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Abstract

A piecewise quintic & spline surface interpolating the vertices of a triangular surface mesh of
arbitrary topological type is presented. The surface has an explicit triangular Bézier representation,
is affine invariant and has local support. The twist compatibility problem which arises when joining
an even number of polynomial patched Gontinuously around a common vertex is solved by
constructing &-consistent boundary curves. Piecewisk ®undary curves and a regular 4-split
of the domain triangle make shape parameters available for controlling locally the boundary curves.
A small number of free inner control points can be chosen for some additional local shape effects.
0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Defining surfaces from a set of points, which control in an intuitive way the form of a
surface due to Bernstein—Bézier or B-spline basis functions has been becoming one of the
most popular methods for modeling free form surfaces. The surface hereby is defined as
a regular polynomial (possibly rational) map of a planar domain, tessellated into a regular
grid of rectangles or triangles, resulting in a collection of tensor product or triangular
patches. Such surface definitions generally don’t allow the representation of surfaces of
arbitrary topological typen-sided patches can fill in-sided holes in rectangular patch
configurations and offer therefore the possibility to represent general closed surfaces or
surfaces with handles. Nevertheless if one wants to model entire surfaces-giiled
patches, restrictions on the control net must be accepted.
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A widely accepted and popular way in defining surfaces without any limit of topologies
is the use of smoothly joined triangular patches, where each patch is defined over the
unit triangle. They have the advantage to provide a uniform description for all possible
topologies without any restriction on the number of faces that meet at a vertex, or on the
number of edges of the faces.

The paper is concerned with defining a geometrical smooth surface by interpolating a
triangulated set of points iR3. Such a triangulated point set which we califace mesh
should be 2-manifold and is allowed to represent surfaces of arbitrary topological type.
There is no restriction on the order of the mesh vertices (i.e., the number of faces that meet
at a vertex). Furthermore the surface mesh furnishes topology information, which is a data
structure generating adjacency informations relating vertices, edges and faces. We assume
that the surfaces mesh is already given.

Local smoothtriangular interpolantsof an arbitrary surface mesh have been developed
by many. These previous works are the most directly related to the results found here in the
sense that they interpolate a control net and not only approximate it. They can be divided
into different groups depending on how they solve the “vertex consistency problem”, which
occurs when joining with &continuity an even number ofGpatches around a vertex. The
earliest of these schemes are Clough—Tocher-like domain splitting methods (Farin, 1982;
Piper, 1987; Shirman and Séquin, 1987; Jensen, 1987). Since the surface mesh triangles
are divided into sub-triangles, we refer to themraacro-triangles Three quartic &
patches per macro-triangle interpolating positions and normals are produced. One problem
is how to employ the free parameters in order to get pleasing shapes. Convex combination
schemes (Nielson, 1987; Hagen, 1986; Hagen and Pottmann, 1989; Gregory, 1986), blend
side-side or side-vertex operators in order to interpolate transfinite position, tangent or
curvature data of the boundary curves. They are rational patches without consistently
defined twists at the vertices. The use of singular parameterizations (Neamtu and Pluger,
1994) is another possibility but seems to have problems in defining pleasing shapes. The
boundary curve schemes (Peters, 1991a; Loop, 1994) first créaterBistent boundary
curves and then fill in the patches polynomial. Furthermore some special interpolation
methods can be found in (Herron, 1985; Van Wijk, 1986; Sarraga, 1987). They all make
either restrictions on the mesh topology or on the input data, and are therefore not
general enough in order to be compared with the methods listed above. An overview
and comparison of most of these methods can be found in (Mann, 1992; Mann et al.,
1992).

The surface interpolation scheme of an arbitrary mesh of poifit$,invhich is presented
in this paper will satisfy the following requirements. They are desirable for the reasons that
will be explained below:

— the surfacenterpolates the verticesf the given surface mesh. And if desired, the
interpolation condition can be relaxed in order to only approximate the mesh,
the surface is &continuoudor visual smoothness,
the surface ipiecewise triangulaand the definition domain of the surface is the input
surface mesh itself,
the surface can be of arbitrary topological type,
the surface results of a local interpolation method, where only a few data of the
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corresponding mesh triangle and its neighbors is used. Global interpolation schemes
generally result in a big system of equations where all input data influences the shape
of every patch,

— an explicitclosed form polynomial and low degrparameterization is given for each
patch. Fast surface evaluations and calculus on the surfaces, such as derivatives and
curvature, are important for rendering and interrogation purposes,

— the surface isffine invariantand shape parameterare available for local shape
control.

