

Wave days in South-West - Pau March 9-11, 2016

On some parallel linear algebra tools for wave propagation simulations

Luc GIRAUD

joint work with Inria HiePACS and Nachos project members

HiePACS Inria Project Inria Bordeaux Sud-Ouest

Sparse linear solver

Goal: solving $Ax = b$, where A is sparse **Full iterative Full direct**

Usual trades off **Direct**

- \blacktriangleright Robust/accurate for general problems
- \blacktriangleright BLAS-3 based implementations
- \blacktriangleright Memory/CPU prohibitive for large 3D problems
- Limited weak scalability

Iterative

- \blacktriangleright Problem dependent efficiency / accuracy
- \blacktriangleright Sparse computational kernels
- \blacktriangleright Less memory requirements and possibly faster
- Possible high weak scalability

[Block GMRES method with inexact breakdowns and deflated](#page-35-0) [restarting](#page-35-0)

'nrío

Hybrid direct-iterative solver with application to Maxwell in the frequency domain

E. AGULLO and M. KUHN (PD)

S. LANTERI and L. MOYA (PD)

A. Falco (PhD) and Y. Harness (PD)

S. NAKOV and G. PICHON (PhD)

L. Poirel (PhD)

Hybrid Linear Solvers

Develop robust scalable parallel hybrid direct/iterative linear solvers

- \blacktriangleright Exploit the efficiency and robustness of the sparse direct solvers
- Develop robust parallel preconditioners for iterative solvers
- Take advantage of the natural scalable parallel implementation of iterative solvers

Domain Decomposition (DD)

- Natural approach for PDE's
- Extend to general sparse matrices
- Partition the problem into subdomains, subgraphs
- I Use a direct solver on the subdomains
- Robust preconditioned iterative solver

Overlapping Domain Decomposition [H. Schwarz - 1870]

Classical Additive Schwarz preconditioners

- Goal: solve linear system $Ax = b$
- I Use iterative method

I Apply the preconditioner at each step

The convergence rate deteriorates as the number of subdomains increases

$$
\mathcal{A} = \left(\begin{array}{ccc} \mathcal{A}_{1,1} & \mathcal{A}_{1,\delta} \\ \mathcal{A}_{\delta,1} & \mathcal{A}_{\delta,\delta} & \mathcal{A}_{\delta,2} \\ \mathcal{A}_{\delta,2} & \mathcal{A}_{2,2} \end{array}\right) \Longrightarrow \mathcal{M}_{\mathcal{AS}}^{\delta} = \left(\begin{array}{ccc} \begin{array}{ccc} \mathcal{A}_{1,1} & \mathcal{A}_{1,\delta} & -1 \\ \mathcal{A}_{\delta,1} & \mathcal{A}_{\delta,\delta} & \mathcal{A}_{\delta,2} \\ \hline \mathcal{A}_{\delta,2} & \mathcal{A}_{2,2} \end{array}\end{array}\right)^{-1}
$$

Classical Additive Schwarz preconditioners N subdomains case

$$
\mathcal{M}^{\delta}_{AS} = \sum_{i=1}^{N} \left(\mathcal{R}^{\delta}_i\right)^{\mathcal{T}} \left(\mathcal{A}^{\delta}_i\right)^{-1} \mathcal{R}^{\delta}_i
$$

Non-overlapping Domain Decomposition

Distributed Schur complement

$$
\frac{\Omega_{\iota}}{\begin{pmatrix} S_{kk}^{(t)} & S_{k\ell} \\ S_{\ell k} & S_{\ell\ell}^{(t)} \end{pmatrix}} \frac{\Omega_{\iota+1}}{\begin{pmatrix} S_{\ell\ell}^{(t+1)} & S_{\ell m} \\ S_{m\ell} & S_{m\ell}^{(t+1)} \end{pmatrix}} \frac{\Omega_{\iota+2}}{\begin{pmatrix} S_{k\ell+2}^{(t+2)} & S_{mn} \\ S_{mn} & S_{mn}^{(t+2)} \end{pmatrix}}
$$
\nIn an assembled form: $S_{\ell\ell} = S_{\ell\ell}^{(t)} + S_{\ell\ell}^{(t+1)} \implies S_{\ell\ell} = \sum_{\iota \in adj} S_{\ell\ell}^{(t)}$

Algebraic Additive Schwarz preconditioner

$$
S = \int_{i=1}^{N} \mathcal{R}_{1}^{T} S^{(i)} \mathcal{R}_{1}^{T}
$$
\n
$$
S = \begin{pmatrix}\n\vdots & \vdots & \vdots & \vdots \\
S_{kk} & S_{k\ell} & S_{\ell m} & S_{mn} \\
S_{mk} & S_{mk} & S_{km} & S_{mn}\n\end{pmatrix} \Rightarrow M = \begin{pmatrix}\n\vdots & \vdots & \vdots & \vdots \\
S_{kk} & S_{k\ell} & S_{\ell m} & S_{mn} \\
S_{mn} & S_{mn} & S_{mn}\n\end{pmatrix}
$$
\n
$$
M = \sum_{i=1}^{N} \mathcal{R}_{1}^{T} (\bar{S}^{(i)})^{-1} \mathcal{R}_{1}^{T}
$$
\nSimilarly with Neumann-
Neumann-
Neumann-
Neumann-
ski, P. Le Tallec and M.
$$
S^{(i)} = \begin{pmatrix}\nS_{kk}^{(i)} & S_{k\ell} \\
S_{\ell k}^{(i)} & S_{\ell \ell}^{(i)}\n\end{pmatrix} \Rightarrow \bar{S}^{(i)} = \begin{pmatrix}\nS_{kk}^{(i)} & S_{k\ell} \\
S_{\ell k}^{(i)} & S_{\ell \ell}^{(i)}\n\end{pmatrix}
$$
\nNotarscu - 89] [Y.H. de
Roek, P. Le Tallec and M.
$$
Vidrascu - 91]
$$
\nUidrascu - 91]
$$
Vidrascu - 91
$$

