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Battlefield surveillance 

zone of interest 

GMTI data 

Videos 
SAR images 

Geographical information System (GIS) 
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General problem 

 Goal 

6 

 Situation assessment 

 How many targets on the scene ? 

 What is their behavior ? 

 Are they objects of interest ?  

Methods: 

• 1st step: Using GMTI sensor to detect agregates 

•     Algorithm weaknesses for closely spaced target tracking 

•     Use a promising algorithm: the PHD filter (Probability Hypothesis Density) 

  

• 2nd step: Integrate other data types to determine if the detected 

aggregates are convoys or not. 

Convoy detection 

and if so, how many targets are in 

Convoy detection 

 Methods 



GMTI data 

• GMTI (Ground Moving Target Indicator) data: 

• High traffic density 

• High maneuverability of ground targets 

• Environment complexity (roads, mountains, ...) 

• Sensor limitations: measurement noise, spatial and temporal bias,… 

• False alarms , PD<1 and spawned targets 
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Single object tracking 

solved by Kalman filter equation 

with linear/Gaussian assumption 
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Optimal Bayesian Filter: Kalman filter 
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Propagation of the probability density function (pdf) of xk 

 

[Mahler01] : Detecting, tracking and classifying group targets: a unified approach, Proc. 

of SPIE Vol. 4380 
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a posteriori pdf 

motion model previous pdf 

normalization 
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Multi-target tracking 

State space 

• Varying number of targets: 

• Birth targets 

• Stationary  targets 

• Output of the observation 

zone 

• False alarm 

• Non-detection 

Observation space 

solved by MHT, 

JPDAF, particle 

filter… 

and CPHD filter 
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Random Finite Set (RFS) 

 Target set Xk modeled as a RFS 
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• Measurement set Zk modeled as a RFS 
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•             : Survival targets between iteration k and iteration k-1 

•             : Spawned targets 

•             : Birth targets 
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•      : Target originated measurement 

•      : false alarms 
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Multi-sensor/Multi-target Bayes filter 
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Propagation of the joint probability density function (jpdf) of RFS Xk 

 

[Mahler03] : Multitarget Bayes Filtering via First-Order Multitarget Moments, IEEE AES, Vol. 39, No 4 
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PHD definition  
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•               : first-order statistical moment of the multitarget posterior, also 

called intensity function or Probability Hypothesis Density 
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PHD filter principle 
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•               : survival probability between iteration  k and iteration k-1 

•               : transition function knowing the previous state 

•               : birth intensity 
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•               : detection probability 

•               : measurement likelihood 

•               : clutter intensity 
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 Prediction 

 Estimation 
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Several implementation 

[Vo06] : Analytical implementation of the Gaussian Mixture Probability Hypothesis Density 

Filter, IEEE SP, 2006 
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Le Cardinalized PHD: principle  
 the number of targets is considered as a random variable p 

 the corresponding pdf is conjointly propagated over time 

[Mahler07] : PHD filters of higher order in target number, IEEE AES, 2007 
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Labeling 

labeling 
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Labeled GM-CPHD (1/2) 

•      : Gaussian set of size 
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•      : track set of size        describing the target trajectory 
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 Goal 
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• Maximization of the weight matrix 
3 tracks 

4 Gaussian components 

kW

• Minimization of the cost matrix 

Contributions to the labeled GMCPHD 
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If the Gaussian n can be  
associated to the predicted track m 

Otherwise 
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Labeled GMCPHD (2/2) 

 Means 



Comparison between the IMM-MHT and the 

GMCPHD filter 

IMM-MHT GMCPHD 

Target position 

estimation 
++ + 

Target velocity 

estimation 
++ - 

Number of targets 

estimation 
- ++ 

Computational 

complexity 
+ ++ 

Hybridization 

++ 

++ 

++ 

+ 

Creation of a hybrid algorithm which would combine the 

advantages of both of them 

• IMM-MHT: Interacting Multiple Model – Multiple Hypothesis Tracker 

• GMCPHD: Gaussian Mixture Cardinalized Probability Hypothesis Density 
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Hybridization 

 
[Pollard11] : E. Pollard, B. Pannetier, M. Rombaut, “Hybrid algorithms for Multitarget tracking using the 

MHT and the GMCPHD”, IEEE Aerospace and Electronic Systems 
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Scenario 

Convoy velocity: 10m/s 

Isolated target velocity: 15m/s 



Root Mean Square Error in position 

Convoy of 6 targets 
Independent 

target 

quality 
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Root Mean Square Error in velocity 

Convoy of 6 targets 
Independent 

target 

quality 
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Track length ratio 

Convoy of 6 targets 
Independent 

target 

quality 
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A convoy detection process 

 Elaboration of a new algorithm combining the advantages of the 

GMCPHD and the IMM-MHT with road constraints 

+ No performance drop when targets are close together 

Aggregate detection 
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Convoy: definition and analysis 

• Convoy definition 

• Number of targets > 2 

• Low and constant velocity 

• Military type  

• Stay on sight 

• On the road 

• System analyze 

• Asynchronous data 

• Heterogeneous data 

• Random variables 

• Missing data 

• Temporal evolution 

 

Dynamic Bayesian Network 

X1 X2 

X3 
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Convoy modeling by using Dynamic 

Bayesian Network 

k-1 k 

 

[Pollard09a] : E. Pollard, B. 