An interesting triangular &surface spline, which motivated this work, was recently given

by Loop, and consists of triangular Bézier patches of degree six, one per macro-triangle.
All requirements are satisfied except one: interpolation is theoretically possible, but leads
to unwanted surface undulations in practice (Loop, 1994). These undulations are due to
severe constraints on the second derivatives along the boundary curves, at each end-point.
The surface mesh therefore only acts as a control mesh which is approximated and not
interpolated.

In this paper we present an interpolating quintit tBangular spline surface, which is
a generalization of Loop’s scheme. All requirements are fulfilled. Four Bézier patches per
macro-triangleare created by a local scheme. The basic idea, which allows to perform
interpolation without undulations, is to use a regular 4-split of the domain triangles. As
a consequence of the 4-split, the constraints between derivatives at each end-point of
the boundary curves are relaxed, and an interpolating curve network, without unwanted
undulations, can be built. This approach has never been used before for parametric G
interpolation of triangulated surface mesheR The advantage over the Clough—Tocher-
split is that tiny triangles are avoided, the sub-triangles are more regular. Mesh vertices
of arbitrary order are allowed. The vertex consistency problem is solved by constructing
C2-consistent boundary curves. The 4-split doesn't solve the vertex consistency problem,
like the Clough—Tocher-split does, but it introduces enough degrees of freedom enabling
to produce this new quintic surface spline. It will furthermore been shown in this paper
that the additional vertices of order six which are introduced by the 4-split don’t present
the vertex consistency problem and that the four patches per macro-triangleljoin C
continuously to each other.

The paper is organized as follows. Section 2 reviews the@ditions when a pair of
parametric surfaces meet and when a collection of parametric patches meet at a corner.
The “vertex consistency problem” which arises when an even number of patches meet at
a corner is discussed. Section 3 briefly recalls the results of Loop, and shows an example
where unwanted oscillations occur when interpolating meshes with this method. Section 4
gives some general remarks on the 4-split of the macro-patches. The following Sections
5-8 concentrate on the different steps of the surface construction resulting in an explicit
representation of the four Bézier patches which interpolate the corners of a mesh triangle.
Examples illustrating different meshes interpolation are given in Section 9. Eventually,
Section 10 offers some concluding remarks and directions for future work.
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2. Notations and G'-conditions
2.1. Surface mesh

Let M denote the inpusurface mesht consists of a list of vertices and a list of edges.
Together they describe a 2-manifold mestRhwhose faces are triangles. The number of
faces/edges incident in one vertex is referredragr of a vertex

We aim to construct a piecewise triangular surfagethat interpolates the given
verticesV. The spline surface is composed of triangutaacro-patches\/’ which are
in one-to-one correspondence with the mesh facets. They are all polynomial images of the
unit triangle inR2, composed of four Bézier triangles each, joining @ntinuously. We
assume the reader is familiar with Bézier curves and surfaces (Farin, 1997; Hoschek and
Lasser, 1993).

The algorithm for constructing the spline surface consists mainly of three steps

— constructing boundary curves,

— constructing cross-boundary tangents,

— filling in the patches.

The boundary curves of the macro-patches are constructed in correspondence with a mesh
edge. Therefore there is a one-to-one correspondence between the mesh faces and the
macro-triangles ofS. It is therefore convenient for the following sections to choose a
parameterization of the macro-patch#é around a common vertex, sharing pairwise a
common boundary as illustrated in Fig. 1.

All subscriptsi =1, ..., n are taken modula, wheren is the order of the mesh vertex
corresponding ta/’ (0, 0). The parametey; lies in the intervalO, 1].

In order to allow a unified treatment of the surface patches, the surface meih
supposed to be closed. We shall point out that since the scheme is local, there should be no
theoretical difficulties in treating meshes with boundaries. This is left for further research.

2.2. G* continuity between two adjacent patches

Consider two _adjacent patc.hﬁs"—l(ui_l, u;) and M’ (u;, u; 1) that share a common
boundary, i.e.M*~1(0, u;) = M (u;, 0) for 0 < u; < 1.