Parallel linear algebra tools for wave propagation simulations 9/ 50

'nrío

Parallel preconditioning features $S^{(i)} = A_{\Gamma_i \Gamma_i}^{(i)} - A_{\Gamma_i I_i} A_{I_i I_i}^{-1}$ $^{-1}_{l_i l_i} A_{l_i \Gamma_i}$

$$
M_{AS} = \sum_{i=1}^{\text{\#domains}} R_i^{\mathcal{T}} (\bar{S}^{(i)})^{-1} R_i
$$

$$
\bar{S}^{(i)} = \begin{pmatrix} S_{mm} & S_{mg} & S_{mk} & S_{m\ell} \\ S_{gm} & S_{gg} & S_{gk} & S_{g\ell} \\ S_{\ell m} & S_{\ell g} & S_{\ell k} & S_{\ell \ell} \\ S_{\ell m} & S_{\ell g} & S_{\ell k} & S_{\ell \ell} \end{pmatrix} \quad S^{(i)} = \begin{pmatrix} S_{mm}^{(i)} & S_{mg} & S_{mk} & S_{m\ell} \\ S_{gm} & S_{gg}^{(i)} & S_{gk} & S_{g\ell} \\ S_{km} & S_{kg} & S_{\ell k}^{(i)} & S_{\ell \ell} \\ S_{\ell m} & S_{\ell g} & S_{\ell k} & S_{\ell \ell}^{(i)} \end{pmatrix}
$$

Assembled local Schur complement

local Schur complement

$$
\mathcal{S}_{mm} = \sum_{j \in adj(m)} \mathcal{S}^{(j)}_{mm}
$$

Parallel linear algebra tools for wave propagation simulations 10/ 50 and 10/ 50

Parallel implementation

Each subdomain $A^{(i)}$ is handled by one processor

$$
\mathcal{A}^{(i)} \equiv \begin{pmatrix} \mathcal{A}_{\mathcal{I}_i\mathcal{I}_i} & \mathcal{A}_{\mathcal{I}_i\mathsf{\Gamma}_i} \\ \mathcal{A}_{\mathcal{I}_i\mathsf{\Gamma}_i} & \mathcal{A}_{\mathsf{\Gamma}\mathsf{\Gamma}}^{(i)} \end{pmatrix}
$$

 \triangleright Concurrent partial factorizations are performed on each processor to form the so called "local Schur complement"

$$
\mathcal{S}^{(i)} = \mathcal{A}_{\Gamma\Gamma}^{(i)} - \mathcal{A}_{\Gamma_i \mathcal{I}_i} \mathcal{A}_{\mathcal{I}_i \mathcal{I}_i}^{-1} \mathcal{A}_{\mathcal{I}_i \Gamma_i}
$$

- **IF** The reduced system $S_{X\Gamma} = f$ is solved using a distributed Krylov solver
	- One matrix vector product per iteration each processor computes $S^{(i)}(x_{\Gamma}^{(i)})^k = (y^{(i)})^k$
	- One local preconditioner apply $(\mathcal{M}^{(i)})(z^{(i)})^k = (r^{(i)})^k$
	- Local neighbor-neighbor communication per iteration
	- Global reduction (dot products)
- Compute simultaneously the solution for the interior unknowns

$$
\mathcal{A}_{\mathcal{I}_i\mathcal{I}_i}\mathsf{x}_{\mathcal{I}_i}=b_{\mathcal{I}_i}-\mathcal{A}_{\mathcal{I}_i\Gamma_i}\mathsf{x}_{\Gamma_i}
$$

Current Software software implementation of MaPHyS

Partitioner

 \blacktriangleright Scotch

Dense direct solver

 \blacktriangleright Multi-threaded MKL library

Sparse direct solvers

- \blacktriangleright Mumps
- \blacktriangleright Multi-threaded PASTIX

Iterative Solvers

 \triangleright CG/GMRES/FGMRES using multi-threaded MKL library

Current Software software implementation of MaPHyS

Partitioner

 \blacktriangleright Scotch

Dense direct solver

 \blacktriangleright Multi-threaded MKL library

Sparse direct solvers

- \blacktriangleright Mumps
- \blacktriangleright Multi-threaded PASTIX

Iterative Solvers

- \triangleright CG/GMRES/FGMRES using multi-threaded MKL library
- \blacktriangleright Challenge
	- \triangleright Composability
	- **Performance**

TECSER project

Goal:

 \triangleright Novel high performance numerical solution techniques for Radar cross-section computations

Challenges:

