

Data fusion and multitarget tracking: some interests for military and automotive applications.

Evangeline POLLARD

Just a few words about me...

Outlook

I. Military application: convoy detection and tracking

- I. Multi-target tracking, a brief overview
- 2. Hybridization of CPHD filter and MHT
- 3. Bayesian network for convoy detection
- 2. Multi-target detection and tracking with uncalibrated aerial videos
 - I. Detection
 - 2. Tracking
- 3. Automotive applications
 - I. Multi-lane detection and tracking

Outlook

- I. Military application: convoy detection and tracking
 - I. Multi-target tracking, a brief overview
 - 2. Hybridization of CPHD filter and MHT
 - 3. Bayesian network for convoy detection
- 2. Multi-target detection and tracking with uncalibrated aerial videos
 - I. Detection
 - 2. Tracking
- 3. Automotive applications
 - I. Multi-lane detection and tracking

Battlefield surveillance

General problem

Goal

- Situation assessment
 - How many targets on the scene ?
 - What is their behavior ?
 - Are they objects of interest ?

Methods

- 1st step: Using GMTI sensor to detect agregates
 Algorithm weaknesses for closely spaced target tracking
 Use a promising algorithm: the PHD filter (Probability Hypothesis Density)
- 2nd step: Integrate other data types to determine if the detected aggregates are convoys or not.
 and if so, how many targets are in

GMTI data

- GMTI (Ground Moving Target Indicator) data:
 - High traffic density
 - High maneuverability of ground targets
 - Environment complexity (roads, mountains, ...)
 - Sensor limitations: measurement noise, spatial and temporal bias,...
 - False alarms , P_D <1 and spawned targets

$\frac{\text{Observations:}}{Z_k = \{z_{k,1}, \dots, z_{k,m_k}\}}$	
$\frac{\text{MTI report:}}{z_{k,i}} = [\tilde{x}, \tilde{y}]^T$	

Optimal Bayesian Filter: Kalman filter

Propagation of the probability density function (pdf) of x_k

Prediction

$$\begin{array}{c} a \ priori \ pdf \\ f_{k|k-1}(x_k | Z^{k-1}) = \int f_{k|k-1}(x_k | x_{k-1}) f_{k-1|k-1}(x_{k-1} | Z^{k-1}) dx_{k-1} \\ ikelihood \\ a \ priori \ pdf \\ \hline \\ Update \\ f_{k|k}(x_k | Z^k) = \frac{f_{k|k}(z_k | x_k) f_{k|k-1}(x_k | Z^{k-1})}{f_{k|k}(z_k | Z^{k-1})} \\ a \ posteriori \ pdf \\ \hline \\ Estimator \\ \hat{x}_{k|k} = \arg \sup_{x} f_{k|k}(x | Z^k) \end{array}$$

Mahler01]: Detecting, tracking and classifying group targets: a unified approach, Proc. of SPIE Vol. 4380

Multi-target tracking

State space

• Varying number of targets:

- Birth targets
- Stationary targets

 Output of the observation zone

False alarm

Non-detection

<u>Goal: calculate ar</u>	<u>estimation</u>	S
State:	$\hat{X}_{k k} = \left\{ \hat{x}_{k k,1}, \dots, \hat{x}_{k k,N_{k k}} \right\}$	J
Covariance:	$\widehat{P}_{k k} = \left\{ \widehat{P}_{k k,1}, \dots, \widehat{P}_{k k,N_{k k}} \right\}$	ar
Number of targets:	$\widehat{N}_{k k}$	
Labeling:	$\tau_{k,j} = \{ \hat{x}_{k k,i}, \hat{P}_{k k,i}, s_{k,i}, \tau_{k-1,j} \}$	

solved by MHT, JPDAF, particle filter... and CPHD filter

Random Finite Set (RFS)

• Target set X_k modeled as a RFS

$$X_{k} = \left[\bigcup_{\zeta \in X_{k-1}} S_{k|k-1}(\zeta)\right] \cup \left[\bigcup_{\zeta \in X_{k-1}} B_{k|k-1}(\zeta)\right] \cup \sigma_{k}$$