Fig. 1. Parameterization of macro-patches around a vertex.
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Two adjacent patche®’, M1 join at a common boundary with‘Gontinuity if and
only if there exist three scalar functiods, v; andu; such that
®; (ui) M}, (ui, 0) = vi )M}, (i, 0) + wi )My (0, u;),  wi €[0.1],  (Ic)
wherev; (u;) i (u;) > 0 (preservation of orientation) and/ (u;,0) x Mtl;i+1(”i’ 0)#0
(well defined normal vectorsM,ii denotes the partial derivative 8’ with respect to the
parameter;.

2.3. G* continuity of a network of patches

If one wants to join several patches together in a network of patches Witbi@inuity, it
can happen that satisfying conditioir) for all edges can present serious difficulties. This
problem has been mentioned by several authors, first by Van Wijk (Van Wijk, 1986) and is
called ‘vertex consistency problénAt a vertex, where: patches meet, Econtinuity can
generally not be achieved by simply solving the linear system efjuations(/¢). This
system can have singularities, which are not easy to overcome. At such a vertex, the G
continuity is directly related to the twists (the second order mixed partial derivatives at a
patch corner). For polynomial patches, which lie in the continuity clds®ath twists are
identical:
aZMi aZMi

——(0,00=—(0,0, i=1,...,n.

ou;du;jt1 Oui10u;
Therefore, additional conditions at the patch corner, which involve the twists, have to be
satisfied for G continuity of a network of patches:

vi(O)M],,. . (0.0)+ 1 (O M, ", (0.0)
= &/(0)M},(0,0) + &;(0) M}, ,.(0,0) + v/ (0) M}, (0,0) + 2 (0) M} % (0. 0),
i=1,...,n. (IT)

This system of equations is obtained by differentiatifig) with respect toy; taken at
u; = 0.

Now, for solving the G problem at a vertex two strategies can be employed:

— fix the boundary curves and sol¢gr) for the twists, or

— fix the twists and solve the equationg /7) for the boundary curves.
Both strategies, which should makeatches joining &at a common vertex, will not give
a solution in general for the same reason. They lead to linear systems of equations with a
circulant matrix, which is singular it is even and greater than 2 (Van Wijk, 1986; Peters,
1991b; Loop, 1994).

2.4. C?-consistent boundary curves

A closer look to (r) shows that the right hand side only contains first and second
derivatives of the patch boundary curves at the common vertex. Whether or not the
linear system fy) can be solved depends therefore on the choice of the boundary
curves. Boundary curves are called to Gé-consistentif the right hand side vectors
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[....M} (0,0),..]"and[..., M}, (0,0),...]" lieinthe image space of the rank deficient
system (7).

The present interpolation scheme solves the problem by first constructingr@istent
boundary curves of the patch network. This ensurks@tinuity at the patch vertices by
(I7). In order to get an overall Bsurface,(I¢) has to be satisfied between all adjacent
patches. We therefore define cross-boundary tangents along each edge satisfyargl
(I7). It has to be noticed, that both steps are not independent, the values of the cross-
boundary tangents at the vertices are already fixed by the boundary curves because of the
following equality:M! (0,0)= Mit1(0,0), i=1,...,n.

i+1 Uit+1

3. Loop’s scheme

Loop constructs sextic &riangular Bézier patches in one-to-one correspondence with
the input mesh faces. In this section we briefly recall the method of Loop in order to point
out later the differences with our work. Details are in (Loop, 1994).

Boundary curves & vertex consistency

Around a vertexp of ordern, with neighbor verticegp; of ordern;, Loop uses the
following scalar function;, v;, u; in systems [¢) and ([7):

<D,-(ul-)=cos<27n)B§(u,-)+%Bf(u,-)+(l—cos(i—#))B%(uﬁ, (quadratic) (1)

1

1
vi(ui) = pi(u;) = > (constant)

The following choice for the first three Bézier poinf§, 1, £? of the boundary curve
betweenp andp; enables us to find a solution to systefm)aroundp:

