Data fusion and multitarget tracking:
some interests for military and
automotive applications.
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Battlefield surveillance

Geographical information System (GIS)

: / . o= : |

Point Ligne Polygone Relief
(0D) (1D) (2D) (2,5D)




General problem

» Goal

» Situation assessment

How many targets on the scene ! _
What is their behavior ? == Convoy detection

Are they objects of interest ?

» Methods

. 1st step: Using GMTI sensor to detect agregates

& Algorithm weaknesses for closely spaced target tracking

Use a promising algorithm: the PHD filter (Probability Hypothesis Density)
=]

. 2"d step: Integrate other data types to determine if the detected
aggregates are convoys or not.



GMTI data

- GMTI (Ground Moving Target Indicator) data:
High traffic density

High maneuverability of ground targets
Environment complexity (roads, mountains, ...) |
Sensor limitations: measurement noise, spatial and temporal bias,... ~

False alarms , Pp<1 and spawned targets

-

o St ST e _
s B e Observations:

Zk = {Zk,l’ ---»Zk,mk}

MT]I report:
Zk,i = [55, 37]T




Single object tracking

Real state of a target:
_ ’ 1T
X = L%, %, 9, ]

Model:

State equation

Xi+1,i = FXpi + by
Observation equation

Zk,j S ka,i + Wk,j

Goal: calculate an estimation —
J’C\k|k,,i =FE [xk,i |Zk] solved by Kalman filter equation

o~ . R Tk with linear/Gaussian assumption
Priri = E|(eri—Rupiei) Ceri— ey, T 125




Optimal Bayesian Filter: Kalman filter

Propagation of the probability density function (pdf) of x,

a priori pdf motion model previous pdf
Prediction s O 27 = [ O ) g (2 e
likelihood a priori pdf
k-1
Update K fk|k(zk‘xk)fk|k_1(xk Z )
fk|k (Xk Z ) —
k-1
fk|k (Zk Z )
a posteriori pdf

normalization

Estimator >2k|k = arg sup fk|k(x‘z )

X

$Mahler01] : Detecting, tracking and classifying group targets: a unified approach, Proc.
of SPIE Vol. 4380



Multi-target tracking

- Varying number of targets:

State space

« Birth targets
« Stationary targets

« Output of the observation
zone

False alarm
Non-detection

Goal: calculate an estimation

State: Xk|k = {xklk,b ""xklanklk }
Covariance: Pk|k — {Pklk,lr ey Pklk;NkHc }
Number of targets: Nk|k

Labeling: Tk,j = {xk|k,i» Pk|k,i» Sk,i» Tk—l.j}

>
solved by MHT,

JPDAEF, particle
filter...
and CPHD filter

1O

L4



Random Finite Set (RFS)

» Target set X, modeled as a RFS

I 10 |
Xk :| USk|k—1(§)|U| U Bk|k—l(§)|ugk
[ cexis | [ cexis ]

s, (¢): Survival targets between iteration k and iteration k-1
B, ,(¢): Spawned targets
‘ . Birth targets

o

- Measurement set Z, modeled as a RFS

Z, = UOk(X) UK,

XEXk

0, . Target originated measurement
K : false alarms




Multi-sensor/Multi-target Bayes filter

Propagation of the joint probability density function (jpdf) of RFS X,

Prediction

Update

Estimator

a priori jpdf ~ motion model previous jpdf
|k 1(X - _[ f|<||<—1(X k‘x k—l) f|<—1||<—1(X k-1 z k_l)dx k-1
measurement likelihood a priori jpdf
fo(Z \x f X |z
K |k (Z,1X) k|k—l( k )
f (X, ]2 = -
fo (2,27

a posteriori jpdf

normalization
zZ")

X K =arg Ssup fk|k

X

I[?Vlahler03] . Multitarget Bayes Filtering via First-Order Multitarget Moments, IEEE AES, Vol. 39, No 4



PHD definition

vV, . first-order statistical moment of the multitarget posterior, also
called intensity function or Probability Hypothesis Density




PHD filter principle

» Prediction
Ve @ = ([Pt (X[ L ()d ¢ )+ 7, 20

P, . survival probability between iteration k and iteration k-1
1 (¢ ): transition function knowing the previous state ¢
Y« . birth intensity

» Estimation

P,.9( z|x).v X)

k|k—1(

vV, (X)=(1=P, v, (X +
| Ekzck(zn [PooCz[o)v,, ,()de

Py :detection probability
a( Z\X) : measurement likelihood
K, . Clutter intensity



Several implementation

Representation of the intensity function v,
Particle PHD
Gaussian Mixture PHD (GM-PHD)
Gaussian Mixture Cardinalized PHD (GM-CPHD)

[M006] : Analytical implementation of the Gaussian Mixture Probability Hypothesis Density
Filter, IEEE SP, 2006



Le Cardinalized PHD: principle

the number of targets is considered as a random variable p
the corresponding pdf is conjointly propagated over time

