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Sparse linear solver

Goal: solving Ax = b, where A is sparse

Usual trades off
Direct

I Robust/accurate for general
problems

I BLAS-3 based implementations
I Memory/CPU prohibitive for

large 3D problems
I Limited weak scalability

Iterative
I Problem dependent efficiency /

accuracy
I Sparse computational kernels
I Less memory requirements and

possibly faster
I Possible high weak scalability
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Outline

Hybrid linear solver for Maxwell applications

Block GMRES method with inexact breakdowns and deflated
restarting
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Hybrid linear solver for Maxwell applications

Hybrid direct-iterative solver with
application to Maxwell in the

frequency domain
E. Agullo and M. Kuhn (PD)

S. Lanteri and L. Moya (PD)

A. Falco (PhD) and Y. Harness (PD)

S. Nakov and G. Pichon (PhD)

L. Poirel (PhD)
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Hybrid linear solver for Maxwell applications

Hybrid Linear Solvers

Develop robust scalable parallel hybrid direct/iterative linear
solvers

I Exploit the efficiency and robustness of the sparse direct solvers
I Develop robust parallel preconditioners for iterative solvers
I Take advantage of the natural scalable parallel implementation of iterative

solvers

Domain Decomposition (DD)
I Natural approach for PDE’s
I Extend to general sparse matrices
I Partition the problem into subdomains, subgraphs
I Use a direct solver on the subdomains
I Robust preconditioned iterative solver
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Hybrid linear solver for Maxwell applications

Overlapping Domain Decomposition [H. Schwarz - 1870]

Classical Additive Schwarz preconditioners

Ω1

Ω2
δ

I Goal: solve linear system Ax = b
I Use iterative method
I Apply the preconditioner at each step
I The convergence rate deteriorates as the

number of subdomains increases

A =

 A1,1 A1,δ
Aδ,1 Aδ,δ Aδ,2

Aδ,2 A2,2

 =⇒Mδ
AS =

 A1,1 A1,δ
−1

Aδ,1 Aδ,δ Aδ,2 −1

Aδ,2 A2,2



Classical Additive Schwarz preconditioners N subdomains case

Mδ
AS =

N∑
i=1

(
Rδi
)T (

Aδi
)−1
Rδi
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Hybrid linear solver for Maxwell applications

Non-overlapping Domain Decomposition

Ω1

Ω2
Γ

I Goal: solve linear system Ax = b
I Apply partially Gaussian elimination
I Solve the reduced system SxΓ = f
I Then solve Ai xi = bi −Ai,ΓxΓ


A1,1 0 A1,Γ

0 A2,2 A2,Γ

0 0 S




x1

x2

xΓ

 =


b1

b2

bΓ −
2∑

i=1
AΓ,iA−1

i,i bi


Solve Ax = b =⇒ solve the reduced system SxΓ = f =⇒ then solve
Ai xi = bi −Ai,ΓxΓ

where S = AΓ,Γ −
2∑

i=1
AΓ,iA−1

i,i Ai,Γ , and f = bΓ −
2∑

i=1
AΓ,iA−1

i,i bi .
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Hybrid linear solver for Maxwell applications

Distributed Schur complement

k l m n

Ωι

Ωι+1

Ωι+2
Γ = k ∪ ` ∪m ∪ n

Ωι︷ ︸︸ ︷(
S(ι)

kk Sk`
S`k S(ι)

``

) Ωι+1︷ ︸︸ ︷(
S(ι+1)
`` S`m
Sm` S(ι+1)

mm

) Ωι+2︷ ︸︸ ︷(
S(ι+2)

mm Smn

Snm S(ι+2)
nn

)

In an assembled form: S`` = S(ι)
`` + S(ι+1)

`` =⇒ S`` =
∑
ι∈adj

S(ι)
``
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Hybrid linear solver for Maxwell applications

Algebraic Additive Schwarz preconditioner
[ L.Carvalho, L.G., G.Meurant - 01]

S =
N∑

i=1
RT

Γi
S(i)RΓi

S =


. . .

Skk Sk`
S`k S`` S`m

Sm` Smm Smn
Snm Snn

⇒M =


. . .