1_ n
fo=ap+ I > b

nooa
1n 2 s e

ri=ap+ Y (1m0 peof L0 ) ), @
n3 n

, 1 1 11

fi= 3P T gPi-1 T 3Pt EPit1

The boundary curve betwegnand p; is of degree 4, and has control poirﬁg, ey ff-‘,

~0 ~1 .
wheref3, f# are constructed ag;, f; from the opposite vertey; .
«a andg in (2) are shape parameters. There is no shape parameﬁ%. forfact, since the

boundary curve has degree 4, the middle control pﬁfmnust be computed symmetrically
from both end-points.
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a=07 pg=10

a=05 =01 a=05 B=05
Fig. 2. A typical case where undulations in the curve network happen, when interpolating with Loop’s
patches. The top shows the interpolation case,1. To remove the oscillations, a smaller valuexof
has to be chosen, and the original mesh is not interpolated (bottom).

Cross-boundary tangents
The cross-boundary tangents are set to be equal

il (ui, 0) + Wi (ui)Vi(ui), (quintic)

oH (ulao)_é(ul)aa
3)

ujt1
OHi 1(0u)—<1r><u) (ul,O) W (i) Vi),

(quintic)

which ensures automatically that-( is satisfied. The scalar functioky and the vector
function V; are built of minimal degree so as to interpolate the values of the cross-

i
derivatives and the twists at the vertigesind p,

2 2
Y (u;) =sin—n(1—ui)+sin—nui, (linear)
n n; (4)

Vi) =Y viB2w;).  (cubic)

k=1
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0_ 0
wherev; =3, Vi p; and

LN oy =i+l
v,-:ZKiVij-l-Pj _%(gf—% if j=i—1,
j=1 0 otherwise,
with
1 C2m(j—i
‘/}?:_4ﬁs|nM
n n
and
T
i=1— —|[tan—(6®;(0) — ®/(0 w!(0)|.
Ki 3%(0)[ n( i(0) 1(0) + l()]

v2 andv? are constructed a, #; from the opposite vertex.

Each triangular patclf must be of degree 6 because of the quintic cross-boundary
tangent functions (3). From the boundary curves (2 times degree elevated) and the cross-
boundary tangents the first two rows of Bézier control pointgio&re calculated. The
remaining middle control point of each patch is chosen sothhats quintic precision. In
two special cases Loop’s patches are quintic (the three patch vertices have same order) or
quartic (the three patch vertices are of order 6).

4. Regular 4-split

Subdivision of the domain into several pieces has been shown to be of benefit to
interpolation by piecewise polynomial curves or tensor product surfaces. The polynomial
degree can be kept low and additional degrees of freedom allow for shape improvements.

For the same purpose we split the domain triangles into 4 sub-triangles by joining the
edge midpoints together, see Fig. 3. Each triangolacro-patchM, which interpolates
the 3 vertices of a surface mesh triangle, will be a piecewisguihtic surface.

For the following developments we first consider the macro-patch as a whole.
The boundary curves and cross-boundary tangents are themémewise polynomial

N Mi

=

/

Fig. 3. 4-split of all domain triangles.
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functions The four sub-patches are then considered independently when filling-in the
macro-patches with thelQuintic Bézier triangles.

4-splitting the domain triangles for parametrié @terpolation is the key issue of the
present method. It doesn’t cause additional problems, as one would probably think; in
contrary! We shall point out, that we don’t use the 4-split in order to solve the vertex
consistency problem as the Clough-Tocher methods do. The advantages are obvious,
because the number of degrees of freedom per macro-patch is increased. They can be used
to perform interpolation of vertices and to efficiently control the shape. The additional
vertices, which are created at the edge midpoints, are of order 6. But the vertex consistency
problem is implicitly solved by the special construction of the boundary curves and the
cross-boundary tangents of the macro-patches, as will be shown in Section 8.

5. Choice of scalar functions®;, v;, u;

For the interpolating spline surface presented in this paper one of the most important
targets is to keep the total degree of the patches as low as possi (uf, u; 1)
is a triangular surface of total parametric degegethen M, (u;,0), M. (u;,0), and
M;;;ll(o, u;) are of degre@ — 1 in Eq. (I¢). When joining patches &continuously, the
conditions(/¢) and (I7) must be satisfied. It is important to choose the scalar valued
functions®;, v;, u; such that they don't raise the degree of the final patches. Ideally this
would mean to tak@; linear andv;, u; constant and the degree of the patches would not
be raised when satisfying E¢i¢).

