Links' Seminars and Public Events |
2021 | |
---|---|
Fri 9th Jul all day | Seminar - Antonio AL SERHALI Title: Integrating Schema-Based Cleaning into Automata Determinization Abstract : Schema-based cleaning for automata on trees or nested words was proposed recently to compute smaller deterministic automata for regular path queries on data trees. The idea is to remove all rules and states, from an automaton for the query, that are not needed to recognize any tree recognized by a given schema automaton. Unfortunately, how- ever, deterministic automata for nested words may still grow large for au- tomata for XPath queries, so that the much smaller schema-cleaned ver- sion cannot always be computed in practice. We therefore propose a new schema-based determinization algorithm that integrates schema-based cleaning directly. We prove that schema-based determinization always produces the same deterministic automaton as schema-based cleaning after standard determinization. Nevertheless, the worst-case complex- ity is considerably lower for schema-based determinization. Experiments confirm the relevance of this result in practice. |
Fri 4th Jun 10:00 am 12:30 pm | Séminaire Pierre Ohlmann Zoom link: univ-lille-fr.zoom.us/j/95419000064 Titre: Lower bound for arithmetic circuits via the Hankel matrix Abstract: We study the complexity of representing polynomials by arithmetic circuits in both the commutative and the non-commutative settings. To analyse circuits we count their number of parse trees, which describe the non-associative computations realised by the circuit. In the non-commutative setting a circuit computing a polynomial of degree d has at most 2^{O(d)} parse trees. Previous superpolynomial lower bounds were known for circuits with up to 2^{d^{1/3-ε}} parse trees, for any ε>0. Our main result is to reduce the gap by showing a superpolynomial lower bound for circuits with just a small defect in the exponent for the total number of parse trees, that is 2^{d^{1-ε}}, for any ε>0. In the commutative setting a circuit computing a polynomial of degree d has at most 2^{O(d \\log d)} parse trees. We show a superpolynomial lower bound for circuits with up to 2^{d^{1/3-ε}} parse trees, for any ε>0. When d is polylogarithmic in n, we push this further to up to 2^{d^{1-ε}} parse trees. While these two main results hold in the associative setting, our approach goes through a precise understanding of the more restricted setting where multiplication is not associative, meaning that we distinguish the polynomials (xy)z and yz). Our first and main conceptual result is a characterization result: we show that the size of the smallest circuit computing a given non-associative polynomial is exactly the rank of a matrix constructed from the polynomial and called the Hankel matrix. This result applies to the class of all circuits in both commutative and non-commutative settings, and can be seen as an extension of the seminal result of Nisan giving a similar characterization for non-commutative algebraic branching programs. Our key technical contribution is to provide generic lower bound theorems based on analyzing and decomposing the Hankel matrix, from which we derive the results mentioned above. The study of the Hankel matrix also provides a unifying approach for proving lower bounds for polynomials in the (classical) associative setting. We demonstrate this by giving alternative proofs of recent lower bounds as corollaries of our generic lower bound results. |
Fri 28th May 10:00 am 11:00 am | Seminar Anastasia Dimou Title: Knowledge graph generation and validation |
Fri 21st May 10:00 am 12:00 pm | Seminar Dimitrios Myrisiotis Title : One-Tape Turing Machine and Branching Program Lower Bounds for MCSP Abstract: eccc.weizmann.ac.il/report/2020/103/ Speaker' webpage : dimyrisiotis.github.io/ zoom |
Fri 7th May 10:00 am 12:00 pm | Seminar Nicole Schweikardt Title: Spanner Evaluation over SLP-Compressed Documents Abstract: We consider the problem of evaluating regular spanners over compressed documents, i.e., we wish to solve evaluation tasks directly on the compressed data, without decompression. As compressed forms of the documents we use straight-line programs (SLPs) -- a lossless compression scheme for textual data widely used in different areas of theoretical computer science and particularly well-suited for algorithmics on compressed data. In terms of data complexity, our results are as follows. For a regular spanner M and an SLP S that represents a document D, we can solve the tasks of model checking and of checking non-emptiness in time O(size(S)). Computing the set M(D) of all span-tuples extracted from D can be done in time O(size(S) size(M(D))), and enumeration of M(D) can be done with linear preprocessing O(size(S)) and a delay of O(depth(S)), where depth(S) is the depth of S's derivation tree. Note that size(S) can be exponentially smaller than the document's size |D|; and, due to known balancing results for SLPs, we can always assume that depth(S) = O(log(|D|)) independent of D's compressibility. Hence, our enumeration algorithm has a delay logarithmic in the size of the non- compressed data and a preprocessing time that is at best (i.e., in the case of highly compressible documents) also logarithmic, but at worst still linear. Therefore, in a big-data perspective, our enumeration algorithm for SLP-compressed documents may nevertheless beat the known linear preprocessing and constant delay algorithms for non-compressed documents. [This is joint work with Markus Schmid, to be presented at PODS'21.] Link to the paper: arxiv.org/pdf/2101.10890.pdf for the paper at least Link to the ACM video: TBA |