 \triangleright Very large problems, irregular geometric structures, heterogeneous and anisotropic propagation mediums

Solutions:

- \blacktriangleright Hybridizable Discontinuous Galerkin method (HDGM: Nachos),
- ▶ Massively Parallel Hybrid Solver (MaPHyS: HiePACS)

Partners:

The HDG method

Attractive features of DG methods

Thanks to the discontinuity DG methods have many advantages

- \blacktriangleright Easily obtained high order accuracy
- \triangleright p-adaptivity (approximation is purely local)
- \triangleright h-adaptivity (conforming or non-conforming grid refinement)
- \blacktriangleright Natural parallelism

One main drawback of DG methods particularly sensitive for stationary problems

 \triangleright The excessive number of globally coupled DOFs ⇒ DG methods are expensive both in terms of CPU time and memory consumption

Hybridization of DG methods is devoted to address this issue while keeping all the advantages of DG methods

The HDG method

The HDG method can be decomposed in two steps

- 1. A conservativity condition is imposed on the numerical trace, whose definition involved the hybrid variable at the interface between neighboring elements. As result we obtain a global linear system in terms of the DOFs of the hybrid variable.
- 2. Once the DOFs of the hybrid variable are known, the local values of the electromagnetic fields can be obtained by solving local linear systems element-by-element.

DG vs HDG

Assuming a uniform interpolation degree p , the number of globally coupled DOFs is then

> DG : $(p+1)(p+2)(p+3)|\mathcal{T}_h|$, HDG : $(p+1)(p+2)|\mathcal{F}_h|$.

For a simplicial mesh $|\mathcal{F}_h| \approx 2|\mathcal{T}_h|$, the ratio of the globally coupled DOFs is roughly $2/(p+3)$ for HDG method over DG method.

Propagation of a plane wave in vacuum

- **Computational domain: the unit cube** [0, 1]³
- ▶ First order Silver-Müller boundary condition
- \blacktriangleright Plane wave:
	- ▶ Wave vector: $(k_x, k_y, k_z) \simeq (12.6, 0.0, 0.0)$
	- \blacktriangleright Polarization: $(0, 0, 1)$
	- Frequency: $f = 600$ MHz
	- Angular frequency: $\omega = 2\pi f \approx 12.6$ rad/m
	- \blacktriangleright Wavelength: $\lambda \simeq 0.4997$ m
- **Electromagnetic parameters:** $\varepsilon = \mu = 1$ (vacuum)
- Characteristics of the meshes used for numerical convergence:

Propagation of a plane wave in vacuum

Numerical convergence of the HDG method (Error = $\|\mathbf{E} - \mathbf{E}_h\|_2$)

 \Rightarrow Optimal convergence order (similar results for $||H - H_h||_2$)

Propagation of a plane wave in vacuum: performances

ĺnrío

Parallel linear algebra tools for wave propagation simulations 18/ 50

Propagation of a plane wave in vacuum: performances

Exposure of head tissues to a plane wave

- \blacktriangleright Computational domain:
	- phere of radius $r = 0.3$ m, centered at $(0, 0, 0)$
	- \blacktriangleright heterogeneous geometrical model of the head tissues (namely, the skin, the skull, the CSF - Cerebro Spinal Fluid and the brain)
- \blacktriangleright Characteristics of the mesh:
	- \triangleright 725 136 faces and 361 848 tetrahedra
	- $h_{min} = 0.002$ m and $h_{max} = 0.045$ m
- ▶ First order Silver-Müller boundary condition
- \blacktriangleright Plane wave:
	- ▶ Wave vector: $(k_x, k_y, k_z) \simeq (37.7, 0.0, 0.0)$
	- \blacktriangleright Polarization: $(0, 0, 1)$
	- Frequency: $f = 1800$ MHz
	- Angular frequency: $\omega = 2\pi f \approx 37.7$ rad/m
- Electromagnetic parameters:

Exposure of head tissues to a plane wave

 \triangleright Statistics of the global matrix

 \triangleright Value of interest the SAR (Specific Absorption Rate)

The SAR is a measure of the rate at which electric energy is absorbed by the tissues when exposed to a radio-frequency electromagnetic field. For instance, it involved in the definition of international norms for mobiles phones. This quantity represents the power absorbed per mass of tissues and has units of watts per kilogram (W·kg−¹), it is defined by σ|**E**| ²/ρ

Exposure of head tissues to a plane wave

Contour lines of the local SAR over the maximal local SAR (logarithmic scale), $HDG-P_1 - HDG-P_2$ methods (left - right)

Exposure of head tissues to a plane wave

Contour lines of the local SAR over the maximal local SAR (logarithmic scale), $HDG-P_1 - HDG-P_2$ methods (left - right)

Exposure of head tissues to a plane wave: performances

Parallel linear algebra tools for wave propagation simulations 25/ 50 and 25/ 50

Exposure of head tissues to a plane wave: performances

 $n\simeq$ 8.7M, nnz \simeq 736.3M 192 cores 384 cores 576 cores 768 cores 6000 -MaPHyS for HDGM Threads/MPI process deployment, interpolation P2