Sum of hypotheses for the n targets to be
(n+j) birth | survival (l)non survival

Prediction v € N*, ppp_1(n) = ZPT k(n—j Z rk—1(1) PI(1 — P )(E

Measurement Ilkellhood a priori pdf
L Zk n
Update pk|k(n) — ﬁ((Z/L))ka_l(n)

a posteriori pdf o
normalization

20

Estimator N, =arg sup p,,(n) Ni =Y npr(n)

n n=1

l6[Mahler07] : PHD filters of higher order in target number, IEEE AES, 2007



Labeling

labeling
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Labeled GM-CPHD (1/2)

» Principle
- G, : Gaussian set of size N

weight state covariance
N\

G, = {Wk,i’mk,i’ Pk,i}ie{l NG

- T, :track set of size N ., describing the target trajectory

k|
T — {)2 - P i S, . ’ T i } 0
k k}, k’IT_ ki \k_l’J ie{l ..... Nk|k}
state covariance score

» Goal

Evaluate the track-to-Gaussian association matrix A, of size (N < N °)

(1 Ifthe Gaussian component n is associated to the track m
A k (m ’ n) = % .
(0 Otherwise



Labeled GMCPHD (2/2)

» Means
Maximization of the weight matrix ~ \\V/, o 0 0
wW,=| 0 0 o0 @&} 3tracks
If the Gaussian n can be o @2 0.1 o0
W = Wk,n associated to the predicted track m _ QD D
k ~

0 Otherwise 4 Gaussian components

- Minimization of the cost matrix C )

If the Gauss b at 0 00
e Gaussian n can be associate
— C(m’n) to the predicted track m =0 Q@D 0.1
: 0 Otherwise 0 0
0 0 0
—2.85 —-0.52

c.=| o
0

|
2 6
o)}
~

:



Comparison between the IMM-MHT and the
GMCPHD filter

IMM-MHT GMCPHD Hybridization
Target position ++ + ++
estimation
Target velocity +4 _ ++
estimation
Number of targets _ ++ ++
estimation
Computational + ++ +
complexity

- BidEAGH Bl athyarinealdbilitine Weke wolldligei biieaiesis Q&r
- GMURRBYEa0kbith Midne® Cardinalized Probability Hypothesis Density

20




Hybridization

{ﬁ?PHDaN;m}

Hybrid
estimation

Y Y

TMHT

|

|

: — Labeled
: GM-CPHD
|

CGMTD——
| _
GIS : - MHT upder

| constraints
|

|

|

|

f[Rollard11] : E. Pollard, B. Pannetier, M. Rombaut, “Hybrid algorithms for Multitarget tracking using the

MHT and the GMCPHD”, IEEE Aerospace and Electronic Systems



Scenario
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Root Mean Square Error in position

quality
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Root Mean Square Error in velocity
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Track length ratio
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A convoy detection process

» Elaboration of a new algorithm combining the advantages of the

GMCPHD and the IMM-MHT with road constraints

No performance drop when targets are close together

) Aggregate detection

26
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Convoy: definition and analysis

- Convoy definition
Number of targets > 2
Low and constant velocity
Military type
Stay on sight
On the road

Dynamic Bayesian Network

W\

- System analyze
Asynchronous data

Heterogeneous data @ °
Random variables i

s P (X, X, X3) =[] P(x,|Pa(x,)
Missing data e -

Temporal evolution

27



Convoy modeling by using Dynamic
Bayesian Network

k-1 K

Xi: Velocity < 80km/h {yes,no}
Xa: Constant velocity {yes,no}
X3: Velocity criteria {yes, no}
X4: On the road {yes, no}

X#: Military vehicles {yes, no}
Xg: Constant distance between vehicles {yes, no} . )

. o ] , : Pannetier, M. Rombaut, “Convoy
X7: Constant convoy length over time {yes, no} detection processing by using the
Xs: Distance criteria {yes, no} hybrid algorithm (GMCPHD/VS-
: Cjon\ro}r {yesj -n_()} |MMC-MHT) and Dynamic
Bayesian Networks ”, Fusion 2009,
Seattle

[Pollard09a] : E. Pollard, B.
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Number of target estimation

NF = {N(1),...,N(k)}
Nk;

Nc . set of unique value of

0.7

p(X97 NC)

0.2

8- 5 target convoy |

1S NS N NN N NN S A S S

................... f | == 6 target CONvoy

7 target convoy |

oy :
O
]

——i 'é'c)

|
100

|
150

i
200

|
250

300
30

| I |
350 400 450

|
500
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Tracking
3. Automobile applications

Multi-lane detection and tracking
Ego-localisation by fusing GPS and proprioceptive data
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General problem

32

»  Tracking
Extended targets
Probability of detection <1
Hidden zone in urban areas
Spawned targets
High false alarm rate