Skk Sk`
−1

S`k S`` S`m −1

Sm` Smm Smn
Snm Snn



Similarity with Neumann-
Neumann preconditioner
[J.F Bourgat, R. Glowin-
ski, P. Le Tallec and M.
Vidrascu - 89] [Y.H. de
Roek, P. Le Tallec and M.
Vidrascu - 91]

M =
N∑

i=1
RT

Γi
(S̄(i))−1RΓi

where S̄(i) is obtained from S(i)

S(i) =

(
S(ι)

kk Sk`
S`k S(ι)

``

)
︸ ︷︷ ︸⇒ S̄

(i) =

(
Skk Sk`
S`k S``

)
︸ ︷︷ ︸

local Schur local assembled Schur
↘ ↗∑

ι∈adj
S(ι)
``
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Hybrid linear solver for Maxwell applications

Parallel preconditioning features
S(i) = A(i)

Γi Γi
− AΓi Ii A−1

Ii Ii AIi Γi

MAS =

#domains∑
i=1

RT
i (S̄(i))−1Ri

Ωi

Ωj

Ek

EgEm

E`

S̄(i) =


Smm Smg Smk Sm`

Sgm Sgg Sgk Sg`
Skm Skg Skk Sk`
S`m S`g S`k S``


Assembled local Schur complement

S(i) =


S(i)

mm Smg Smk Sm`

Sgm S(i)
gg Sgk Sg`

Skm Skg S(i)
kk Sk`

S`m S`g S`k S(i)
``


local Schur complement

Smm =
∑

j∈adj(m)

S(j)
mm
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Hybrid linear solver for Maxwell applications

Parallel implementation
I Each subdomain A(i) is handled by one processor

A(i) ≡
(
AIiIi AIi Γi

AIi Γi A(i)
ΓΓ

)
I Concurrent partial factorizations are performed on each processor to

form the so called “local Schur complement”

S(i) = A(i)
ΓΓ −AΓiIiA−1

IiIi
AIi Γi

I The reduced system SxΓ = f is solved using a distributed Krylov
solver

- One matrix vector product per iteration each processor computes
S(i)(x (i)

Γ )k = (y (i))k

- One local preconditioner apply (M(i))(z(i))k = (r (i))k

- Local neighbor-neighbor communication per iteration
- Global reduction (dot products)

I Compute simultaneously the solution for the interior unknowns

AIiIi xIi = bIi −AIi Γi xΓi
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Hybrid linear solver for Maxwell applications

Current Software software implementation of MaPHyS

Partitioner
I Scotch

Dense direct solver
I Multi-threaded Mkl library

Sparse direct solvers
I Mumps
I Multi-threaded PaStiX

Iterative Solvers
I Cg/Gmres/FGmres using multi-threaded Mkl library
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Hybrid linear solver for Maxwell applications

Current Software software implementation of MaPHyS
Partitioner

I Scotch

Dense direct solver
I Multi-threaded Mkl library

Sparse direct solvers
I Mumps
I Multi-threaded PaStiX

Iterative Solvers
I Cg/Gmres/FGmres using multi-threaded Mkl library

I Challenge
I Composability
I Performance
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TECSER project
Goal:

I Novel high performance numerical solution techniques
for Radar cross-section computations

Challenges:
I Very large problems, irregular geometric structures,

heterogeneous and anisotropic propagation mediums

Solutions:
I Hybridizable Discontinuous Galerkin method (HDGM:

Nachos),
I Massively Parallel Hybrid Solver (MaPHyS: HiePACS)

Partners:



Hybrid linear solver for Maxwell applications

The HDG method

Attractive features of DG methods
Thanks to the discontinuity DG methods have many advantages

I Easily obtained high order accuracy
I p-adaptivity (approximation is purely local)
I h-adaptivity (conforming or non-conforming grid refinement)
I Natural parallelism

One main drawback of DG methods particularly sensitive for
stationary problems

I The excessive number of globally coupled DOFs
⇒ DG methods are expensive both in terms of CPU time and
memory consumption

Hybridization of DG methods is devoted to address this issue while
keeping all the advantages of DG methods
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Hybrid linear solver for Maxwell applications

The HDG method

The HDG method can be decomposed in two steps
1. A conservativity condition is imposed on the numerical trace, whose

definition involved the hybrid variable at the interface between
neighboring elements. As result we obtain a global linear system in
terms of the DOFs of the hybrid variable.