Parallel linear algebra tools for wave propagation simulations 26/ 50

Strong speed-ups

Ínría

Related activities

- \blacktriangleright Recent/Ongoing efforts
	- 1. Partioning/balancing both interface and interior vertices (A. Cassadei)
	- 2. Parallel analysis and FEM API (M. Kuhn)
	- 3. Deflation/augmentation via local spectral calculation (L. Poirel)
	- 4. H -arithmetic for local solve (H -PasTiX) and preconditioner (A. Falco, G. Pichon, Y. Harness)
	- 5. Numerical resilience policies (M. Zounon)
	- 6. Experiments on large 3D elastodynamic problems (S. Nakov Magique 3D)
- \triangleright Future step: Full task based implemenation on top of runtime systems

Block Krylov linear solver

E. AGULLO and C. PIACIBELLO

Y.F. Jing, Chengdu University, China

Parallel linear algebra tools for wave propagation simulations 29/ 50

Some basic ingredients in classical GMRES - $Ax = b$

$$
x_\ell = \operatornamewithlimits{argmin}_{z \in \mathcal{K}_\ell(b, A)} \|b - Az\|_2
$$

with $\mathcal{K}_\ell(b,A) = \mathsf{span}(b,Ab,...,A^{\ell-1}b)$:

- 1. Construction of an orthonormal basis of the Krylov space
- 2. Minimum norm solution

Computational facts

- 1. Happy breakdown
- 2. Simple restarting mechanism

Construction of the orthonormal basis

Arnoldi with modified Gram-Schmidt orthogonalization

1: $\beta = ||b||$ set $v_1 = b/\beta$ 2: **for** $j = 1, 2, ..., m$ **do** 3: Compute $w_i = Av_i$ 4: **for** $i = 1, 2, ..., i$ **do** 5: $h_{i,j} = v_i^H w_j$ 6: $w_i = w_i - v_i h_{i,j}$ 7: **end for** 8: $w_i = v_{i+1}h_{i+1,j}$ 9: **end for**

Key equalities :

$$
AV_j = V_j H_j + [0_{n \times (j-1)}, w_j] = V_{j+1} \underline{H}_j
$$

with
$$
V_j^H V_j = l_j
$$
 and $V_{j+1}^H V_{j+1} = l_{j+1}$ where $V_j = [v_1, ..., v_j]$

Minimum norm solution

 \triangleright What we want

$$
x_{\ell} = \operatorname*{argmin}_{z \in \mathcal{K}_{\ell}(b, A)} \|b - Az\|_2 \quad x_{\ell} = V_{\ell}y_{\ell}
$$

 \blacktriangleright Key equality

$$
||b - Ax_{\ell}|| = ||b - AV_{\ell}y_{\ell}|| = ||b - V_{\ell+1}H_{\ell}y_{\ell}||
$$

=
$$
||V_{\ell+1}(\beta e_1 - H_{\ell}y_{\ell})|| = ||\beta e_1 - H_{\ell}y_{\ell}||
$$

 \blacktriangleright Key features that make it works

- 1. Arnoldi equality $AV_\ell = V_{\ell+1}H_\ell$
- 2. Orthonormal basis $V_{\ell+1}^H V_{\ell+1} = I_{\ell+1}$
- 3. Right-hand side in search space $b \in span(V_{\ell+1})$

Happy breakdown

This situation occurs when $w_i = 0$ in Arnoldi, meaning the algorithm cannot extend the space

$$
AV_j = V_j H_j + [0_{n\times(j-1)}, w_j] = V_j H_j
$$

Consequences

- ► Happy breakdown: the solution $x \in span(V_i)$
- \triangleright b can be expressed as a linear combination of *i* eigenvectors Remark: all eigenvectors are not revealed at the same speed in the Krylov space (argument will come back later)

Basic restart mechanism

- \triangleright Computation per iteration and storage increase linearly with iteration
- Restart mechanism when maximum search space dimension m is attained

• Set
$$
x_0 = x_m
$$
, solve

$$
Ae=r_0
$$

using GMRES where $r_0 = b - Ax_0$ so that $x_i \in x_0 + \mathcal{K}_i(r_0, A)$ Remark: all spectral information captured in the Krylov space is lost at restart

Some key ingredients for block GMRES - $AX = B$

$$
X_{\ell} = \operatorname*{argmin}_{Z \in \mathcal{K}_{\ell}(V_1, A)} \|B - AZ\|_F
$$

with $\mathcal{K}_\ell(\mathcal{V}_1, \mathcal{A}) = \mathsf{span}(\mathcal{V}_1, \mathcal{A}\mathcal{V}_1, ..., \mathcal{A}^{\ell-1}\mathcal{V}_1)$:

- 1. Construction of an orthonormal basis of the Krylov space, where $B = V_1 \Lambda_1$ is the reduced QR factorisation of B
- 2. Minimum residual norm solution

Computational challenges

- 1. Numerical deficiency in W_i inexact breakdown [Robbé, Sadkane]
- 2. More sophisticated restarting mechanism [R. Morgan]

