Numerical Results

Multi-level elastic full waveform inversion in isotropic media via quantitative Lipschitz stability estimates

Florian Faucher¹ Maarten V. de Hoop¹ Henri Calandra² Hélène Barucq³

Purdue University - Total - Inria Pau

November 17, 2014

¹Department of Mathematics, Purdue University 150 N. University Street, West Lafayette IN 47907, USA.

²Total Research Exploration & Production, Houston, TX 77002, USA.

³Inria Magique 3d, Université de Pau, France. 🛛 🗤 🖘 🖉 🖉 🖉 🖉 🖓

Overview

Introduction to FWI

- Seismic inverse problem
- Iterative minimization

2 Elastic Full Waveform Inversion

- Time-harmonic elastic wave equation
- Convergence and stability results
- Stability estimates and multi-level approach

3 Numerical Results

- 2D Marmousi
- 2D Pluto
- 3D Model

1 Introduction to FWI

- Seismic inverse problem
- Iterative minimization

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Numerical Results

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Numerical Results

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Numerical Results

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Numerical Results

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Numerical Results

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Numerical Results

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Numerical Results

Seismic acquisition

We want to reconstruct the unknown models m with data $F(m^{\dagger})$ that are boundary observations

Full Waveform Inversion

Implement a flexible toolbox for modelling and inversion in Total architecture (DIP)

- (possibly complex) frequency-domain
- large computation (parallelism)
- acoustic and elastic problems
- minimization techniques

Numerical Results

Full Waveform Inversion

Numerical Results

Full Waveform Inversion

TOTAL

Numerical Results

Full Waveform Inversion

Numerical Results

Full Waveform Inversion

Numerical Results

TOTAL

Full Waveform Inversion

Numerical Results

Full Waveform Inversion

- Time-harmonic elastic wave equation
- Convergence and stability results
- Stability estimates and multi-level approach

Numerical Results

Isotropic Elastic time-harmonic wave propagation

$$-\rho\omega^{2}\hat{u}-\nabla\left(\lambda\nabla\cdot\hat{u}\right)-\nabla\cdot\left(\mu\left[\nabla\hat{u}+(\nabla\hat{u})^{T}\right]\right)=\hat{g},$$

Multi-parameter inversion: (λ, μ, ρ) to reconstruct

- $\lambda(x)$ and $\mu(x)$ are the Lamé parameters; $\rho(x)$ the density
- ω is the (possibly complex) frequency
- g(x) is the source (near surface)
- u(x) represent the wavefields

• *P* and *S*-wavespeed:
$$C_{
ho} = \sqrt{rac{\lambda+2\mu}{
ho}}; \ C_{s} = \sqrt{rac{\mu}{
ho}}$$

Convergence and stability results

For piecewise constant m, we have the Lipschitz-type stability [Beretta, de Hoop, Francini & Zhai, 2014]

$$\|m - m^{\dagger}\| \leq \mathcal{C} \|F(m) - F(m^{\dagger})\|$$

- m: models Lamé parameters, density
- *m*[†]: 'true' models
- $F(m) \sim$ forward operator restricted at the receivers
- \mathcal{C} : stability constant

Convergence and stability results

For piecewise constant m, we have the Lipschitz-type stability [Beretta, de Hoop, Francini & Zhai, 2014]

$$\|m-m^{\dagger}\| \leq \mathcal{C} \|F(m)-F(m^{\dagger})\|$$

• Lamé parameters and density must be decoupled

Convergence and stability results

For piecewise constant m, we have the Lipschitz-type stability [Beretta, de Hoop, Francini & Zhai, 2014]

$$\|m-m^{\dagger}\| \leq \mathcal{C} \|F(m)-F(m^{\dagger})\|$$

- Lamé parameters and density must be decoupled
- stability linked with the lower bound of the Fréchet derivative

