Fast inversion of 3D Borehole Resistivity Measurements using Model Reduction Techniques based on 1D Semi-Analytical Solutions.

Aralar Erdozain

Supervised by:

Hélène Barucq, David Pardo and Victor Péron

Introduction	Equivalent Conditions	Numerical Results	Extra Configuration	Perspectives
MOTIVA	ΓΙΟΝ			

- Main goal: To obtain a better characterization of the Earth's subsurface
- How: Recording borehole resistivity measurements

Introduction	Equivalent Conditions	Numerical Results	Extra Configuration	Perspectives
ΜΟΤΙVΑ	TION			

- Practical Difficulties:
 - It is not easy to drill a borehole
 - It may collapse
- Practical Solutions:
 - Use a metallic casing
 - Surround with a cement layer
- Problem solved, but...

- Practical Difficulties:
 - It is not easy to drill a borehole
 - It may collapse
- Practical Solutions:
 - Use a metallic casing
 - Surround with a cement layer

• Problem solved, but... Numerical problems due to the high conductivity and thinness of the casing

REALISTIC SCENARIO

• Scenarios: As we are considering axisymmetric scenarios, we can work with two dimensional scenarios

• Conductivity and casing width:

$$\begin{cases} \delta = 1.27 e - 2 m \\ \sigma_c = 4.34 e6 \ \Omega^{-1} m^{-1} \end{cases}$$

CONFIGURATIONS OF INTEREST

- **Develop:** Asymptotic method for avoiding the conflictive part of the domain (casing)
- Main idea: Equivalent conditions for substituting the casing

Configuration A

- A.A. Kaufman. The electrical field in a borehole with a casing. *Geophysics,* Vol.55, Issue 1, pp. 29-38, 1990.
- D.Pardo, C.Torres-Verdín and Z.Zhang. Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water displacement in hydrocarbon-bearing layers. *Geophysics*, 73 No.6, F261-F268, 2008.
- M. Duruflé, V. Péron and C. Poignard. Thin Layer Models for Electromagnetism. *Communications in Computational Physics* 16(1):213-238, 2014.

- 2 Equivalent Conditions
- **3** Numerical Results
- 4 Extra Configuration

5 Perspectives

OUTLINE

- 2 Equivalent Conditions
- 3 Numerical Results
- 4 Extra Configuration
- 5 Perspectives

MODEL PROBLEM

EQUATIONS FOR THE ELECTRIC POTENTIAL

$$\operatorname{div}\left[\left(\sigma-i\delta\omega\right)\nabla u\right]=-\operatorname{div}j\qquad (\omega=0 \text{ first approach})$$

$\sigma_e \Delta u_e$	= f	in	Ω_e
$\sigma_c \Delta u_c$	= 0	in	Ω_c
u_e	$= u_c$	on	Γ
$\sigma_c \partial_n u_c$	$= \sigma_e \partial_n u_e$	on	Γ
u_c	= 0	on	$\partial \Omega$

Where the solution is expressed as

$$u = \begin{cases} u_e & \text{ in } \Omega_e \\ u_c & \text{ in } \Omega_c \end{cases}$$

and $\sigma_e\text{, }\sigma_c\text{, }f$ are known data

 $\Omega=\Omega_e\cup\Omega_c\cup\Gamma$

Definition: Let u be the reference solution. We say an asymptotic model is of **Order n+1**, if its solution $u^{[n]}$ satisfies

$$||u - u^{[n]}||_{L^2} \le C\delta^{n+1}$$

• **Step1:** Derive an Asymptotic Expansion for u when $\delta \longrightarrow 0$

• In the casing:
• Qutside the casing:

$$u_c(t,s) = \sum_{n \in \mathbb{N}} \delta^n U_c^n\left(t,\frac{s}{\delta}\right)$$

• Qutside the casing:
 $u_c(x,y) = \sum \delta^n u_c^n(x,y)$

• Outside the casing:
$$u_e(x,y) = \sum_{n \in \mathbb{N}} \delta^n u_e^n(x,y)$$

• Step2: Obtain Equivalent Conditions of order k + 1 by identifying a simpler problem satisfied by the truncated expansion

•
$$u_{k,\delta} := u_e^0 + \delta u_e^1 + \delta^2 u_e^2 + \ldots + \delta^k u_e^k$$

(0)

MULTISCALE EXPANSION

• In the Casing:

$$\left\{ \begin{array}{ccc} \sigma_c \partial_t^2 U_c^{n-2} + \sigma_c \partial_s^2 U_c^n &= 0 & s \in (0,1) \\ \sigma_c \partial_s U_c^n &= \sigma_e \partial_n u_e^{n-1} & s = 0 \\ U_c^n &= 0 & s = 1 \end{array} \right.$$

• Outside the Casing:

$$\left\{ \begin{array}{rrr} \sigma_e \Delta u_e^n &= f \delta_0^n \quad \text{in} \quad \Omega_e \\ u_e^n &= U_c^n \quad \text{on} \quad \Gamma_e \end{array} \right.$$

We collect the equations for $n=0,1,2\ {\rm to}\ {\rm derive}\ {\rm the}\ {\rm equivalent}\ {\rm conditions}$

EQUIVALENT MODELS

We identify simpler problems satisfied by truncated expansions outside the casing (up to residual terms)