> Detection

Camera motion

Parallax effects with
urban objects

Low image parameters

Unknown camera
parameters

[Pollard09Db]: E. Pollard, A. Plyer, B.
Pannetier, F. Champagnat, G.
Lebesnerais, “GM-PHD Filters for
Multi-Object Tracking in
Uncalibrated Aerial Videos”, Fusion
2009, Seattle



Image motion decomposition

Image motion = ground plane motion

Optical flow paragiﬁgéfagﬁ;?t'on + parallaxe motion

algorithm filtered using
Size requirements

+ moving object motion
residuals




Ground plane motion (1/3)

34

Dense Grond plane

) : =P MOtioN
estimation

Initial
transformation

Point inliers
tracking Ransac Region

selection
Region
segmentation EENeeIE



Ground plane motion (2/3)

[FOLKI]: G. Le Besnerais, F. Champagnat, “Dense
optical flow estimation by iterative local window
registration”, in ICIP’05, IEEE, vol. 1, p. 1-137-140

r 0
w4 A

Dense parametric
. . =P eqgistration
estimation J

Initial
transformation

inliers

Region
selection

3 segmentation EENeeIE
5



Ground plane motion (3/3)

Dense parametric
: : =P registration
estimation d
Initial

transformation

; inliers
Pomt_ Ransac .
tracking Region

selection
Region
SN E (AN regions

36



Ground plane motion (2/3)

Dense parametric
estimation

Initial
transformation

Point inliers
tracking Ransac Region

selection

Region

- segmentation EENeeIE

=P registration



Postprocessing

Selection of moving objects

* Edge detection: select region with high density of edges

* Morphological processing: regularize region shape

* Final selection on area (use prior information on object’s size)

Image segmentation based After object selection
oggthe norm of the residual motion



Detection results




GM-CPHD tracking
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Intelligent vehicle

processing
unit actuators HMI
GPS  laser camera radar
[ gyrometer accelerometer odometer proprioceptif

42



Situation assessment

ego-vehicle
obstacles

* environment
- marking lanes

43
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Goals

» Multi-camera system

<

Multi lane
detection

» Number of marking lines N,
»Shape of marking fines vy = a_+a,x + azx2

44



Issues

» Missing marking line

» ldentification ambiguity

» Curves

» Texture changes

» Line width change

» Shadow
» Light condition change

» False alarm

45



General scheme

[

|. Marking feature extraction

Multi-lane detection
Transferable

Belief Model

3. Estimation

-

~

[ Classification

Kalman
Filter

R
|
]
)
)

. Estimated

Association { Prediction }
[ Propagation J :[ Correction } { Road shape
AN AN
Estimated Estimated
marking marking

46 marking




Extraction of road markings primitives

» Computed only in a region of interest to limit false points

Horizon

Car cover
(height, variance)

Maximum height

4Pollard11a] : Lane Marking Extraction with Combination Strategy and Comparative
Evaluation on Synthetic and Camera Images, ITSC, 201 |



Local threshold extractor

— LT:Local Threshold
— SLT: Symmetrical Local Threshold

I(u,v)
B — > U
I(u,v) | LT
I(wv) > 1+ Ty * Depends on the width of
> the neighborood
E * Only horizontal markings
- SLT * Sensitive to marks on the
j . I(u,v) > max(l,,],) + T, ek
- o

48




Background detection extractor

— PLT: Percentil Local threshold (43t percentile)

15 | 23 [ 2118 |32 43 |38 1619 |18 |20
J

{15,16,18,18,19,20,21,23,32,38,43}

43th percentile value -

[ Horizontal median filter: I Median filter

SR iltered with




Multi-lane detection
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Multi-lane tracking

: 2
» Marking lane o y =a,+aXx+a,x
state vector A4, = al]
a
1 xp x° Yo
Observations Xe=| & ¢t Y, =|
1 Xn xnz Vn
state eq. A1 = fie (A, i) Vi: model noise

[ : transition model

observation eq Yi = h(Ag, Xie wi) h : observation matrix

= solved by Kalman filter Wi - measurement noise

perspective: use of an IMM for dealing with high curve situation
[PollardXX]Road Lane Marker Detection and Estimation: a new algorithm and its complete

Evaluation Process, submitted to IEEE ITS



Performance evaluation
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Conclusion

Multitarget Tracking, Situation Assessment,
Object of Interest Detection
Data Fusion, Uncertainty Management,
Evidence Theory, Bayesian Networks
Particle filtering

GMTI, SAR, GPS, GIS, video images

Thank you for your attention!
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The Joint Directors of Laboratories

External Ressource
Distributed Mgmt
Local Level 0 Level 1 Level 2 Level 3
Processing ||| Processing || Processing |f| Processing
Signal/ Entity Situation Impact
INTEL Feature Assessment | | Assessment |j| Assessment
EW Assessment
Human/
RADAR Computer
Interface
SONAR
I AN
\ Level 4 Database Manageme! A %
| Processing System
Data bases Performance
Assessment Support
Database Database
Multi-target tracking Data fusion

[Steinberg98] : Revisions to the JDL data fusion model, Proceedings of SPIE
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