Y)
)2 7→ max

(
sup

x∈Suppf
inf

x′∈Suppf ′
d
(
(x , f (x)), (x ′, f (x ′))

)
,

sup
x′∈Suppf ′

inf
x∈Suppf

d
(
(x , f (x)), (x ′, f (x ′))

))
,

where d is a distance on X × Y , with α and β be positive parameters:

d :
(
(x , y), (x ′, y ′)

)
∈ (X× Y)2 7→ max

(
α
∥∥x − x ′

∥∥
X , β

∥∥y − y ′
∥∥
Y
)
.

But, it is too expensive to be calculated.

Idea: ”localization” (inside K)!
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Estimate of the visualization error

Proposition (local a posteriori estimate)

Let K ∈ T (X ). The following estimate holds:

dH

(
f K
num, f

K
vis

)
≤ δT (K)

(
f K
num, f

K
vis

)
,

where dH is the Hausdorff distance and

δT (K) :(f , f̃ ) ∈ C 0(K ,Y)× C 0(K̃ ,Y)

7→ sup
x̂∈K̂

max
(
α
∥∥g(x̂)− P1g(x̂)

∥∥
X , β

∥∥∥(f ◦ g) (x̂)−
(

f̃ ◦ P1g
)

(x̂)
∥∥∥
Y

)
,

with α and β be dimensioning constants.
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Characterization of fvis

Lemma (Generic fulfilment of objectives)

If for all cell K ∈ T (X ), one has

δT (K)

(
f K
num, f

K
vis

)
≤ ε,

∀K ′ ∈ T (X ) : F := ∂K ∩ ∂K ′ 6= ∅, meshes T (K) and T (K ′) lead to

T (F ) = T (F ′)

where T (F ) and T ′(F ) are the meshes in simplexes of F obtained by restriction of
those of K and K ′, respectively.

Then the representation fvis of fnum fulfils the objectives (O1), (O2) and (O3).

→ we need to grant T (F ) = T (F ′)!
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Fulfilment of the objective O3: decomposition in lower dimensions

Figure : T̃3 D (X ) (left), T̃2 D (X ) (center) et T̃1 D (X ) (right)

One decomposes T (X ) into sets of elements of lower dimension T̃i D (X ) for i = 1, . . . , 3:

T̃3 D (X ) := T3 D (X )

T̃2 D (X ) := T2 D (X ) ∪
(

∪
K∈T (X ) : dim(K)=3

F(K)

)
T̃1 D (X ) := T1 D (X ) ∪

(
∪

K∈T (X ) : dim(K)=2
E(K)

)
∪
(

∪
K∈T (X ) : dim(K)=3

E(K)

)
where F(K) and E(K) are the faces and the edges of K respectively.
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Fulfilment of the objective O3: decomposition in lower dimensions

Proposition (fulfilment of O3)

Let (T (Σ))
Σ∈T̃k D (X ),k=1,2,3

be a set of meshes in simplexes satisfying: for k = 2, 3,

∀Σ ∈ T̃k D (X ),

T (Σ)|∂Σ̃
= ∪

F∈F(Σ)
T (F ) avec Σ̃ = ∪

S∈T (Σ)
S (2)

then the representation fvis of fnum constructed from T (K) for K ∈ TkD (X ) fulfils the
objective 03

This proposition provides a ”simple” algorithm to ensure the objective O3:

1 construction of representation meshes of elements of T̃1 D (X ),

2 construction of representation meshes of elements of T̃2 D (X ) from those of

T̃1 D (X ) and satisfying (2),

3 construction of representation meshes of elements of T̃3 D (X ) from those of

T̃2 D (X ) and satisfying (2).
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First convergence result

Rough description of the algorithm:

1 decomposition in lower dimensions → functions and traces are connected to
corresponding element,

2 meshing of all 1D cells in T̃1 D (X ) such that
max

f num
1D

connected to the element
δ(f 1D

num, f
1D

vis ) ≤ ε,

3 interior meshing of all 2D cells in T̃2 D (X ) - boundaries meshed before - such that
max

f num
2D

connected to the element
δ(f 2D

num, f
2D

vis ) ≤ ε,

4 same process for 3D cells.

Proposition (Convergence via meshing with respect to dimensions)

If the algorithm of construction implies:

1 For all K ∈ T (X ), the P1 interpolation of gK constructed from T (K̂) is an

injective function from K̂ onto K̃ ,

2 The convergence toward the target error ε is achieved.

Then the representation fvis of fnum fulfils the objectives (O1), (O2) and (O3).
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Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples
Example 1: what happens on basis functions?
Example 2: what happens when combining basis functions?
Example 3: what happens on more realistic simulations?

Perspectives
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Example 1: what happens on basis functions?
Q3 Gauss-Legendre basis function

Figure : Adaptive remeshing
ε = 10%

Figure : Uniform 6× 6 (same
number of elements than
adaptive 10%)

Figure : Uniform 14× 14
(same accuracy than adaptive
10%)

Figure : Adaptive remeshing
ε = 1%

Figure : Uniform 18× 18
(same number of elements
than adaptive 1%)

Figure : Uniform 54× 54
(same accuracy than adaptive
1%)
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Example 1: what happens on basis functions?
Q3 Gauss-Legendre basis function

Meshing number triangles relative error

Adaptive 10% 56 9.91%

Uniform 6 × 6 72 32.27%

Uniform 14 × 14 392 11.0%

Adaptive 5% 138 4.88%

Uniform 9 × 9 162 20.77%

Uniform 22 × 22 968 5.22%

Adaptive 1% 630 1.00%

Uniform 18 × 18 648 7.34%

Uniform 54 × 54 5832 1.01%
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Formalization

Linear representation suited to the hp solutions

Construction of the visualization

Examples
Example 1: what happens on basis functions?
Example 2: what happens when combining basis functions?
Example 3: what happens on more realistic simulations?