• Order 1:
$$\longrightarrow \begin{cases} \sigma_e \Delta u = f & \text{in } \Omega_e \\ u = 0 & \text{on } \Gamma \end{cases}$$

• Order 3: $\longrightarrow \begin{cases} \sigma_e \Delta u = f & \text{in } \Omega_e \\ u + \delta \frac{\sigma_e}{\sigma_r} \partial_n u = 0 & \text{on } \Gamma \end{cases}$

Remark: Second model has already order 3 of convergence due to the flat configuration of the layer

- 2 Equivalent Conditions
- **3** Numerical Results
- 4 Extra Configuration

5 Perspectives

NUMERICAL DISCRETIZATION

• FINITE ELEMENT METHOD (Matlab Code)

- Straight triangular elements
- Lagrange shape functions of any degree

Mesh

NUMERICAL SOLUTIONS

Definition: We define the relative error between the reference solution u and the asymptotic solution $u^{[n]}$, as

$$\frac{||u - u^{[n]}||_{L^2}}{||u||_{L^2}}$$

CONVERGENCE RATES

INTERPOLATION DEGREE

Relative error between a solution of degree 10 and solutions of lower degrees

CONCLUSION: Error analysis is not relevant once we reach a relative error of 10^{-2}

- 2 Equivalent Conditions
- 3 Numerical Results
- 4 Extra Configuration

5 Perspectives

MAIN IDEA

REFERENCE MODEL

Solution: u

ASYMPTOTIC MODEL

Solution: $u^{[n]}$

Definition: We define the jump and mean value of the solution u across the casing as

$$\begin{split} [u] &= u|_{\Gamma_c^b} - u|_{\Gamma_{\rm cem}^c} \\ \{u\} &= \frac{1}{2} \left(u|_{\Gamma_c^b} + u|_{\Gamma_{\rm cem}^c} \right) \end{split}$$

MODEL PROBLEM

$$\begin{cases} \sigma_i \Delta u_i = f_i & \text{in } \Omega_i \\ \sigma_c \Delta u_c = 0 & \text{in } \Omega_c \\ u_i = u_j & \text{on } \Gamma_i^j \\ \sigma_i \partial_n u_i = \sigma_j \partial_n u_j & \text{on } \Gamma_i^j \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

$$i,j=b,c,\mathsf{cem},e1,e2$$

Where σ_i and f_i are known data

EQUIVALENT CONDITIONS

Using a similar procedure than for the previous configuration we obtain equivalent conditions

• Order 1:
$$\longrightarrow \begin{cases} [u] &= 0\\ [\sigma \partial_n u] &= 0 \end{cases}$$
• Order 3:
$$\longrightarrow \begin{cases} [u] &= \frac{\epsilon}{\sigma_c} \{\sigma \partial_n u\}\\ [\sigma \partial_n u] &= -\epsilon \sigma_c \partial_x^2 \{u\} \end{cases}$$

Remark: Second model has already order 3 of convergence due to the flat configuration of the layer

Equivalent Conditions

Numerical Results

Extra Configuration

Perspectives

NUMERICAL SOLUTIONS

CONVERGENCE RATES

OUTLINE

Introduction

- 2 Equivalent Conditions
- 3 Numerical Results
- 4 Extra Configuration

REALISTIC SCENARIO

ſ	-14 cm 5 cm	
$1 \ \Omega m$	Щ C 5 Ωm	5 m
	20 Ωm	2 m
	5 Ωm	5 m
	- 1.27cm, 2.3e–7 Ωm	

• Conductivity and casing width:

$$\left\{ \begin{array}{ll} \delta &= 1.27 \mathrm{e} - 2 \ \mathrm{m} \\ \sigma_c &= 4.34 \mathrm{e} 6 \ \Omega^{-1} \mathrm{m}^{-1} \end{array} \right.$$

$$\Rightarrow \sigma_c \approx \delta^{-3}$$

• First approach:

$$\sigma_c = \alpha \qquad \alpha \in \mathbb{R}$$

• Case to be studied:

$$\sigma_c = \alpha \delta^{-3} \qquad \alpha \in \mathbb{R}$$

Numerical Results

Extra Configuration

Perspectives

SECOND DIFFERENCE OF POTENTIAL

• Equation:

$$\operatorname{div}\left[\left(\sigma-i\delta\omega\right)\nabla u\right]=f$$

• Right hand side:

 $f = \begin{cases} 1 & \text{In the transmitter} \\ 0 & \text{Outside the transmitter} \end{cases}$

• **Objective:** Measure the second difference of potential on the Receivers

$$U_2 = u(y_1) - 2u(y_2) + u(y_3)$$

• Expected Result: The second difference of potential proportional to the rock resistivity $U_2 = \alpha \cdot \rho_{\text{rock}} \quad \alpha \in \mathbb{R}$

Introduction	Equivalent Conditions	Numerical Results	Extra Configuration	Perspectives
Perspect	tives			

• Short Term:

- Asymptotic models with $\sigma_c = \alpha \delta^{-3}$ $\alpha \in \mathbb{R}$
- Measure the second difference of potential on the receivers

• Long Term:

- Consider physically more realistic scenarios
- Develop 3D electromagnetic models
- Study highly deviated boreholes

THANK YOU FOR

YOUR ATTENTION