- $s_{k|k-1}(\zeta)$: Survival targets between iteration k and iteration k-1
- $B_{k|k-1}(\zeta)$: Spawned targets
- σ_k : Birth targets
- Measurement set Z_k modeled as a RFS

$$Z_{k} = \left[\bigcup_{x \in X_{k}} \theta_{k}(x)\right] \cup \kappa_{k}$$

- θ_{k} : Target originated measurement
- κ_k : false alarms

Multi-sensor/Multi-target Bayes filter

Propagation of the joint probability density function (jpdf) of RFS X_k

Prediction

$$f_{k|k-1}(X_{k}|Z^{k-1}) = \int f_{k|k-1}(X_{k}|X_{k-1}) f_{k-1|k-1}(X_{k-1}|Z^{k-1}) dX_{k-1}$$
measurement likelihood
Update

$$f_{k|k}(X_{k}|Z^{k}) = \frac{f_{k|k}(Z_{k}|X_{k}) f_{k|k-1}(X_{k}|Z^{k-1})}{f_{k|k}(Z_{k}|Z^{k-1})}$$
a posteriori jpdf
Estimator

$$\hat{X}_{k|k} = \arg \sup_{x} f_{k|k}(X|Z^{k})$$

[Mahler03] : Multitarget Bayes Filtering via First-Order Multitarget Moments, IEEE AES, Vol. 39, No 4

PHD definition

 v_k : first-order statistical moment of the multitarget posterior, also called intensity function or Probability Hypothesis Density

$$\mathbf{E}\left[\left|X \cup S\right|\right] = \int_{S} v_{k}(x) dx$$

PHD filter principle

Prediction

$$v_{k|k-1}(\mathbf{x}) = \left(\int P_{s}(\zeta) \cdot f_{k|k-1}(x|\zeta) v_{k-1}(\zeta) d\zeta\right) + \gamma_{k}(\mathbf{x})$$

- P_s : survival probability between iteration k and iteration k-1• $f_{k|k-1}(|\zeta|)$: transition function knowing the previous state ζ
- γ_k : birth intensity
- Estimation

$$v_{k}(x) = (1 - P_{d})v_{k|k-1}(x) + \sum_{z \in Z_{k}} \frac{P_{d} \cdot g(z|x) \cdot v_{k|k-1}(x)}{\kappa_{k}(z) + \int P_{d} g(z|\zeta) \cdot v_{k|k-1}(\zeta) d\zeta}$$

- P_d : detection probability
- g(z|x) : measurement likelihood
 - κ_{k} : clutter intensity

Several implementation

- Representation of the intensity function v_k
 - Particle PHD
 - Gaussian Mixture PHD (GM-PHD)
 - Gaussian Mixture Cardinalized PHD (GM-CPHD)

[No06] : Analytical implementation of the Gaussian Mixture Probability Hypothesis Density Filter, IEEE SP, 2006

¹⁶[Mahler07] : PHD filters of higher order in target number, IEEE AES, 2007

Labeling

Labeled GM-CPHD (1/2)

Principle

• **G**_k: Gaussian set of size $N_k^{\mathbf{G}}$ weight state covariance **G**_k = $\{w_{k,i}, m_{k,i}, P_{k,i}^{\mathbf{G}}\}_{i \in \{1,...,N_k^{\mathbf{G}}\}}$

• \mathbf{T}_{k} : track set of size $\hat{N}_{k|k}$ describing the target trajectory $\mathbf{T}_{k} = \left\{ \hat{x}_{k,i}, P_{k,i}, s_{k,i}, \mathbf{T}_{k-1,j} \right\}_{i \in \left\{ 1, \dots, \hat{N}_{k|k} \right\}}$ state covariance score

Goal

Evaluate the track-to-Gaussian association matrix \mathbf{A}_{k} of size $(\hat{N}_{k|k} \times N_{k}^{\mathbf{G}})$ $\mathbf{A}_{k}(m,n) = \begin{cases} 1 & \text{If the Gaussian component } n \text{ is associated to the track } m \\ 0 & \text{otherwise} \end{cases}$

Labeled GMCPHD (2/2)

Comparison between the IMM-MHT and the GMCPHD filter

	IMM-MHT	GMCPHD	Hybridization
Target position estimation	++	+	++
Target velocity estimation	++	-	++
Number of targets estimation	-	++	++
Computational complexity	+	++	+

CAMANH Tiplatare and the Madelwo Multiple Internationalized Probability Hypothesis Density

Hybridization

[Pollard11] : E. Pollard, B. Pannetier, M. Rombaut, "Hybrid algorithms for Multitarget tracking using the MHT and the GMCPHD", IEEE Aerospace and Electronic Systems

Scenario

Root Mean Square Error in position

Root Mean Square Error in velocity

Track length ratio

A convoy detection process

 Elaboration of a new algorithm combining the advantages of the GMCPHD and the IMM-MHT with road constraints

+ No performance drop when targets are close together

Aggregate detection

Convoy: definition and analysis

- Convoy definition
 - Number of targets > 2
 - Low and constant velocity
 - Military type
 - Stay on sight
 - On the road

 X_3

System analyze

- Asynchronous data
- Heterogeneous data
- Random variables
- Missing data
- Temporal evolution