One of the main contributions of this paper is to show that we can make it possible. First
important point is the choice @;. For locality reasons, Loop is not able to takelinear,
he takes it quadratic, which finally leads to patches of degree six, one degree more than our
proposal.

For symmetry reasons we choose= u; = % and as a simplification we suppose that
@0 := ¢;(0) and #1 := @/(0) for i = 1,...,n. These assumptions imply that the: G
conditions now state as follows:

D (ui)M,, (u;,0) = %Ml (u;i, 0) + %M;;ll((), uj), (¢)

Uiyl

vi (M, (0,0)+ u; QM. (0,0)=®/(0)M] (0,0) + ;(O)M} , (0,0).

Ujltj41 ui—1;

Varyingi from 1 ton leads to the following linear system of equations:

Tt = ol + 0%2 (1 7)
where
: 9 ° 2
2 2
T = ,
0

O NI
NN
NI O
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M (0,0) M}, (0,0)

M? (0,0) M, (0,0)

andf is the vector of the twists. In (Loop, 1994) it was now shown, that it is possible
to determined® and #*. For u; = 0 it is easy to see thaw (0,0) = M;*1(0,0).
Egs.(l¢) (i =1,...,n) taken atu; = 0O are therefore transformed into the following

homogeneous system

e -3 0 ... 0 -—17rMLT
-3 o -3 0
9 .. . .. : =0, (5)
: 01
_ol _1 (p(z) M
- 2 2 - =", -

where the determinant is equal to
" (2mk 0
[Jeod =) -2
n
i=0

for some integek (Davis, 1979). A non-trivial solution exists if and onlydf® = Cos(%),

wheren is the order of the vertex; = 0. k = 1 was set to insure that tIM,ii span a plane
and are ordered properly, thus

2
0 = ¢, (0) =cos<—”>. (6)
n
In an analogous way, one obtains
2
@i(l)zl—cos(—ﬂ>, (7)
n

wheren; is the order of the opposite vertex.

If one takes the function®; as linear blending functions, this would imply that
ol = @/(0) in (Il7) depends on the order; of the opposite vertex. This would make
the algorithm global instead of local, which is not acceptable. Since (Loop, 1994) wanted
a single polynomial patch per input triangle, he was forced to #gkguadratic in order to
separate vertex informations and to keep the algorithm local.

In our new method, the 4-splitting of domain triangles enables us to separate vertex
informations by taking the function®; piecewise linear, continuous, defined @) %]

and[3, 11, with @;(3) = 3, as shown in Fig. 4.
COSZE (1 — 2u;) + u; foru; €[0. 31,

(1—u)+ (1 —cosZ)(2u; — 1) foru; €3, 1].

;i (u;) = 8
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A :

D;(0)

12 1

Fig. 4. Scalar valued functio®; («;), piecewise linear.

This choice is justified by the observations that n; implies @;(1) =1 — &;(0)
(and thereforep; is a single linear function) and = n; = 6 implies ®; (u;) = % for all
u; €[0,1].

This choice for®; would not have been possible without 4-splitting the domain
triangles.

6. Boundary curve network

The boundary curves of the macro-patches are constructed in correspondence to the
edges ofM. This is the most important step in the surface construction method, because
the shape of this curve network has great influence on the surface shape. The requirements
on the boundary curves are the following:

— interpolating the vertices 0%,

— satisfying the & conditions(ll ¢), (Il 7) at the end points,

— keeping the surface scheme local.

The locality requirement imposes to construct the curves such that they sdkisfy

(Il7) at one vertex (end point) independently from the opposite vertex. The first and
second derivatives at the curve’s end points are involved in sydiem A polynomial

curve which separates these informations of both end points should be of defrdéne
advantage of the domain 4-split is now, that it allows to tplecewise & polynomial
curves of degre8. Each boundary curve between two adjacent mesh vertices consists of 2
cubic pieces, which are constructed independently from each other.

