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okamak: an out-equilibrium thermodynamic device

For fusion operation: two critical
issues — quality of plasma
confinement + heat exhaust
both involve turbulent transport
ITER will require predictive
numerical simulations

Call for a modelling effort
TOKAM3X +
SOLEDGE2D-EIRENE is part of
this effort started 10 years ago

between CEA and Aix-Marseille |
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Figure: From 2D transport to 3D turbulence simulations in a
JET-like geometry. SOLEDG2D-EIRENE neutral radiations

(left) and TOKAM3X density fluctuations (right)
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THE EDGE / SOL PLASMA

In tokamak, the plasma is confined within the Last Closed Flux Surface. A
scrape-off layer (SOL) is generated at the boundary where ionized
impurities flow along field lines into the divertor.

THE OUTER TOKAMAK REGION

@ External core plasma + Scrape
off layer (SOL)

Closed magnetic
surfaces

@ Up to the plasma facing
components (PFC)

Open
magnetic
surfaces

~
&

Strike points

Divertor plates
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THE GEOMETRY

A
@ Various complexity mimicking most of
the actual tokamaks

o A fixed cyl. (R, Z,¢) + a curvilinear
system of coordinates (1), 9, ©)

@ A magnetic field B = Bb
B = FVio+ V¥ x Vo
F: toroidal flux number W(R, Z): poloidal
flux function (prescribed)
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3D DRIFT-REDUCED TWO-FLUID EQUATIONS

5 MAIN ASSUMPTIONS

© pL > \p = electroneutrality (n. ~ Zn;) + no sheath (appears
thanks to Bohm bc)

@ Negligeable electron inertia, m./m; ~ 0(1073) = m, << m;,

© Drift ordering: ¢, = w/ws < 1 = a strong scale separation
pr(=~ 1mm) << l(~ 0.1 — 10cm)
Useful to split the dynamics into the || and L direction to B:
—je _ iep | =ie
e =uy b+ uy
1 components are expicitly known in terms of drifts:
i\ =i + UL g + U, and U5 = Ug + Uy
@ nT/(B?/2up) < 1 = electrostatic plasma
@ Isothermal T;, =T, = Ty
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3D DRIFT-REDUCED TWO-FLUID EQUATIONS

Continuity
@N+6(Nﬁy=&+ﬁmawim (1)

lon parallel momentum conservation

&r+ﬁ-@ﬁ)=—vwx+ﬁmoﬁﬁn 2)

Electron momentum conservation through generalized Ohm law

mNjy = —NV)¢+ VN (3)

Charge conservation

Vj=0
with Dy effective diffusions, Sy a source term driving the particle flux, P the
pressure P = P. + P; = N(T; + T.) = 2N.

.




3D DRIFT-REDUCED TWO-FLUID EQUATIONS

with also
=jib+Jjvs +ip (5)
= j = jjb+ Ne(il 5 — i&p) + Nei, (6)

The charge balance equation (4) (+ Boussinesq approx) leads to:

Vorticity equation

W +V - (Wi)=V- (N(U’VB — Tp) +j,|B) + V- (DwVLW) (7)

with W = V- (& (V.6 + V. P))
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BOUNDARY CONDITIONS

: sheath transmission

@ Bohm : |y /cs| 2 1+= || >N

o Jj = £Ncs (1 — exp(A — ¢)) = £N(A — ¢)
N the sheath floating potential

+ Ohm law — parallel derivative of the potential
VN
V)@ = £ N(A = ) + —y~

v

Oaj_(.):() \
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THE NUMERICS: MULTIDOMAIN DECOMPOSITION

@ Mapped any domain into a set of rectangular subdomains
— To keep a structured flux-surfaces aligned mesh whatever the
geometry
— Efficient for parallelization

@ Ghosts cells store the information on the neighbourhood within a
matrix that defines how these domains are connected to each other.

s 2 ‘\.\\H l—[_}-
\\ r——- 5 =

r::> kS 6

Example of domain decomposition in 6 subdomains of a diverted geometry
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THE NUMERICS: THE GRID