2. Once the DOFs of the hybrid variable are known, the local values of
the electromagnetic fields can be obtained by solving local linear
systems element-by-element.

DG vs HDG
Assuming a uniform interpolation degree p, the number of globally
coupled DOFs is then

DG : (p + 1)(p + 2)(p + 3)|Th|,
HDG : (p + 1)(p + 2)|Fh|.

For a simplicial mesh |Fh| ≈ 2|Th|, the ratio of the globally coupled
DOFs is roughly 2/(p + 3) for HDG method over DG method.
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Hybrid linear solver for Maxwell applications

Propagation of a plane wave in vacuum

I Computational domain: the unit cube [0, 1]3

I First order Silver-Müller boundary condition
I Plane wave:

I Wave vector: (kx , ky , kz ) ' (12.6, 0.0, 0.0)
I Polarization: (0, 0, 1)
I Frequency: f = 600 MHz
I Angular frequency: ω = 2πf ' 12.6 rad/m
I Wavelength: λ ' 0.4997 m

I Electromagnetic parameters: ε = µ = 1 (vacuum)
I Characteristics of the meshes used for numerical convergence:

# elements # faces h

M1 2 692 5 544 0.2500
M2 6 144 12 928 0.1875
M3 12 000 25 000 0.1500
M4 20 736 42 912 0.1250
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Hybrid linear solver for Maxwell applications

Propagation of a plane wave in vacuum
Numerical convergence of the HDG method (Error = ‖E− Eh‖2)

Error Order

M1 7.10 e−02 −
M2 4.27 e−02 1.8
M3 2.85 e−02 1.8
M4 2.03 e−02 1.9

HDG-P1

Error Order

M1 6.78 e−03 −
M2 2.90 e−03 2.9
M3 1.49 e−03 3.0
M4 8.68 e−04 3.0

HDG-P2

Error Order

M1 3.89 e−04 −
M2 1.24 e−04 4.0
M3 5.09 e−05 4.0
M4 2.46 e−05 4.0

HDG-P3

Error Order

M1 2.05 e−05 −
M2 4.89 e−06 5.0
M3 1.61 e−06 5.0
M4 6.48 e−07 5.0

HDG-P4

⇒ Optimal convergence order (similar results for ‖H−Hh‖2)
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Hybrid linear solver for Maxwell applications

Propagation of a plane wave in vacuum: performances

n'257.5k, nnz'10.5M
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n'1.3M, nnz'263.8M
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Hybrid linear solver for Maxwell applications

Propagation of a plane wave in vacuum: performances

n'257.5k, nnz'10.5M
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Hybrid linear solver for Maxwell applications

Strong speed-ups
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Hybrid linear solver for Maxwell applications

Strong speed-ups
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Hybrid linear solver for Maxwell applications

Strong speed-ups
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Hybrid linear solver for Maxwell applications

Exposure of head tissues to a plane wave
I Computational domain:

I sphere of radius r = 0.3 m, centered at (0, 0, 0)
I heterogeneous geometrical model of the head tissues (namely, the skin,

the skull, the CSF - Cerebro Spinal Fluid and the brain)
I Characteristics of the mesh:

I 725 136 faces and 361 848 tetrahedra
I hmin = 0.002 m and hmax = 0.045 m

I First order Silver-Müller boundary condition
I Plane wave:

I Wave vector: (kx , ky , kz ) ' (37.7, 0.0, 0.0)
I Polarization: (0, 0, 1)
I Frequency: f = 1800 MHz
I Angular frequency: ω = 2πf ' 37.7 rad/m

I Electromagnetic parameters:
Vacuum Skin Skull CSF Brain

ε 1.00 38.66 11.60 68.25 43.88
σ (S·m−1) 0.00 1.18 0.27 2.28 0.97
λ (mm) 166.67 26.79 48.90 20.16 25.14
ρ 1.00 1 100.00 1 200.00 1 000.00 1 050.00

Parallel linear algebra tools for wave propagation simulations 21/ 50



Hybrid linear solver for Maxwell applications

Exposure of head tissues to a plane wave

I Statistics of the global matrix

Matrix order nnz

HDG-P1 4.3M 184M
HDG-P2 8.7M 736M

Nonzero per row: 42 (P1), 84 (P2)