$$\mathcal{C}\sim 2/I_0$$

$$I_0 \leq \min_{m;h} \|D_m F(m)[h]\|$$

Computational stability estimates

Use Gauss-Newton Hessian to estimate the stability

$$H^{GN}(.,.) = (R\partial_m u)^* R\partial_m u(.,.) = D_m F(.)^* D_m F(.)$$

Stability estimate: $2/\sqrt{\text{smallest sv}(H^{GN})}$

Computational stability estimates

Use Gauss-Newton Hessian to estimate the stability

$$H^{GN}(.,.) = (R\partial_m u)^* R\partial_m u(.,.) = D_m F(.)^* D_m F(.)$$

Stability estimate: $2/\sqrt{\text{smallest sv}(H^{GN})}$

- Computation: 2nd order adjoint state; GN Hessian vector-product [Fichtner and Trampert,2010] [Métivier et al,2013]
- Stability estimates for different partitioning and parametrization

Introduction to FWI 00 Elastic Full Waveform Inversion

Numerical Results

Gauss-Newton Hessian hierarchical compression

full scale (1361x351 domains) Haar compression level 3 (170x43) 4 (85x21) and 5 (42x10)

Introduction to FWI 00 Elastic Full Waveform Inversion

Numerical Results

Gauss-Newton Hessian hierarchical compression

starting P-wavespeed (left) and S-wavespeed (right), Haar level 5 (42×10)

Numerical Results

Gauss-Newton Hessian hierarchical compression

starting P-wavespeed (left) and S-wavespeed (right), Haar level 5 (42x10)

Parametrization

Stability estimates for different parametrization (1/., log(.) and .) 1361x351 domains

Parametrization

Stability estimates for different parametrization (1/., log(.) and .) 1361x351 domains

2Hz	λ		μ			
parametrization	1/.	log(.)		1/.	log(.)	-
	Stability estimates					
Haar level 5 (42×10)	0.3	330	33300	0.06	10	1000

 $\label{eq:smallest} \begin{array}{l} \mbox{Smallest singular value for different partitioning and frequency.} \\ \mbox{1361} \mbox{x351 domains} \end{array}$

 $\label{eq:smallest} \begin{array}{l} \mbox{Smallest singular value for different partitioning and frequency.} \\ 1361 \times 351 \mbox{ domains} \end{array}$

2Hz	$1/\lambda$	$1/\mu$
Haar level 5 (42×10)	0.3	0.06
Haar level 4 (85×21)	330	10

Smallest singular value for different partitioning and frequency. $1361{\times}351$ domains

2Hz	$1/\lambda$	$1/\mu$
Haar level 5 (42x10)	0.3	0.06
Haar level 4 (85x21)	330	10

5Hz	$1/\lambda$	$1/\mu$
Haar level 5 (42×10)	0.04	0.02
Haar level 4 (85x21)	0.2	0.04
Haar level 3 (170x43)	330	10

 $\label{eq:smallest} \begin{array}{l} \mbox{Smallest singular value for different partitioning and frequency.} \\ 1361 \times 351 \mbox{ domains} \end{array}$

5Hz	$1/\lambda$	$1/\mu$
Haar level 5 (42x10)	0.04	0.02
Haar level 4 (85x21)	0.2	0.04
Haar level 3 (170x43)	330	10

8Hz	$1/\lambda$	$1/\mu$
Haar level 5 (42×10)	0.04	0.01
Haar level 4 (85x21)	0.08	0.03
Haar level 3 (170x43)	6	0.09

Numerical Results

Multi-level, multi-frequency elastic inversion

Numerical Results

Multi-level, multi-frequency elastic inversion

Numerical Results

Multi-level, multi-frequency elastic inversion

Numerical Results

Multi-level, multi-frequency elastic inversion

3 Numerical Results

- 2D Marmousi
- 2D Pluto
- O 3D Model

Introduction to FWI 00 Elastic Full Waveform Inversion

Numerical Results

Marmousi models

13.6km \times 3.5km fully elastic

P-wavespeed, S-wavespeed and Density true models

Numerical Results

Marmousi multi-level reconstruction

13.6km \times 3.5km grid size 10m, frequency list from 1 to 10Hz, unknown density