Construction of the orthonormal basis

Arnoldi with modified Gram-Schmidt orthogonalization

- 1: Choose a unitary matrix V_1 of size $n \times p$
- 2: **for** $j = 1, 2, ..., m$ **do** 3: Compute $W_i = AV_i$ 4: **for** $i = 1, 2, ..., j$ **do** 5: $H_{i,j} = V_i^H W_j$ 6: $W_i = W_i - V_i H_{i,i}$ 7: **end for** 8: $W_i = V_{i+1}H_{i+1,i}$ (reduced QR-factorization) 9: **end for**

$$
A\mathcal{V}_j = \mathcal{V}_j\mathcal{H}_j + [0_{n \times n_{j-1}}, \quad W_j] = \mathcal{V}_{j+1}\mathcal{H}_j
$$

with $\mathcal{V}_{j+1}^H\mathcal{V}_{j+1} = I_{n_{j+1}}$ where $\mathcal{V}_{j+1} = [V_1, \dots, V_{j+1}]$

Minimun norm solution

$$
||B-AX_j||_F = \min_{Y \in \mathbb{C}^{n_j \times p}} ||\mathcal{V}_{j+1}(\Lambda_j - \mathcal{H}_j Y)||_F = \min_{Y \in \mathbb{C}^{n_j \times p}} ||\Lambda_j - \mathcal{H}_j Y||_F
$$

because \mathcal{V}_{j+1} forms an orthonormal basis and

$$
\mathsf{\Lambda}_j=\left[\begin{matrix}\mathsf{\Lambda}_1\\0 \end{matrix}\right]\in\mathbb{C}^{n_{j+1}\times p}
$$

Remark: we minimize the Frobenius norm of the block that translates in 2-norm for the individual column residual

Numerical rank deficiency in W_i

 \triangleright For reasons to be made clear later but related to stopping criterion we decompose

$$
W_j = V_{j+1}H_{j+1,j} + Q_j
$$

with $(Q_j \perp V_{j+1}) \perp \mathscr{V}_j$. We still have

$$
A\mathscr{V}_j=\mathscr{V}_j\mathscr{H}_j+[Q_{j-1},\quad W_j],
$$

where $\mathcal{Q}_{j-1} = [\mathcal{Q}_1, \dots, \mathcal{Q}_{j-1}] \in \mathbb{C}^{n \times n_{j-1}}$ accounts for all the abandoned directions.

 \blacktriangleright To characterize a minimum norm solution in \mathcal{V}_i we need to have an orthonormal basis of $[\mathscr{V}_{j},\mathcal{Q}_{j-1}, \quad \mathcal{W}_{j}]$ so that

$$
A\mathscr{V}_j=\left[\mathscr{V}_j,[P_{j-1},\tilde{W}_j]\right]\mathscr{F}_j
$$

Shortcut for deriving the extended Arnoldi equality I

[M. Robbé and M. Sadkane, LAA, 2006]

$$
A\mathscr{V}_j = \mathscr{V}_j\mathscr{H}_j + [\mathcal{Q}_{j-1}, \quad W_j]
$$

\n- $$
\tilde{Q}_{j-1} = (I - \mathcal{V}_j \mathcal{V}_j^H) Q_{j-1}
$$
, $\mathcal{L}_j = \mathcal{H}_j + \mathcal{V}_j^H \left[Q_{j-1}, 0_{p_j} \right]$ (Hessenberg)
\n- Q_{j-1} is low rank so is $\tilde{Q}_{j-1} = P_{j-1} G_{j-1}$ $\left\{ P_{j-1} \in \mathbb{C}^{n \times \tilde{q}_{j-1}}$ has orthonormal columns with $\mathcal{V}_j^H P_{j-1} = 0$, $G_{j-1} \in \mathbb{C}^{\tilde{q}_{j-1} \times n_{j-1}}$ is of full rank.
\n

 \triangleright W_i orthogonalized against P_{i-1} with $W_i - P_{i-1}C_i$ where $C_j = P_{j-1}^H W_j$

$$
\blacktriangleright \ \tilde{W}_j D_j = \mathsf{QR} \ (W_j - P_{j-1} C_j).
$$

► $[\mathscr{V}_j, P_{j-1}, \tilde{W}_j]$ form an orthonormal basis of $[\mathscr{V}_j, \mathcal{Q}_{j-1}, W_j]$.

Shortcut for deriving the generalized Arnoldi equality II

[M. Robbé and M. Sadkane, LAA, 2006]

 \blacktriangleright Extended Arnoldi equality

$$
A\mathscr{V}_j = \mathscr{V}_j \mathscr{L}_j + \left[P_{j-1} G_{j-1}, \left[P_{j-1}, \tilde{W}_j \right] \left[\begin{array}{c} C_j \\ D_j \end{array} \right] \right]
$$

=
$$
\left[\mathscr{V}_j, P_{j-1}, \tilde{W}_j \right] \left[\begin{array}{c} \mathscr{L}_j \\ G_{j-1} & C_j \\ 0 & D_j \end{array} \right]
$$

=
$$
\left[\mathscr{V}_j, \left[P_{j-1}, \tilde{W}_j \right] \right] \mathscr{F}_j
$$

 \blacktriangleright Least-squares problem reads

$$
Y_j = \underset{Y \in \mathbb{C}^{n_j \times p}}{\operatorname{argmin}} \left\| \Lambda_j - \mathscr{F}_j Y \right\|_F, \text{with } \Lambda_j = \left[\begin{array}{c} \Lambda_1 \\ 0 \\ 0 \end{array} \right]
$$