I Value of interest the SAR (Specific Absorption Rate)
The SAR is a measure of the rate at which electric energy is absorbed by the
tissues when exposed to a radio-frequency electromagnetic field. For instance, it
involved in the definition of international norms for mobiles phones. This
quantity represents the power absorbed per mass of tissues and has units of
watts per kilogram (W·kg−1), it is defined by σ|E|2/ρ

Parallel linear algebra tools for wave propagation simulations 22/ 50



Hybrid linear solver for Maxwell applications

Exposure of head tissues to a plane wave

Contour lines of the local SAR over the maximal local SAR (logarithmic
scale), HDG-P1 - HDG-P2 methods (left - right)
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Hybrid linear solver for Maxwell applications

Exposure of head tissues to a plane wave

Contour lines of the local SAR over the maximal local SAR (logarithmic
scale), HDG-P1 - HDG-P2 methods (left - right)
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Hybrid linear solver for Maxwell applications

Exposure of head tissues to a plane wave: performances

n'4.4M, nnz'184.1M
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Hybrid linear solver for Maxwell applications

Exposure of head tissues to a plane wave: performances

n'4.4M, nnz'184.1M
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Hybrid linear solver for Maxwell applications

Strong speed-ups
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Hybrid linear solver for Maxwell applications
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Hybrid linear solver for Maxwell applications

Related activities

I Recent/Ongoing efforts
1. Partioning/balancing both interface and interior vertices

(A. Cassadei)
2. Parallel analysis and FEM API (M. Kuhn)
3. Deflation/augmentation via local spectral calculation

(L. Poirel)
4. H-arithmetic for local solve (H-PasTiX) and preconditioner

(A. Falco, G. Pichon, Y. Harness)
5. Numerical resilience policies (M. Zounon)
6. Experiments on large 3D elastodynamic problems (S. Nakov -

Magique 3D)
I Future step: Full task based implemenation on top of runtime

systems
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Hybrid linear solver for Maxwell applications

Block Krylov linear solver
E. Agullo and C. Piacibello

Y.F. Jing, Chengdu University, China

Parallel linear algebra tools for wave propagation simulations 29/ 50



Block Krylov variants

Some basic ingredients in classical GMRES - Ax = b

x` = argmin
z∈K`(b,A)

‖b − Az‖2

with K`(b,A) = span(b,Ab, ...,A`−1b):
1. Construction of an orthonormal basis of the Krylov space
2. Minimum norm solution

Computational facts
1. Happy breakdown
2. Simple restarting mechanism
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Block Krylov variants

Construction of the orthonormal basis

Arnoldi with modified Gram-Schmidt orthogonalization
1: β = ‖b‖ set v1 = b/β
2: for j = 1, 2, . . . ,m do
3: Compute wj = Avj
4: for i = 1, 2, . . . , j do
5: hi,j = vH

i wj
6: wj = wj − vi hi,j
7: end for
8: wj = vj+1hj+1,j
9: end for

Key equalities :

AVj = VjHj + [0n×(j−1),wj ] = Vj+1H j

with V H
j Vj = Ij and V H

j+1Vj+1 = Ij+1 where Vj = [v1, ..., vj ]
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Block Krylov variants

Minimum norm solution

I What we want

x` = argmin
z∈K`(b,A)

‖b − Az‖2 x` = V`y`

I Key equality

‖b − Ax`‖ = ‖b − AV`y`‖ = ‖b − V`+1H`y`‖
= ‖V`+1(βe1 − H`y`)‖ = ‖βe1 − H`y`‖

I Key features that make it works
1. Arnoldi equality AV` = V`+1H`

2. Orthonormal basis V H
`+1V`+1 = I`+1

3. Right-hand side in search space b ∈ span(V`+1)

Parallel linear algebra tools for wave propagation simulations 32/ 50



Block Krylov variants

Happy breakdown

This situation occurs when wj = 0 in Arnoldi, meaning the
algorithm cannot extend the space

AVj = VjHj + [0n×(j−1),wj ] = VjHj

Consequences
I Happy breakdown: the solution x ∈ span(Vj)