@ A structured magnetic
flux-surface aligned grid

@ In each subdomain:
grid points indexed by
(iw, ié, I'<p), for I'w = 1, .../Vw,
p=1,..Ny, i, =1,..N,
and defined by their special
coordinates (R, Z, ¢).

o Differential operators
evaluated using metric
coefficients

Examples of meshes in limited circular (top) and diverted (botto)
poloidal cross-sections.
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THE NUMERICS: THE DISCRETIZATION

@ A second-order conservative finite-differences scheme associated to a
3rd-order WENO reconstruction for the advection terms

@ A first-order Implicit - explicit splitting scheme for time discretization
(a Runge-Kutta of arbitrary order is now implemented)

@ Hybrid MPI + OpenMP parallelization data exchange typical cases =
100-200 processes ~ 60% efficiency
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THE NUMERICS: THE DISCRETIZATION

Advection and source terms

&N = ..—V-(Tb)—V-(Nig)— V- (Ni&g) + Sy

o = ..—V. (F—I;E) ~ V- (Thg) - V- (Tikg) — 2V N + Sr

oW = .~ (L B) V- (Wi) =V (Wiks) (8)
+ V- (N — tbp))

@ || and L advection
@ Mainly non-linear

@ Dynamics over ionic time scale
— explicit advancement
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THE NUMERICS: THE DISCRETIZATION

Parallel current terms

W =..+V-(jb)
. /1 S
w :V'(@(VL(ZS'FVLN)) (9)
. 1 VHN
= (=~ -V
i = (G = Vi)

@ Evolution of the plasma electric potential ¢

@ Associated to fast dynamics
— implicit advancement

@ Inversion of a badly conditionned 3D operator
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THE NUMERICS: THE DISCRETIZATION

Perpendicular diffusion terms

dN =..+Vi-(DyVLN)
o =.. —'—ﬁj_ ° (Drﬁj_r)
oW =..+Vi (DwV. W)

@ Evolution of the plasma electric potential ¢

@ Associated to fast dynamics
— implicit advancement

@ Inversion of a badly conditionned 3D operator

These terms are advanced implicitly in order to allow large diffusion
coefficient, running the code in transport mode (i.e. no turbulent small
scales).
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THE NUMERICS: THE DISCRETIZATION

1. Explicit advancement of advection and source terms

N* Nn—l ]:N(Nn—17 rn—l’ Wn—l) SN
| =|rt | +6t| F(N=tr=twr) | +6t| S
wW* Wn—l fw(Nn_l, rn—1’ Wn—l) SW

where F r w are decomposed as follow:

']:N(Nn—l,rn—l, Wn—l)' _]:IUI(Nn—l’rn—l)
Fr(N=t =t wem = E (et ety |
_]:'W(anl’ rnfl, anl)_ 0
0 T "/—_R’_(anh rn717 anl)
0 + ]:'FL(Nn—l7 rn—l, Wn—l)
_]:lUV(Nn_:l’ rn—l’ W"_l)_ _]:V‘l/(Nn—17 |-n—17 Wn—l)

]:I|\|I,F,W and ]:ﬁ,r,w5 explicit fluxes (WENO).

‘7:I|V,F,W: compressible dyn. require the (N, ) coupling (Riemann solver).
]:ﬁ,r,wi passive scalars advection by prescribed drift.
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THE NUMERICS: THE DISCRETIZATION

2. Implicit advancement of parallel current terms Main numerical

issue associated to an extremely fast dynamics. Time evolution of ® such
that:

(et + ot Lyp™ = w* — N+ ot Llinn* (10)

where L1 are spatial differential operators: £+ = V- (%ﬁL) and
cl=v. (WLHBVH.)

@ 3 coupled directions — inversion of a 3D operator.

@ Small values of 7 — very badly conditionned operator hindering up
to now the use of an efficient iterative scheme.

@ LU decomposition thanks to the PASTIX library.
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THE NUMERICS: THE DISCRETIZATION

3. Implicit advancement of perpendicular diffusion terms

(1 -0t Dy) N" N*
(1-6tDH) | =|T* (11)
(1-0t Dy) wn w*

where Dﬁr,w = ﬁL . (DﬁLWﬁL).