Perspectives
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Example 2: what happens when combining basis functions?
Simulation of the propagation of a source point by a DG method

(a) time 1 (b) time 2

(c) time 3 (d) time 4

Figure : Propagation of a source point in a cavity by DG Q10 on 5× 5 uniform mesh : adaptive
remeshing 1%
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Example 2: what happens when combining basis functions?
Simulation of the propagation of a source point by a DG method

(a) Uniform 8× 8: time 1 (b) Uniform 9× 9: time 2

(c) Uniform 9× 9: time 3 (d) Uniform 11× 11: time 4

Figure : Propagation of a source point in a cavity by DG Q10 on 5× 5 uniform mesh : uniform
remeshing with same number of elements as adaptive 1%
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Example 2: what happens when combining basis functions?
Simulation of the propagation of a source point by a DG method

(a) Régulier 35× 35: time 1 (b) Régulier 25× 25: time 2

(c) Régulier 22× 22: time 3 (d) Régulier 24× 24: time 4

Figure : Propagation of a source point in a cavity by DG Q10 on 5× 5 uniform mesh : uniform
remeshing with same accuracy as adaptive 1%
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Example 2: what happens when combining basis functions?
Simulation of the propagation of a source point by a DG method

Method time 1 time 2 time 3 time 4

triangles error triangles error triangles error triangles error

Previsio 1% 3088 1.00% 3728 1.00% 3928 1.00% 5580 1.00%

Uniform 8 × 8 3200 14.30% - - - - - -

Uniform 35 × 35 61250 1.04% - - - - - -

Uniform 9 × 9 - - 4050 5.72% - - - -

Uniform 25 × 25 - - 31250 1.02% - - - -

Uniform 9 × 9 - - - - 4050 5.82% - -

Uniform 22 × 22 - - - - 24200 1.07% - -

Uniform 11 × 11 - - - - - - 6050 4.43%

Uniform 24 × 24 - - - - - - 28800 1.03%

Summary:

Good stability of the number of triangles created adaptively (not controlled).

Uniform refinement much less stable → the number of refinements is difficult to a
priori predict.
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Formalization

Linear representation suited to the hp solutions

Construction of the visualization
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Example 1: what happens on basis functions?
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Example 3: what happens on more realistic simulations?
Elastic wave in a three layered medium

(a) Adaptive 1% (b) Uniform 7× 7 (1 point per dof)

Figure : Propagation of an elastic wave in a 3 layered medium by DG Q7 on 24× 24 uniform mesh:
global view

→ No notable differences between those results!?
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Example 3: what happens on more realistic simulations?
Elastic wave in a three layered medium

(a) Previsio 1% (b) Uniform 7× 7

Figure : Propagation of an elastic wave in a 3 layered medium by DG Q7 on 24× 24 uniform mesh:
zooming on one cell

→ Accuracy problems are expected for later extractions!!

(this cell is meaningful from a physical point of view: interface between two layers with
reflection and refraction processes)
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Example 3: what happens on more realistic simulations?
Elastic wave in a three layered medium

(a) Adaptive, same num-
ber of elements than uni-
form 7× 7

(b) Uniform 7× 7

(c) Adaptive 1% (d) Uniform 1%

Figure : Propagation of an elastic wave in a 3 layered medium: same cell, comparisons
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Example 3: what happens on more realistic simulations?
Elastic wave in a three layered medium

number of triangles relative error

Uniform 7 × 7 98 12.65%

Adaptive 97 3.19%

Uniform 14 × 14 392 4.10%

Adaptive 1% 453 0.99%

Uniform 30 × 30 1800 1.03%

Uniform 70 × 70 9800 0.2%

Adaptive 0.2% 2553 0.2%
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Example 3: what happens on more realistic simulations?
Elastic wave in a three layered medium

Figure : Adatpive 1%: zoom on solution gaps
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Perspectives and forthcoming works

L∞ norm → no monotonicity.

Voronöı swaps can yield an increase
of the error.

Idea: swaps driven by a metric
associated to gK and fnum ◦ gK .
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Perspectives and forthcoming works

Loss of the injectivity of P1gK when the point D is added → loss of the objective O3.

Solution: add only points in the domain V̂ where P1gK is an injective function.

Remark: domain V̂ defined by geometry but new points driven by both geometry and
fnum!
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Perspectives and forthcoming works

(a) L2 5 vs L∞ 5% (b) L2 1% vs L∞ 5% (c) L2 0.1% vs L∞ 5% (d) L2 0.01% vs L∞ 5%

Figure : Extraction over a rectilinear curve: comparison between L∞ and L2 approaches.

However, the construction driven by δT (K)
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is not sufficient to control the

extractions of quantities of interest:

← |fvis ◦ P1gK (x̂)− fnum ◦ gK (x̂)| ≤ ε where P1gK (x̂) can be different of gK (x̂)

→ For example, fvis (x) does not necessarily ”control” the value fnum(x).

Fixed by introducing additional constrained (objective O4) linked to the quantity of
interest and the way it is extracted from linear function on simplexes.
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Thank you for your attention.
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