I b can be expressed as a linear combination of j eigenvectors
Remark: all eigenvectors are not revealed at the same speed in
the Krylov space (argument will come back later)
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Block Krylov variants

Basic restart mechanism

I Computation per iteration and storage increase linearly with
iteration

I Restart mechanism when maximum search space dimension m
is attained

I Set x0 = xm, solve
Ae = r0

using GMRES where r0 = b − Ax0 so that xj ∈ x0 +Kj(r0,A)
Remark: all spectral information captured in the Krylov space
is lost at restart
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Block Krylov variants

Some key ingredients for block GMRES - AX = B

X` = argmin
Z∈K`(V1,A)

‖B − AZ‖F

with K`(V1,A) = span(V1,AV1, ...,A`−1V1):
1. Construction of an orthonormal basis of the Krylov space,

where B = V1Λ1 is the reduced QR factorisation of B
2. Minimum residual norm solution

Computational challenges
1. Numerical deficiency in Wj - inexact breakdown [Robbé, Sadkane]

2. More sophisticated restarting mechanism [R. Morgan]
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Block Krylov variants

Construction of the orthonormal basis

Arnoldi with modified Gram-Schmidt orthogonalization
1: Choose a unitary matrix V1 of size n × p
2: for j = 1, 2, . . . ,m do
3: Compute Wj = AVj
4: for i = 1, 2, . . . , j do
5: Hi,j = V H

i Wj
6: Wj = Wj − Vi Hi,j
7: end for
8: Wj = Vj+1Hj+1,j (reduced QR−factorization)
9: end for

AVj = VjHj + [0n×nj−1 , Wj ] = Vj+1H j

with V H
j+1Vj+1 = Inj+1 where Vj+1 = [V1, . . . ,Vj+1]
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Minimun norm solution

‖B−AXj‖F = min
Y∈Cnj×p

∥∥Vj+1
(
Λj −H jY

)∥∥
F = min

Y∈Cnj×p

∥∥Λj −H jY
∥∥

F

because Vj+1 forms an orthonormal basis and

Λj =

[
Λ1
0

]
∈ Cnj+1×p

Remark: we minimize the Frobenius norm of the block that
translates in 2-norm for the individual column residual
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Numerical rank deficiency in Wj
I For reasons to be made clear later but related to stopping

criterion we decompose

Wj = Vj+1Hj+1,j + Qj

with (Qj ⊥ Vj+1) ⊥ Vj .
We still have

AVj = VjHj + [Qj−1, Wj ],

where Qj−1 = [Q1, . . . ,Qj−1] ∈ Cn×nj−1 accounts for all the
abandoned directions.

I To characterize a minimum norm solution in Vj we need to
have an orthonormal basis of [Vj ,Qj−1, Wj ] so that

AVj =
[
Vj , [Pj−1, W̃j ]

]
Fj
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Shortcut for deriving the extended Arnoldi equality I
[M. Robbé and M. Sadkane, LAA, 2006]

AVj = VjHj + [Qj−1, Wj ]

I Q̃j−1 = (I − VjV H
j )Qj−1 , Lj = Hj + V H

j
[
Qj−1, 0pj

]
(Hessenberg)

I Qj−1 is low rank so is Q̃j−1 = Pj−1Gj−1{
Pj−1 ∈ Cn×q̃j−1 has orthonormal columns with V H

j Pj−1 = 0,
Gj−1 ∈ Cq̃j−1×nj−1 is of full rank.

I Wj orthogonalized against Pj−1 with Wj − Pj−1Cj where
Cj = PH

j−1Wj

I W̃jDj = QR (Wj − Pj−1Cj ).