Pannetier, M. Rombaut, “Convoy 

detection processing by using the 

hybrid algorithm (GMCPHD/VS-

IMMC-MHT) and Dynamic 

Bayesian Networks ”, Fusion 2009, 

Seattle 
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Convoy probablity 

Time (in s) 
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Number of target estimation  

: set of unique value of   



Outlook 

1. Military application: convoy detection and tracking 

1. Multi-target tracking, a brief overview 

2. Hybridization of CPHD filter and MHT 

3. Bayesian network for convoy detection 

2. Multi-target detection and tracking with uncalibrated 

aerial videos 

1. Detection 

2. Tracking 

3. Automobile applications 

1. Multi-lane detection and tracking 

2. Ego-localisation by fusing GPS and proprioceptive data 
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General problem 

 Detection 

 Camera motion 

 Parallax effects with 

urban objects 

 Low image parameters 

 Unknown camera 

parameters 

 Tracking 
 Extended targets 

 Probability of detection <1 

 Hidden zone in urban areas 

 Spawned targets 

 High false alarm rate 

[Pollard09b]: E. Pollard, A. Plyer, B. 

Pannetier, F. Champagnat, G. 

Lebesnerais, “GM-PHD Filters for 

Multi-Object Tracking in 

Uncalibrated Aerial Videos”, Fusion 

2009, Seattle 
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Image motion decomposition 

Image motion = ground plane motion   

+ parallaxe motion 

+ moving object motion 

residuals 

filtered using  

size requirements 

Optical flow  

algorithm 

parametric registration        

(homography) 
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Ground plane motion (1/3) 

Ransac 

Region  
segmentation 

Region  
selection 

Dense  
estimation 

mask 

Grond plane  
motion 

regions 

inliers 

Images 

Point  
tracking 

Initial  
transformation 
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Ground plane motion (2/3) 

Ransac 

Region  
segmentation 

Region  
selection 

Dense  
estimation 

mask 

parametric  
registration 

regions 

inliers 

Images 

Point  
tracking 

Initial  
transformation 

[FOLKI]: G. Le Besnerais, F. Champagnat, “Dense 

optical flow estimation by iterative local window 

registration”, in ICIP’05, IEEE, vol. 1, p. I-137-140  
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Ground plane motion (3/3) 

Ransac 

Region  
segmentation 

Region  
selection 

Dense  
estimation 

mask 

regions 

inliers 

Images 

Point  
tracking 

Initial  
transformation 

 

parametric  
registration 
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Ground plane motion (2/3) 

Ransac 

Region  
segmentation 

Region  
selection 

Dense  
estimation 

mask 

regions 

inliers 

Images 

Point  
tracking 

Initial  
transformation 

parametric  
registration 
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Postprocessing 

Image segmentation based 

on the norm of the residual motion  

After object selection 

Selection of moving objects 
•  Edge detection: select region with high density of edges 

•  Morphological processing: regularize region shape 

•  Final selection on area (use prior information on object’s size) 
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Detection results 
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GM-CPHD tracking 
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Intelligent vehicle 

processing  

unit 

laser 

actuators HMI 

camera radar GPS 

gyrometer accelerometer 

exteroceptif 

proprioceptif odometer 
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X 

Y 

local map 

model 

• ego-vehicle 

• obstacles 

• environment 
- marking lanes 

 

camera 

laser 

com 

scene 

Situation assessment 
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Goals 

Multi lane 

detection 

 Multi-camera system 

 

X 

Y 

2

210
xaxaay 

 Number of marking lines 

 Shape of marking lines 
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Issues 

 Missing marking line 

 Identification ambiguity 

 Curves 

 Texture changes 

 Line width change 

 Shadow 

 Light condition change 

 False alarm 
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General scheme 
1. Marking feature extraction 

Correction 

Prediction Association 

Propagation 

Kalman 
Filter 

Transferable 
Belief Model 

Estimated 

marking 

Estimated 

marking 

Classification 

Estimated 

marking 

Road shape 

2. Multi-lane detection 3. Estimation 
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Extraction of road markings primitives 

 Computed only in a region of interest to limit false points 

 
 

 Horizon 

Car cover  

(height, variance) 

Maximum height 

[Pollard11a] : Lane Marking Extraction with Combination Strategy and Comparative 

Evaluation on Synthetic and Camera Images, ITSC, 2011 
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Local threshold extractor 
– LT: Local Threshold 

– SLT: Symmetrical Local Threshold   

     

Tg 

width 

LT 

SLT 

Drawback 

 

• Depends on the width of 

the neighborood  

• Only horizontal markings 

• Sensitive to marks on the 

road 
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Background detection extractor 
– MLT: Median Local Threshold (50th percentile) 

– PLT: Percentil Local threshold (43th percentile) 

Median filter 

Median value 43th percentile value 
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Multi-lane detection 
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Projection according to the road shape 
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Multi-lane tracking 

 Marking lane 2

210
xaxaay 

state vector 

state eq. 

Observations 

observation eq 

solved by Kalman filter 

perspective: use of an IMM for dealing with high curve situation 
[PollardXX]Road Lane Marker Detection and Estimation: a new algorithm and its complete 

Evaluation Process, submitted to IEEE ITS 



Performance evaluation 
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Conclusion 

Multitarget Tracking, Situation Assessment,  

Object of Interest Detection 

Data Fusion,  Uncertainty Management,  

Evidence Theory, Bayesian Networks 

Particle filtering 

 

GMTI, SAR,  GPS, GIS, video images 

Thank you for your attention! 
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The Joint Directors of Laboratories 

[Steinberg98] : Revisions to the JDL data fusion model, Proceedings of SPIE 

Multi-target tracking Data fusion 
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