Parallel linear algebra tools for wave propagation simulations 40/60

Numerical rank deficiency in \tilde{W}_j vs convergence

 \triangleright Based on SVD of least-squared residual

$$
\Lambda_j - \mathscr{F}_j Y_j = \mathbb{U}_1 \Sigma_1 \mathbb{V}_1^H + \mathbb{U}_2 \Sigma_2 \mathbb{V}_2^H \text{ with } \epsilon^{(R)} \le ||\Sigma_1||
$$

Decompose

$$
\mathbb{U}_1 = \begin{pmatrix} \mathbb{U}_1^{(1)} \\ \mathbb{U}_1^{(2)} \end{pmatrix}
$$
 in accordance with $\left[\mathcal{V}_j, [\mathsf{P}_{j-1}, \tilde{\mathsf{W}}_j] \right]$

 \blacktriangleright <code>Consider</code> $[\mathbb{W}_{1},\mathbb{W}_{2}]$ unitary so that <code>Range($\mathbb{W}_{1})=\mathsf{Range}(\mathbb{U}_{1}^{(2)})$ </code> $\binom{2}{1}$

Define and update

$$
V_{j+1} = \left[P_{j-1}, \tilde{W}_j\right] \mathbb{W}_1
$$

$$
P_j = \left[P_{j-1}, \tilde{W}_j\right] \mathbb{W}_2
$$

$$
G_j = \mathbb{W}_2^H \left[\begin{array}{cc} G_{j-1} & C_j \\ 0 & D_j \end{array}\right]
$$

Parallel linear algebra tools for wave propagation simulations 41/60

Rank deficiency threshold vs stopping criterion

Assuming p inexact breakdowns

$$
||\Lambda_{\ell} - \mathscr{F}_{\ell} Y_{\ell}|| = ||B - AX_{\ell}||_2 \leq \epsilon^{(R)}
$$

$$
\frac{||b^{(i)} - Ax_{\ell}^{(i)}||_2}{||b^{(i)}||_2} \leq \frac{||B - AX_{\ell}||_2}{||b^{(i)}||_2} \leq \frac{||B - AX_{\ell}||_2}{\min_{i=1,...,p} ||b^{(i)}||_2} \leq \frac{\epsilon^{(R)}}{\min_{i=1,...,p} ||b^{(i)}||_2}
$$

It follows that the choice

$$
\epsilon^{(R)} = \varepsilon \times \min_{i=1,\dots,p} \left\| b^{(i)} \right\|_2
$$

ensures convergence below the threshold ϵ for individual $b^{(i)}$ if same accuracy required for all the righ-hand sides

A few definitions

Definition

Harmonic Ritz pair. Consider a subspace $\mathcal U$ of $\mathbb C^n$. Given a matrix $B\in \mathbb C^{n\times n},\ \lambda\in \mathbb C$ and $y \in \mathcal{U}$, (λ, y) is a harmonic Ritz pair of A with respect to U if and only if

$$
Ay - \lambda y \perp AU
$$

The vector y is a harmonic Ritz vector associated with the harmonic Ritz value λ .

Lemma

The harmonic Ritz pairs $(\tilde{\theta}_i, \tilde{g}_i)$ associated with $\mathcal{U} = \text{span}(\mathcal{V}_m)$ satisfy the following property

$$
\mathscr{F}_m^H\left(\mathscr{F}_m\tilde{g}_i-\tilde{\theta}_i\begin{bmatrix}\tilde{g}_i\\0\\0\end{bmatrix}\right)=0, \ (i=1,\ldots,n_m),
$$

 $\tilde{g}_i \in \mathbb{C}^{n_m}$, and $\mathcal{V}_m \tilde{g}_i$ are the harmonic Ritz vectors associated with the corresponding harmonic Ritz values $\tilde{\theta}_i$.

An interesting fact for augmentation at restart

Lemma

Assume that \mathcal{L}_m is of full rank after performing a first cycle of IB-BGMRES, then the column vectors $\left(\mathscr{F}_{m}\tilde{g}_i-\tilde{\theta}_i\left[\frac{\tilde{g}_i}{0}\right]\right)\in\mathbb{C}^{n_m+p}$ $(i=1,\ldots,n_m)$ are all contained in the subspace spanned by the least-squares residuals $R_{\mathcal{L} S_m}=(\Lambda_m-\mathscr{F}_m\bm{\mathsf{Y}}_m)\in\mathbb{C}^{(n_m+p)\times p}$, i.e., $\exists \alpha_i \in \mathbb{C}^p$ so that

$$
\mathscr{F}_{m}\tilde{g}_{i}-\tilde{\theta}_{i}\begin{bmatrix}\tilde{g}_{i}\\0\end{bmatrix}=R_{LS_{m}}\alpha_{i}.
$$

Proposition

The harmonic residual vectors are all linear combinations of the residual vectors from the minimum residual solutions of the linear equation problem after performing a first cycle of the IB-BGMRES.