I [Vj ,Pj−1, W̃j ] form an orthonormal basis of [Vj ,Qj−1,Wj ].
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Shortcut for deriving the generalized Arnoldi equality II
[M. Robbé and M. Sadkane, LAA, 2006]

I Extended Arnoldi equality

AVj = VjLj +

[
Pj−1Gj−1,

[
Pj−1, W̃j

] [ Cj
Dj

]]

=
[
Vj ,Pj−1, W̃j

] Lj
Gj−1 Cj

0 Dj


=

[
Vj , [Pj−1, W̃j ]

]
Fj

I Least-squares problem reads

Yj = argmin
Y∈Cnj×p

‖Λj −FjY ‖F ,with Λj =

 Λ1
0
0


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Numerical rank deficiency in W̃j vs convergence
I Based on SVD of least-squared residual

Λj −FjYj = U1Σ1VH
1 + U2Σ2VH

2 with ε(R) ≤ ||Σ1||
I Decompose

U1 =

(
U(1)

1

U(2)
1

)
in accordance with

[
Vj , [Pj−1, W̃j ]

]
I Consider [W1,W2] unitary so that Range(W1) = Range(U(2)

1 )
I Define and update

Vj+1 =
[
Pj−1, W̃j

]
W1

Pj =
[
Pj−1, W̃j

]
W2

Gj = WH
2

[
Gj−1 Cj

0 Dj

]
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Rank deficiency threshold vs stopping criterion

Assuming p inexact breakdowns

||Λ` −F`Y`|| = ||B − AX`||2 ≤ ε(R)

||b(i) − Ax (i)
` ||2

||b(i)||2
≤ ||B − AX`||2

||b(i)||2
≤ ||B − AX`||2

min
i=1,...,p

∥∥b(i)
∥∥

2
≤ ε(R)

min
i=1,...,p

∥∥b(i)
∥∥

2

It follows that the choice

ε(R) = ε× min
i=1,...,p

∥∥∥b(i)
∥∥∥

2

ensures convergence below the threshold ε for individual b(i) if same
accuracy required for all the righ-hand sides
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A few definitions

Definition
Harmonic Ritz pair. Consider a subspace U of Cn. Given a matrix B ∈ Cn×n, λ ∈ C
and y ∈ U , (λ, y) is a harmonic Ritz pair of A with respect to U if and only if

Ay − λ y ⊥ AU

The vector y is a harmonic Ritz vector associated with the harmonic Ritz value λ.

Lemma
The harmonic Ritz pairs (θ̃i , g̃i ) associated with U = span(Vm) satisfy the following
property

F H
m

(
Fmg̃i − θ̃i

[
g̃i
0p

])
= 0, (i = 1, . . . , nm),

g̃i ∈ Cnm , and Vmg̃i are the harmonic Ritz vectors associated with the corresponding
harmonic Ritz values θ̃i .
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An interesting fact for augmentation at restart

Lemma
Assume that Lm is of full rank after performing a first cycle of IB-BGMRES, then the
column vectors

(
Fmg̃i − θ̃i

[
g̃i
0

])
∈ Cnm+p (i = 1, . . . , nm) are all contained in the

subspace spanned by the least-squares residuals RLSm = (Λm −FmYm) ∈ C(nm+p)×p ,
i.e., ∃αi ∈ Cp so that

Fmg̃i − θ̃i

[
g̃i
0

]
= RLSmαi .

Proposition
The harmonic residual vectors are all linear combinations of the residual vectors from
the minimum residual solutions of the linear equation problem after performing a first
cycle of the IB-BGMRES.
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An interesting fact for augmentation at restart

Lemma
Assume that Lm is of full rank after performing a first cycle of IB-BGMRES, then the
column vectors

(
Fmg̃i − θ̃i

[
g̃i
0

])
∈ Cnm+p (i = 1, . . . , nm) are all contained in the

subspace spanned by the least-squares residuals RLSm = (Λm −FmYm) ∈ C(nm+p)×p ,
i.e., ∃αi ∈ Cp so that

Fmg̃i − θ̃i

[
g̃i
0

]
= RLSmαi .

Proposition
The harmonic residual vectors are all linear combinations of the residual vectors from
the minimum residual solutions of the linear equation problem after performing a first
cycle of the IB-BGMRES.