P-wavespeed and S-wavespeed, true and starting models

Numerical Results

Marmousi multi-level reconstruction

13.6km \times 3.5km grid size 10m, frequency list from 1 to 10Hz, unknown density

P-wavespeed and S-wavespeed, true and 1Hz reconstruction (Haar level 5

TOTAL

Florian Faucher - November 2014

Elastic Full Waveform Inversion

Numerical Results

Marmousi multi-level reconstruction

13.6km \times 3.5km grid size 10m, frequency list from 1 to 10Hz, unknown density

P-wavespeed and S-wavespeed, true and 2Hz reconstruction (Haar level 4 <u>-</u> 85x21)

Numerical Results

Marmousi multi-level reconstruction

13.6km \times 3.5km grid size 10m, frequency list from 1 to 10Hz, unknown density

P-wavespeed and S-wavespeed, true and 4Hz reconstruction (Haar level 3

Numerical Results

Marmousi multi-level reconstruction

13.6km \times 3.5km grid size 10m, frequency list from 1 to 10Hz, unknown density

P-wavespeed and S-wavespeed, true and 6Hz reconstruction (Haar level 2

Numerical Results

Marmousi multi-level reconstruction

13.6km \times 3.5km grid size 10m, frequency list from 1 to 10Hz, unknown density

P-wavespeed and S-wavespeed, true and 8Hz reconstruction (Haar level 1

Numerical Results

Marmousi multi-level reconstruction

13.6km \times 3.5km grid size 10m, frequency list from 1 to 10Hz, unknown density

P-wavespeed and S-wavespeed, true and 10Hz reconstruction - 1361x351

Numerical Results

Pluto models

31.16km by 7.08km grid size 20m

True Pluto models for P-wavespeed (upper left) S-wavespeed (upper right) and Density (bottom)

Introduction to FWI

Elastic Full Waveform Inversion

Numerical Results

Pluto multi-level reconstruction

P-wavespeed and S-wavespeed, true and starting models

Numerical Results

Pluto multi-level reconstruction

complex frequency distant from spectrum

Pluto multi-level reconstruction

complex frequency distant from spectrum

$\begin{tabular}{|c|c|c|c|} \hline stability estimates \\ \hline $1/\lambda$ $1/\mu$ \\ \hline 0.1Hz \\ \hline $Haar level 5 (42x10)$ 20 0.2 \\ \hline $(0.1\text{Hz}+i)$ \\ \hline $Haar level 5 (42x10)$ 1 0.1 \\ \hline \end{tabular}$

• improve radius of convergence needed for the starting iterations

• small frequency not available from field data

Numerical Results

Pluto multi-level reconstruction

Complex frequency set, $\{(0.1\text{Hz} + i); (0.5\text{Hz} + i); (1\text{Hz} + i)\}$. Unknown density

P-wavespeed and S-wavespeed, Complex frequency reconstruction - Haar level 5, 49x12 domains

Numerical Results

Pluto multi-level reconstruction

Frequency set $\{4, 5, 6, 7, 8\}$ Hz. Unknown density

P-wavespeed and S-wavespeed, 8Hz reconstruction - 1559x355 domains

Numerical Results

Pluto density multi-level reconstruction

31.16km by 7.08km grid size 20m. We assume the knowledge of the Lamé parameters λ and μ frequency from 4 to 8Hz.

True and starting density models

Numerical Results

Pluto density multi-level reconstruction

31.16km by 7.08km grid size 20m. We assume the knowledge of the Lamé parameters λ and μ frequency from 4 to 8Hz.