An interesting fact for augmentation at restart

Lemma

Assume that \mathscr{L}_m is of full rank after performing a first cycle of IB-BGMRES, then the column vectors $\left(\mathscr{F}_{m}\tilde{g}_i-\tilde{\theta}_i\left[\frac{\tilde{g}_i}{0}\right]\right)\in\mathbb{C}^{n_m+p}$ $(i=1,\ldots,n_m)$ are all contained in the subspace spanned by the least-squares residuals $R_{LS_m}=(\Lambda_m-\mathscr{F}_m\bm{\mathsf{Y}}_m)\in\mathbb{C}^{(n_m+p)\times p}$, i.e., $\exists \alpha_i \in \mathbb{C}^p$ so that

$$
\mathscr{F}_{m}\tilde{g}_{i}-\tilde{\theta}_{i}\begin{bmatrix}\tilde{g}_{i}\\0\end{bmatrix}=R_{LS_{m}}\alpha_{i}.
$$

Proposition

The harmonic residual vectors are all linear combinations of the residual vectors from the minimum residual solutions of the linear equation problem after performing a first cycle of the IB-BGMRES.

Some harmonic vectors can be kept in the search space at restart with the residual vector that must be in the space

Restarting mechanism I

Let $\tilde{G} = [\tilde{g}_1, \ldots, \tilde{g}_k] \in \mathbb{C}^{n_m \times k}$ and form $\underline{G} = \begin{bmatrix} \tilde{G} & \tilde{G} \ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} G & & & \ R_{L S_m} & \end{bmatrix}$ We denote $\underline{G} = Q_{\underline{G}} R_{\underline{G}}$ the reduced $QR-$ factorization of $\underline{G},$

$$
Q_{\underline{G}} = \begin{bmatrix} \Gamma_1 & \Gamma_2 \\ 0_{p \times k} & \Gamma_2 \end{bmatrix} \in \mathbb{C}^{(n_m+p) \times (k+p)},
$$

$$
R_{\underline{G}} = \begin{bmatrix} \Theta_1 & \Theta_2 \\ 0_{p \times k} & \Theta_2 \end{bmatrix} \in \mathbb{C}^{(k+p) \times (k+p)},
$$

so that

$$
\tilde{G} = \Gamma_1 \Theta_1,
$$

$$
R_{LS_m} = Q_{\underline{G}} \Theta_2
$$

We can define an orthonormal basis for the restarting search space that contains spectral information

$$
\mathscr{V}_1^{\text{new}} = \mathscr{V}_m\Gamma_1
$$

and an orthonormal encompassing basis that contains the residuals

$$
\left[\mathscr{V}_{1}^{\text{new}}, [P_{0}, \tilde{W}_{1}]^{\text{new}}\right] = \left[\mathscr{V}_{m}, [P_{m-1}, \tilde{W}_{m}]\right] Q_{\underline{G}}
$$

Restarting mechanism II

Extended Arnoldi relation

$$
\mathcal{AY}^{\mathsf{new}}_1 = \left[\mathscr{V}^{\mathsf{new}}_1, \left[\mathsf{P}_0, \tilde{\mathsf{W}}_1\right]^{\mathsf{new}}\right] \mathscr{F}^{\mathsf{new}}_1 \quad \mathcal{AY}^{\mathsf{new}}_1 = \mathscr{Y}^{\mathsf{new}}_2 \underline{\mathscr{L}}^{\mathsf{new}}_1 + \tilde{\mathcal{Q}}^{\mathsf{new}}_1,
$$

with

$$
\begin{aligned} &\left[\begin{smallmatrix}\mathscr{V}_1^{\text{new}},[P_0,\tilde{W}_1^{\text{new}}]=\left[\begin{smallmatrix}\mathscr{V}_m,[P_{m-1},\tilde{W}_m]\end{smallmatrix}\right]Q_{\underline{G}},\quad R_0=\left[\begin{smallmatrix}\mathscr{V}_1^{\text{new}},[P_0,\tilde{W}_1^{\text{new}}]\end{smallmatrix}\right]A_1^{\text{new}}\ \text{with}\ A_1^{\text{new}}=\Theta_2,\\ &\mathscr{L}_1^{\text{new}}=\Gamma_1^H\mathscr{L}_m\Gamma_1,\quad \mathbb{H}_1^{\text{new}}=\Gamma_2^H\mathscr{F}_m\Gamma_1,\quad \mathscr{F}_1^{\text{new}}=\left[\begin{smallmatrix}\mathscr{L}_1^{\text{new}}\\ \mathbb{H}_1^{\text{new}}\end{smallmatrix}\right],\\ &V_2^{\text{new}}=[P_0,\tilde{W}_1^{\text{new}}\ \text{with}\ 0,\quad P_1^{\text{new}}=[P_0,\tilde{W}_1^{\text{new}}\ \text{with}\ 0,\quad P_2^{\text{new}}=[P_0,\tilde{W}_1^{\text{new}}\ \text{with}\ 0,\quad \mathscr{L}_2^{\text{new}}]=\mathbb{W}_1^{\text{new}}\ \text{with}\ 0,\quad G_1^{\text{new}}=\mathbb{W}_2^{\text{new}}\ \text{with}\ 0,\end{aligned}\right],\\ &\mathscr{V}_2^{\text{new}}=\left[\begin{smallmatrix}\mathscr{V}_1^{\text{new}},\mathscr{V}_2^{\text{new}}\end{smallmatrix}\right],\quad \underline{\mathscr{L}}_1^{\text{new}}=\left[\begin{smallmatrix}\mathscr{L}_1^{\text{new}}\\ \mathscr{L}_2^{\text{new}}\end{smallmatrix}\right],\quad \tilde{\mathbb{Q}}_1^{\text{new}}=P_1^{\text{new}}\,G_1^{\text{new}},\\ &\mathscr{L}_1^{\text{new}},\end{aligned}\right]
$$