Some harmonic vectors can be kept in the search space at restart with the residual
vector that must be in the space
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Restarting mechanism I
Let G̃ = [g̃1, . . . , g̃k ] ∈ Cnm×k and form G =

[
G̃
0p×k

RLSm

]
We denote

G = QG RG the reduced QR−factorization of G,

QG =

[
Γ1
0p×k

Γ2

]
∈ C(nm+p)×(k+p),

RG =

[
Θ1
0p×k

Θ2

]
∈ C(k+p)×(k+p),

so that

G̃ = Γ1Θ1,

RLSm = QG Θ2

We can define an orthonormal basis for the restarting search space that contains
spectral information

V new
1 = VmΓ1

and an orthonormal encompassing basis that contains the residuals[
V new

1 , [P0, W̃1]new] =
[
Vm, [Pm−1, W̃m]

]
QG
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Restarting mechanism II
Extended Arnoldi relation

AV new
1 =

[
V new

1 , [P0, W̃1]new]Fnew
1 AV new

1 = V new
2 L new

1 + Q̃new
1 ,

with

[
V new

1 , [P0, W̃1]new] =
[
Vm, [Pm−1, W̃m ]

]
QG , R0 =

[
V new

1 , [P0, W̃1]new] Λnew
1 with Λnew

1 = Θ2,

L new
1 = ΓH

1 LmΓ1, Hnew
1 = ΓH

2 FmΓ1, Fnew
1 =

[
L new

1
Hnew

1

]
,

V new
2 = [P0, W̃1]newWnew

1 , Pnew
1 = [P0, W̃1]newWnew

2 , L new
2,: = Wnew

1
HHnew

1 , Gnew
1 = Wnew

2
HHnew

1 ,

V new
2 =

[
V new

1 , V new
2

]
, L new

1 =

L new
1

L new
2,:

 , Q̃new
1 = Pnew

1 Gnew
1 ,

where Range(Wnew
1 ) = Range(Unew

1
(2)) with Unew

1 =

[
Unew

1
(1)

Unew
1

(2)

]
and

[
Wnew

1 , Wnew
2

]
is unitary with

Λnew
1 −Fnew

1 Y new
1 = Unew

1 Σnew
1 Vnew

1
H

+ Unew
2 Σnew

2 Vnew
2

H
, with SVD trheshold ε(R)

the SVD to detect inexact breakdown in the restarting block residual where

Y new
1 = argmin

Y∈Cn1×p

∥∥∥Λnew
1 −Fnew

1 Y
∥∥∥

F
.
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Inexact breakdown vs targeted accuracy
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Concluding remarks

I The new algorithm IB-BGMRES-DR inherits the positive
genes of its parents IB-BGMRES [M. Robbé and M. Sadkane, LAA,
2006] and BGMRES-DR [R. Morgan, APNUM, 2005]

I Flexible variants can be designed to accomodate resiliency or
mixed precision calculation

I Possible extension to handle massive number of right-hand
sides (deflation between sequences)

I Flexible implementation in the framework of the Hi-Box
project in collaboration with Airbus Group Innovations and
IMACS
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“Personal” advert

Parallel Matrix Algorithms and Applications
http://pmaa16.inria.fr
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Merci for your attention
Questions ?

https://team.inria.fr/hiepacs/
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Comparisons with cousins and parents

Iso-memory comparison for basis storage

Example GMRES GMRES-DR IB-BGMRES BGMRES-DR IB-BGMRES-DR
1 2536 1077 1344 892 588
2 1069 856 788 667 538
3 378 378 372 341 335
4 412 412 446 447 440
5 845 694 617 474 386
6 464 464 357 294 248
7 3154 2003 3291 3090 2104
8 10643 3110 - 4426 2202

Table: Number of mvps for regular GMRES, GMRES-DR, IB-BGMRES,
BGMRES-DR and IB-BGMRES-DR with ε = 10−6.
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Numerical alternative: numerical scalability in 3D

Domain based coarse space : M = MAS + RT
O A−1

O R0 where A0 = R0SRT
O

I “As many” dof in the coarse space as sub-domains
[Carvalho, Giraud, Le Tallec, 01]

I Partition of unity : RT
0 simplest constant

interpolation

2D Heterogenous diffusion
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Experimental set up

Hopper - LBNL platform
I Two twelve-core AMD ’MagnyCours’ 2.1-GHz
I Memory: 32 GB GDDR3
I Double precision

Matrices

Matrix Matrix211 Nachos4M

n 801K 4,147K

nnz 129,4M 256,4M

Preconditioner dense sparse02
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Nachos4M matrix on the Hopper platform
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Forewords
HiePACS objectives: Contribute to the design of effective tools for frontier simulations arising from challenging

research and industrial multi-scale applications towards extreme computing
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