 $\sum_{i=1}^{3} P(X_{1}, X_{2}, X_{3}) = \prod_{i=1}^{3} P(X_{i} | Pa(X_{i}))$

Dynamic Bayesian Network

27

Convoy modeling by using Dynamic Bayesian Network

Seattle

Number of target estimation $N^{k} = \{N(1), \dots, N(k)\}$ $N^{\mathcal{C}}$: set of unique value of N^k 0.7 0.6 0.5 $p(X_9, N^{\mathcal{C}})$ 0.4 0.3 --- 6 target convoy 0.2 -+--7 target convoy 0.1 0 50 100 250 150 200 300 350 400 500 450 30

Outlook

I. Military application: convoy detection and tracking

- 1. Multi-target tracking, a brief overview
- 2. Hybridization of CPHD filter and MHT
- 3. Bayesian network for convoy detection
- 2. Multi-target detection and tracking with uncalibrated aerial videos
 - I. Detection
 - 2. Tracking
- 3. Automobile applications
 - I. Multi-lane detection and tracking
 - 2. Ego-localisation by fusing GPS and proprioceptive data

General problem

Detection

- Camera motion
- Parallax effects with urban objects
- Low image parameters
- Unknown camera parameters

Tracking

32

- Extended targets
- Probability of detection <1</p>
- Hidden zone in urban areas
- Spawned targets
- High false alarm rate

[Pollard09b]: E. Pollard, A. Plyer, B. Pannetier, F. Champagnat, G. Lebesnerais, "*GM-PHD Filters for Multi-Object Tracking in Uncalibrated Aerial Videos*", Fusion 2009, Seattle

Ground plane motion (1/3)

34

Ground plane motion (2/3)

Ground plane motion (3/3)

Ground plane motion (2/3)

Postprocessing

Selection of moving objects

- Edge detection: select region with high density of edges
- Morphological processing: regularize region shape
- Final selection on area (use prior information on object's size)

Image segmentation based on the residual motion After object selection

Detection results

GM-CPHD tracking

Outlook

- I. Military application: convoy detection and tracking
 - 1. Multi-target tracking, a brief overview
 - 2. Hybridization of CPHD filter and MHT
 - 3. Bayesian network for convoy detection
- 2. Multi-target detection and tracking with uncalibrated aerial videos
 - I. Detection
 - 2. Tracking
- 3. Automotive applications
 - I. Multi-lane detection and tracking

Intelligent vehicle

Situation assessment

Goals

44

Multi-camera system Y Multi lane detection

Х

Number of marking lines N_k
Shape of marking lines y = a₀ + a₁x + a₂x

Issues

- Missing marking line
- Identification ambiguity
- Curves
- Texture changes
- Line width change
- Shadow
- Light condition change
- False alarm

General scheme

Extraction of road markings primitives

• Computed only in a region of interest to limit false points

4[Pollard11a] : Lane Marking Extraction with Combination Strategy and Comparative Evaluation on Synthetic and Camera Images, ITSC, 2011

Local threshold extractor

- LT: Local Threshold

48

SLT: Symmetrical Local Threshold

Drawback

- Depends on the width of the neighborood
- Only horizontal markings
- Sensitive to marks on the road

Background detection extractor

- MLT: Median Local Threshold (50th percentile)
- PLT: Percentil Local threshold (43th percentile)

Multi-lane detection

Projection according to the road shape

51/52

Multi-lane tracking

Marking lane state vector $A_k = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$ $y = a_0 + a_1 x + a_2 x^2$

Observations
$$X_{k} = \begin{bmatrix} 1 & x_{0} & x_{0}^{2} \\ \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2} \end{bmatrix} \qquad Y_{k} = \begin{bmatrix} y_{0} \\ \vdots \\ y_{n} \end{bmatrix}$$

state eq.
$$A_{k+1} = f_k(A_k, v_k)$$
 v_k : model noise f_k : transition model

observation eq

$$Y_k = h(A_k, X_{k,} w_k)$$

h : observation matrix w_k : measurement noise

solved by Kalman filter

perspective: use of an IMM for dealing with high curve situation

[PollardXX]Road Lane Marker Detection and Estimation: a new algorithm and its complete Evaluation Process, submitted to IEEE ITS

Performance evaluation

Conclusion

Multitarget Tracking, Situation Assessment, Object of Interest Detection Data Fusion, Uncertainty Management, Evidence Theory, Bayesian Networks Particle filtering

GMTI, SAR, GPS, GIS, video images

Thank you for your attention!

The Joint Directors of Laboratories

[Steinberg98] : Revisions to the JDL data fusion model, Proceedings of SPIE