Combustion noise investigation in helicopter engines

2005~2015 a European history ...

E.Bouty

09/03/2016

This document and the information therein are the property of Turbomeca. They must not be copied or communicated to a third party without the prior written authorization of Turbomeca.

CONTEXT

→ Noise sources on a helicopter are multiple and cowielefacequency range !

Thetu

qine

A TURBOSHAFT ENGINE : ARDIDEN

Annularcombustionchamber

- RQL burners
- Turbulent combustion Air/Kerosene
- Low-frequency & broadband noise generation^[5]

- This study focuses on
- downstream, low frequency radiated noise, coming from
- combustion chamber.
- (Exhaust speed is so low that jet noise is neglected)

Noise signature of a turboshaft engine « alone »

Turbomeca has an open-air test bed located at Uzein (close to Pau airport)

... and the capability of producing certification-quality

measurements

Typical noise Turboshaft engine spectrum

Turbomeca

THE FRIENDCOPTER PROJECT (2005~2008)

➔ Treatingexhaustpipes onbothengineson EC135

→BENEFIT : 1.2EPNdB@ T/O

5/ JOSO 2016

WhatisCombustion Noise ?

WhatisCombustion Noise ?

WhatisCombustion Noise ?

➔ Combustionnoise wasfully investigated in academic cases

Turbomeca

9/ JOSO 2016

TEENI project (2009-2013)

➔ Purpose : simultaneous measurement of internal and external sensors

Pressure probe designed by DLR

Turbomeca

TEENIproject(2009-2013)

➔ Purpose:simultaneousmeasurementofinternalandexternalsensors

AcousticFar-fieldof theengine

Significant acoustic levels atlow-frequency

Narrow-bandhump at 200 Hz

> No directivity

Broadband hump centered

around500 Hz up to 1500 Hz

Main directivity angle 120°-130°

Tonal noise related to rotating devices within the engine

12/ JOSO 2016

→ Three-sensors technique applied betweentwo probes at a given internal location and a pressure probe at the turbine exit

IEEN

Turbomeca

13/ JOSO 2016

RECORD Project (2012-2015)

RECORD

Modelling combustion noise : Which Tools?

RECORD Project (2012-2015)

L CERFACS

RECORD

SAFRAN

Turbomeca

15/ JOSO 2016

RECORD Project (2013-2015)

Do we need a full 360° LES of a combustion chamber to compute combustion noise levels within a helicopter engine ?

LESCalculationsin the CombustionChamber

→ Full-scalecombustionchamber

- Provides high-fidelity predictions of the unsteadiness at the combustor exit
- Most realistic case to compute combustion noise
- High computational cost

→ Single-sectorof the annularcombustion chamber

- Flow is supposed to be periodic (impacts the extraction of fluctuations at the combustor exit)
- Reasonable CPU cost

LES of the combustion chamber

Operating point corresponding tohigh power case (take-off)

Averaged quantities

➔ Magnitude of the mean velocity field

Averaged quantities

Magnitude of the mean temperature field over a meridian plane

Single-sector $T - T_{inlet}$ $T_{flame} - T_{inlet}$ 0, 250,750, 5

Full 360°

Unsteady pressure behaviour is significantly different between full-scale and sectored computations

- Peaks correspond to calculated modes
- Longitudinal modes found by single sector calculations
- Azimuthal modes found by 360° calculation

- Periodicity imposed on sectored computation masks early azimuthal modes
- But broadband content not too bad in both cases

Comparisons between temperature fluctuations PSDs

A smart phase-averaging (filtering) process can make single sector <u>entropy</u>planar mode more relevant for acoustic broadband noise calculation purpose

Acoustic modelling ofturbinestages :

CHORUS : an actuator disktheory

→ Jump relations for thestatorcase

1	Conservation of the entropy fluctuation		Expressed in terms of	
ł	Conservation of the fluctuating mass flow rate			s'
lse	Conservation of the stagnation temperature fluctuation entropic expansion)		Entropy	$\overline{C_p}$
•	For a subsonic flow at the trailing edge Kutta'scondition 	-	Velocity Mag.	$\frac{w'}{c}$
1	 For a supersonic flow Conservation of the fluctuating mass flow rate for a isentropic1D choked nozzle 		Velocity angle	heta'
	-]	Pressure	$rac{p'}{\gamma p}$

-

CHORUS : an actuator disktheory

Jump relations for the rotor case

CHORUS : an actuator disk theory

- 2-Dand3-Dnumerical simulations showed a scattering of the planar entrough the blade rows.
- ➔ Mean flow distortion leads to a spatial scattering of the entropy waves
- A damping function proposed byLeykois used to take into account this scattering mechanism through the blade rows.

(b) $tf_0 = 0.15$

(c) $tf_0 = 0.18$

(d) $tf_0 = 0.24$

Experimental / Calculations comparisons in turbines

At the turbine exit, total combustion noise predictions with a single-sector LES (planar modes) and a full 360° LES.

The last step : Far-field computation

→ Characteristics of the exit mean flow of a turboshaft engine

ComparisoninFarfield

Conclusion

A mixed experimental / calculation approach has been applied for understanding combustion noise:

- New sensors and experimental analysis methods have been developed
- AVBP innovative use for acoustics
- Development of CHORUS and refinement of existing models for generation of indirect noise / propagation.
- Development of the CONOCHAIN methodology

Very good simulation results achieved for a first run without calibration !

- Good representation of acoustics inside the combustion chamber is only achievable with full 360° model
- but sectored calculation seem sufficient for broadband noise prediction (coupled with CHORUS)
- Radiation model with no Mach induces side effects on the limit of the domain.

Indirect combustion noise is more important than Direct combustion noise for Turboshaft application

Thank you for your attention