True and starting density models (top). 8Hz multi-level reconstruction (bottom)

Numerical Results

Pluto density multi-level reconstruction

31.16km by 7.08km grid size 20m. We assume the knowledge of the Lamé parameters λ and μ frequency from 4 to 8Hz.

scaled residuals comparison between the Lamé iterations (red) and density iterations (blue) PURDUE

Florian Faucher - November 2014

Numerical Results

3D models

1.8km x 1.4km x 1.2km

P-wavespeed, S-wavespeed and Density models: 3D and vertical sections

Introduction to FWI

Elastic Full Waveform Inversion

Numerical Results

3D multi-level reconstruction

$1.8 \text{km} \times 1.4 \text{km} \times 1.2 \text{km}$ frequency from 2 to 14 Hz

P-wavespeed and S-wavespeed true and starting Vertical sections

Introduction to FWI 00 Elastic Full Waveform Inversion

Numerical Results

3D multi-level reconstruction

$1.8 \text{km} \times 1.4 \text{km} \times 1.2 \text{km}$ frequency from 2 to 14 Hz

 $\mathsf{P}\text{-wavespeed}$ and $\mathsf{S}\text{-wavespeed}$ true and 14Hz reconstruction Vertical sections

Conclusion

- Complex frequency domain toolbox
- Hierarchical multi-level approach
- Quantitative estimate of the stability constant
- Isotropic elastic reconstruction (Lamé parameters and density)

Future Work

- Field data
- Stochastic approach for low frequency
- Unstructured mesh adaptation and deformation

Thank you

When we add up to 20% noise in the data

P-wavespeed and S-wavespeed, true and 10Hz reconstruction - 1361x351

First order Adjoint state

$$D_{m} \epsilon \{m\} \, \delta m = \int -\omega^{2} u . u_{r} \delta \rho + (\nabla . u) (\nabla . u_{r}) \delta \lambda + (\nabla u_{r}) : (\nabla u + (\nabla u)^{T}) \delta \mu d X$$

using Hessian vector product [Fichtner and Trampert,2010] [Métivier *et al*,2013] [Shi *et al*, 2014] (higher order). Using vector product H.v in 2 more linear system solves

Full Hessian

a)
$$S(m)^{\dagger} \alpha = -\sum_{j=1}^{M} (\partial_{m_j} S(m) \cdot v_j) u$$

b) $S(m)^{\dagger} \beta = -R^{\dagger} R \alpha - \sum_{j=1}^{M} (\partial_{m_j} S(m) v_j)^{\dagger} u_r$
 $H(m) v = \operatorname{Re} \{ < (\partial_m S)(m)(.) u(m), \beta(m) > +$
 $< (\partial_m S)(m)(.) \alpha(m), u_r(m) > +$
REVEL
Facher - November 2014
Multi-level elastic FWI

using Hessian vector product [Fichtner and Trampert,2010] [Métivier *et al*,2013] [Shi *et al*, 2014] (higher order). Using vector product *H.v* in 2 more linear system solves

Gauss Newton Hessian

a)
$$S(m)^{\dagger} \alpha = -\sum_{j=1}^{M} (\partial_{m_j} S(m) \cdot v_j) u$$

b) $S(m)^{\dagger} \beta = -R^{\dagger} R \alpha$
 $H(m)v = \operatorname{Re} \{ < (\partial_m S)(m)(.)u(m), \beta(m) > \}$

stability estimate general behaviour - Acoustic

$$\frac{1}{4}e^{K_1N^{1/5}} \leq C \leq \frac{1}{\omega^2}e^{(K(1+\omega^2B_2)N^{4/7})}$$

stability estimate general behaviour - Acoustic

stability estimate general behaviour - Acoustic

Marmousi elastic - complex frequency

P-wavespeed and S-wavespeed, true and complex frequency reconstruction (Haar level $5 - 43 \times 11$).

It can be complicated to retrieve low frequency from field data. Complex frequency instead

some references on Full Waveform Inversion (FWI)

Bamberger, Chavent & Lailly (1977, 1979); Chavent (1983) Tarantola & Valette (1982) Pratt, Shin & Hicks (1998); Pratt (1999); Sirgue & Pratt (2004) Operto, Virieux, Dessa & Pascal (2006); Virieux & Operto (2009) Métivier, Brossier, Virieux & Operto (2013)