Fri 30th Apr 10:00 am 12:00 pm | Présentation de NetworkDisk Je présenterais mon projet avec Bruno: NetworkDisk. Abstract and Title: TBA link to the project: TBA |
Fri 9th Apr 10:00 am 12:00 pm | Seminaire Pascal Weil titre: Problèmes algorithmiques en théorie des groupes infinis resumé: Malgré le titre très général, il s'agira uniquement de problèmes concernant les sous-groupes de groupes infinis, et même juste les sous-groupes de groupes libres. Les résultats et méthodes que je présenterai sont issus de près de 40 ans de littérature et sont dûs à un grand nombre d'auteurs. Je commencerai par poser le paysage, y compris pour ceux qui ne savent plus ce qu'est le groupe libre -- où l'on verra qu'on est, du point de vue algorithmique, dans une variante de la combinatoire des mots. Je présenterai ensuite l'outil central de la plupart des algorithmes efficaces sur les sous-groupes du groupe libre : la représentation de chaque sous-groupe finiment engendré par un graphe étiqueté et enraciné (disons : d'un automate :-)…) unique et facilement calculable à partir d'un ensemble de générateurs du sous-groupe considéré, qu'on appelle le graphe de Stallings. Le jeu consiste ensuite à traduire les problèmes algorithmiques sur les sous-groupes en problèmes algorithmiques sur les graphes de Stallings, et à résoudre ces problèmes de la façon la plus efficace possible. On considèrera notamment les problèmes suivants -- bon, juste le début de cette longue liste. - Le problème du mot généralisé : étant donnés k+1 éléments du groupe libre (ce sont des mots), le dernier appartient-il au sous-groupe engendré par les k premiers ? - Le problème de l'indice : étant donné un tuple d'éléments du groupe libre, le sous-groupe qu'ils engendrent est-il d'indice fini ? - Le problème de la base : étant donné un tuple d'éléments du groupe libre, trouver le rang, et une base du sous-groupe qu'ils engendrent. - Le problème de l'intersection : étant donnés deux tuples d'éléments du groupe libre, calculer l'intersection des sous-groupes qu'ils engendrent (ou calculer une base de cette intersection). - Le problème de la conjugaison : étant donnés deux tuples d'éléments du groupe libre, engendrent-ils le même sous-groupe ? deux sous-groupes conjugués ? - Et de nombreux autres problèmes (mots clés : minimalité de Whitehead, facteur libre, malnormalité, clôture par radical, clôture au sens de la topologie pro-p, etc…) title: Algorithmic problems in the theory of infinite groups abstract: In spite of the very general title, we will talk only about problems on subgroups of infinite groups, and in fact, only on subgroups of free groups . The results and methods I will present have been obtained over the past 40 years and are due to many researchers. I will start by setting the landscape, including for those who forgot what the free group is --- and we will see that we are dealing here, from the algorithmic point of view, with a variant of combinatorics on words. I will then present the tool that is central to most efficient algorithms on subgroups of free groups: the representation of each finitely generated subgroup by a labeled rooted graph (shall we say… an automaton?) which is unique and easily computable when a tuple of generators of the subgroup under consideration is given. This graph is called the Stallings graph. The game consists, then, in translating algorithmic problems on subgroups into algorithmic problems on Stallings graphs, and in solving these problems as efficiently as possible. We will discuss in particular the following problems (clearly: just the beginning of this long list). - The generalized word problem: given k+1 elements of the free group (these are words), does the last one belong to the subgroup generated by the k first ones? - The index problem: given a tuple of elements of the free group, does the subgroup they generate have finite index? - The basis problem: given a tuple of elements of the free group, find the rank and a basis of the subgroup they generate. - The intersection problem: given two tuples of elements of the free group, compute the intersection of the subgroups they generate (compute a basis of this intersection). - The conjugacy problem: given two tuples of elements of the free group, are the subgroups they generate equal? conjugated? - And many other problems (keywords: Whitehead minimality, free factors, malnormality, closure under radicals, closure in the sense of the pro-p topology, etc…) |