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1. The CFL limitation

1.1 Problem position
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For accuracy : keep n close to 1
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1. The CFL limitation

1.1 Problem position

Achieving n > 1 or n >> 1 is desirable in 
at least 2 situations

• Preserving the slower waves is more 
important than preserving the fast
ones (passive transport)
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x
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• A few narrow cells induce a locally
much larger n than elsewhere
(classical in industrial meshes)
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1. The CFL limitation

1.2 Most common approaches

Allow the waves to cross more than 1 cell within Dt : wave tracking [1] , 
time line interpolation [2]

• Easy for 1D linear laws

• Tricky to implement in 2D

• Wave interactions when the laws
are non-linear

t

x

Dt

[1] LeVeque (1982, 1988), Harten (1986), Murillo & al. 
(2006), Morales & Murillo (2012)

[2] Collins & al (1986), Guinot (2000)
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2. Our LTS solution (1D)

2.1 The « naive » approach

Only an averaged flux is needed
t

x

Dt
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Approximation #1 : linearise wrt u
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Approximation #2 : convert time average to 
space average (characteristic form)
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2. Our LTS solution (1D)

2.1 The « naive » approach

t

x

Dt

i+1/2

BUT : computing d is not always
straightforward (nonlinear laws)

d

u+9,- = u+9 +
∆#
∆*+

=+7-//
9,-// − =+,-//

9,-//

Approximation #3 (our contribution 1):
Do not use the exact d but a pre-defined D
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2. Our LTS solution (1D)

2.1 The « naive » approach

What happens if ! ≠ # ?

t

x

Dt

i+1/2

d

D

Linear advection of a hat function

D = 60, d = 60 D = 60, d = 55 D = 60, d = 32
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2. Our LTS solution (1D)

2.2 Convolution in 1D

The method performs poorly when ! ≠ #
even for a small (relative) difference
between the two

Cure

Approximation #4 (our contribution 2):
give less weight to those cells that are 
farther away from the interface (weighted
averaging/convolution)
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2. Our LTS solution (1D)

2.2 Convolution in 1D

Results for a power law convolution kernel
(D = 60)
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2. Our LTS solution (1D)

2.3 Shallow water equations & bottom source term

EVR approach : reconstructing z alone is sufficient
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2. Our LTS solution (1D)

2.3 Shallow water equations & bottom source term

We proved that static conditions are preserved
provided that

!"#′ + !&' = ) #′ = *+
ℎ-

x

z

h

zs

zb

u• Averaging is done for the free surface elevation
zs instead of the depth h

• The bottom elevation zb is taken from the local 
values over the cells immediately next to the 
interface
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2. Our LTS solution (1D)

2.4 Stability

For the linear advection equation

Von Neumann analysis:

Need to prove that this amplification factor remains « in the unity disk »
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2. Our LTS solution (1D)

2.4 Stability

!"# = 0.5

( ≠ *+,

( = *+, ( = *+, ( = *+,

!"# = 0.9 !"# = 1.0

( ≠ *+, ( ≠ *+,

The same result should hold for /0(2)…
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3. Computational examples

Application to the shallow water equations

• Dambreak problem, flat bottom
(∃ analytical solution)

hL = 10 m

hR = 5 m

x

h

2 cells with Dx / 100

CPU = 0.44 s CPU = 43 s CPU = 0.28 s
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3. Computational examples

Application to the shallow water equations

• Dambreak problem, sinusoidal
bottom (∄ analytical solution)

zL = 10 m

zR = 5 m

x

h

2 cells with Dx / 100

+1 m

-1  m

CPU = 0.66 s CPU = 56 s CPU = 0.55 s
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3. Computational examples

Application to the shallow water equations

• Dambreak problem, discontinuous
bottom (∄ analytical solution)

zL = 10 m

zR = 5 m

x

h

2 cells with Dx / 10

+3 m

0 m

CPU = 1.22 s CPU = 10.2 s CPU = 1.12 s
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3. Computational examples

Application to the shallow water equations

• Dambreak problem, discontinuous
bottom (∄ analytical solution)

zL = 10 m

zR = 5 m

x

h

2 cells with Dx / 100

+3 m

0 m

CPU = 1.22 s CPU = 113 s CPU = 1.11 s
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4. Conclusion – perspectives 

So far

• No theoretical CFL restriction for homogeneous PDEs

• Smooth geometrical source terms (continuous topography) : no noticeable
balancing issues/instability identified

• Stiff geometrical source terms (discontinuous topography): conservation 
issues as CFL increases (balancing errors are amplified), no instability
identified

• Large l contrasts may require iterative estimate of D

Pending questions / ongoing developments

• Treatment of boundaries

• How to handle dry/disconnected regions?

• Going 2D

x

z D