$$
\text{where Range}(\mathbb{W}^{new}_1) = \text{Range}(\mathbb{U}^{new(2)}_1) \text{ with } \mathbb{U}^{new}_1 = \begin{bmatrix} \mathbb{U}^{new(1)}_1 \\ \mathbb{U}^{new}_1 \end{bmatrix} \text{ and } \begin{bmatrix} \mathbb{W}^{new}_1, & \mathbb{W}^{new}_2 \end{bmatrix} \text{ is unitary with}
$$

$$
\Lambda_1^{\text{new}}-\mathscr{F}_1^{\text{new}}\Upsilon_1^{\text{new}}=\mathbb{U}_1^{\text{new}}\Sigma_1^{\text{new}}\mathbb{V}_1^{\text{new}} + \mathbb{U}_2^{\text{new}}\Sigma_2^{\text{new}}\mathbb{V}_2^{\text{new}}\text{, with SVD threshold }\epsilon^{(R)}
$$

the SVD to detect inexact breakdown in the restarting block residual where

$$
Y_1^{\text{new}} = \underset{Y \in \mathbb{C}^{n_1 \times \rho}}{\operatorname{argmin}} \left\| \Lambda_1^{\text{new}} - \mathscr{F}_1^{\text{new}} Y \right\|_F.
$$

Comparative covergence rate

ĺnrío

IB-BGMRES [M. Robbé and M. Sadkane, LAA, 2006], BGMRES-DR [R. Morgan, APNUM, 2005]

Inexact breakdown vs targeted accuracy

Concluding remarks

- \triangleright The new algorithm IB-BGMRES-DR inherits the positive genes of its parents IB-BGMRES [M. Robbé and M. Sadkane, LAA, 2006] and BGMRES-DR [R. Morgan, APNUM, 2005]
- \triangleright Flexible variants can be designed to accomodate resiliency or mixed precision calculation
- \triangleright Possible extension to handle massive number of right-hand sides (deflation between sequences)
- \blacktriangleright Flexible implementation in the framework of the Hi-Box project in collaboration with Airbus Group Innovations and IMACS

"Personal" advert

Parallel Matrix Algorithms and Applications http://pmaa16.inria.fr

Merci for your attention Questions ?

https://team.inria.fr/hiepacs/

Comparisons with cousins and parents

Iso-memory comparison for basis storage

Table: Number of mvps for regular GMRES, GMRES-DR, IB-BGMRES, BGMRES-DR and IB-BGMRES-DR with $\varepsilon = 10^{-6}$.

Numerical alternative: numerical scalability in 3D

Domain based coarse space : $M = M_{AS} + R_O^T A_O^{-1} R_0$ where $A_0 = R_0 S R_O^T$

Ínría

- \triangleright "As many" dof in the coarse space as sub-domains [Carvalho, Giraud, Le Tallec, 01]
- **Partition of unity :** R_0^T simplest constant interpolation

Experimental set up

Hopper - LBNL platform

- ▶ Two twelve-core AMD 'MagnyCours' 2.1-GHz
- Memory: 32 GB GDDR3
- \triangleright Double precision

Matrices

Nachos4M matrix on the Hopper platform

HiePACS objectives: Contribute to the design of effective tools for frontier simulations arising from challenging research and industrial multi-scale applications towards extreme computing

HiePACS: scientific structure

Team members

I Permanent Researchers

- \blacktriangleright E. Agullo Inria
- \triangleright O. Coulaud Inria
- A. Esnard Bordeaux University
- \blacktriangleright M. Faverge Bordeaux INP
- \blacktriangleright L. Giraud Inria team leader
- \blacktriangleright A. Guermouche Bordeaux University
- ▶ P. Ramet Bordeaux University
- \blacktriangleright J. Roman Inria (Bdx INP)
- **Post-Doctoral Fellows**
	- \blacktriangleright Y. Harness Inria-Région Aquitaine
	- M M. Kuhn RAPID DGA
	- E. F. Yetkin G8-ECS/FP7 Exa2CT
- \blacktriangleright Technical Staff
	- \blacktriangleright M. Hastaran Inria Prace 4IP
	- \triangleright Q. Khan Inria
	- \blacktriangleright C. Piacibello DGA HiBox
	- F. Pruvost Inria ADT HPC-Collective

\blacktriangleright PhD Students

- P. Blanchard ENS Cachan
- \blacktriangleright B. Bramas Airbus-Inria-R. Aquitaine
- J.M. Couteyen ASTRIUM/ANRT
- \blacktriangleright A. Durocher Mds/CEA
- A. Falco Airbus-Inria-R. Aquitaine
- C. Fournier CERFACS
- ^I L. Poirel ANR DEDALES
- \blacktriangleright G. Pichon DGA
- M. Predari Inria-Région Aquitaine
- \blacktriangleright Research scientist (partners)
	- ▶ P. Brenner Airbus Defence and Space
	- G. Latu CEA Cadarache
	- \blacktriangleright G. Sylvand Airbus Group Innovation

Current collaborations witin Associate Teams: MORSE (UTK, ICL, UCL, Kaust), FASTLA (LNBL, Stanford), IPL C2S@Exa and industrial partners

Ínría