Dﬁ r w constant and do not depend on ¢
— N, 2D matrices (one for each toroidal positions) which are stored
during preprocessing.
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CODE VERIFICATION

Steady manufactured solution

e Circular cross section (¢ = r,
0 = rf) + closed field lines (no
limiter)

\\\\\\\ 1 l///////

///// N

\\\\\\\\ F ////

@ Smooth and easily handable
solutions for calculations:

//////UJ\\\\\\

Rdld ctiol

Nana = (1 + Beos(2mt))(No + sin(2Z-)sin(0)cos())
[ana = (14 Beos(2nt))sin( 225 )sin(0) cos ()
®4na = (14 Beos(2nt))sin( 22 )sin(0) cos (i)
(60,p) €[0,27] and r € [a, rmax]- B =1 or 0, depending on the analytical

solution is time-dependent or not
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CONVERGENCE RESULTS

L, discrete norm for N, I and W and for 5 grids
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CODE VALIDATION: 3D BLOB TRANSPORT

Simulations in slab geometry

@ Space and time evolution of a localized
surdensity over a plasma equilibrium
@ Overall agreement with TORPEX

measurements (Theiler et al. PRL 09): the
blob starts faster but slows down later

Poloidal section
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CODE VALIDATION: MIS

@ Moving the plasma contact point on Tore-Supra (Dif-Pradalier et al.
JNM11): new evidence of asymmetry around the outboard mid-plane

@ Demanding test bench: mimic by changing the limiter location

@ Same trends than in experiments (details in Colin et al. 2014):
iso-lines M| = 0 not symmetric / the limiter position
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SIMULATIONS: SET-UP

INTERCHANGE TURBULENCE IN A DIVERTED PLASMA

@ Mechanism: B curvature: vzooVB - VI (Rayleigh-Benard)
o Exists on the LFS, 6,(%) >0

NUMERICAL SET-UP

@ JET like poloidal cross section
o Computational domain: a = 256p; (lower than in JET)
o Parameters: Dy rw = 1072p3we, ) =107

@ Typical grids: 32 x 512 x 128 (core), 32 x 544 x 128 (SOL and
divertor) and 16 x 16 x 128 (private flux region) in (r, 8, ).

@ Dimensionless time-step dt = 1.

o Computations run on the Aix-Marseille University computing center
using 144 cores (120h CPU).
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SIMULATIONS: RESULTS

@ Far from the X-point, similar behaviour than in limiter geometry
(Tamain et al. CPP14)
— Large poloidal asymmetries that correspond to a ballooned
turbulence around the Low Field Side mid-plane.
— Changes across the separatrix: from quasi null skewness (r < a) to
positive one (r > a)
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Density fluctuations (left) and standard deviation normalized by the mean density (middle) in the poloidal plane showing
interchange turbulence in a diverted plasma.(right) PDF at LFS midplane across the separatrix.
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SIMULATIONS: RESULTS

@ This is also supported by the time evolution of the density recorded at
seven poloidal locations

T T T T T T
L LFS midpiane ||
12 —Top
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time [1iw ] x104

Time evolution of the density N recorded at seven different positions in the poloidal plane.
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SIMULATIONS: RESULTS

@ However, on contrary to limited simulations the X-point leads to a
steep topological discontinuity

@ Specific physics at play to investigate.

@ Divertor acts as a big plasma sink: large poloidal gradients
— complex E x B velocity and parallel flow pattern in its vicinity.

Density poloidal profile near the separatrix
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Time evolution of the density N recorded at seven different positions in the poloidal plane.
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CONCLUDING REMARKS

TOKAM3X WORKPLAN

@ Improvement of the vorticity operator inversion
— Find an efficient preconditionners?
— AP scheme?
— Evaluation of an explicit solver

o Use field aligned interpolation (talk M. Mehrenberger)
@ Implementation of an immersed boundary technique
o TOKAM3X-EIRENE coupling
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