Let denote the polynomial piece of the boundary curve between the neighboring vertices
v of ordern and the vertex; of ordern; in Bézier form by the control poimb{), e, g
see Fig. 540, % 1} is the subdivision of the parameter interval for the whole boundary
curve. Around each vertex 0¥ the control points}, b}, b5, i =1,...,n, of all incident
boundary curves can be constructed independently from the joining curve piece of the
opposite vertices, i.e., the first and second derivatives can be isolated at each vertex. The
“midpoints” bg are constructed in order to havé @ints between the two curve pieces.
These points correspond to the parametet % i.e., the midpoint of an edge d#, where

the 4-split has been accomplished. The control points of the joining pi§cé$, b5 and
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Fig. 5. Control points of the boundary curves at veniex

bk = b} are found when treating the boundary curve pieces incidepf,imherek is the
index of v relative to the neighborhood of
For simplification it is convenient to adopt a matrix notation:
1 1 1
by b1 b; )41
bo:=| @ |, bi:=| : |, by:=| 1 |, p=| |,
by 4 b, )2
wherep is referred as to theertex neighborhoodf v.
The boundary curves have to be constructed in order to have one-to-one correspondence

between the macro-patches and the facestofTherefore the boundary curve end points
should correspond to the vertices.bf. Looking at vertex,

bé:v, i=1,...,n,

should hold for interpolation. This is a special case of the more general setting

h= 1-— —, 9
o=av+( Ol)jgln 9)

wherex € R is a shape parameter controlling the interpolation. In matrix representation (9)
corresponds to

bo=av + B%p, 10
whereBC is an x n matrix with Bl.oj = 1;“,

The pointsh) define the tangent plane Sfand the first derivative at the boundary curve
end point:

i,j=1...,n,andv =[v,...,v]".

ri:= M} (0,0) = 6(b} — b}). (11)

Additionally, they have to make?! lying in the image space df in (Il 7) and to satisfy
(Il¢). A solution to that problem is to take! as the local averaging of the vertex
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neighborhood ob which is known adirst order discrete Fourier approximation @ (Van
Wijk, 1986; Peters, 1993; Loop, 1994):

68 2m(j — i) ,

1

=L 1“”(?)”]" b .
J:

whereg is a shape parameter controlling the magnitude of the tangent vectors.
Combining (11) with (10) and (12) gives

by =av+ Blp, (13)
where
. 1-oa+peogZU=D)
Bijz " n s i,j:l,...,n.

The pointsh,, are related to the second derivatives at the boundary curve end point:
rZ:=M,, (0,0)=12(b} — 2b; + b)) (14)

and have to lie in the image spacelin (11 7).

It has been shown (Loop, 1994) th#it— %(21) + p;_1+ 2p; + p;, 1) suffices to that
condition. Since any affine combination of points, which lie in the image spaZeatéo
does, let define

bl :=yoby + y1bl + v2d',  yo+yi+y2=1
= by + (b = bp) + 2(d' — b).

whereyyp, y1, y2 are shape parameters controlling the value of the second derivative. The
matrix expression is given by

- 2 |_ _
by = [(V0+V1)0t+ %]v-l-BZP, (15)
where
4 (L — o) + 18 cog ZU=D 1/6 ifj=i—1i+1,
Bi2j=(y0 y1( y1B cog T )+y2 13 iti—i.
n .
0 otherwise.

The boundary curves have to bé-€ontinuous at the knaot; = 1/2 in order to get
continuous cross boundary tangents later, which results in

1,

by =5 (b5 + b%), (16)
whereb’ﬁ belongs to the joining curve piece constructed from the vertex neighborhood of
p;-
The piecewise cubic boundary curves of the macro-patch§scain now be calculated

by using Egs. (10), (13), (15) and (16) for each ventet M. They form a G-consistent
curve network.
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The first and second derivatives at the cornetsr?, lie in the image space df. It is
now possible to solvél 7) for the twist

t1

~I
Il

. with¢; = M!

Uili+1

: 0,0),i=1,...,n,
Ly
by observing that the control points (10), (13), (15) are constructed such that they lie in the
image space of , i.e., there exist some poinks, by, b, such that
Thy=bi,  Thy=bi,  Thy=b).
Due to the simple structure of the matii it is easy to verify that

~ 1 . .
by = E(bb +b57Y),

3i=oev+i (1_a)+ﬂ[cos(@n) + tan(T) sin(Z24=1)]

pj’
j=1

~ . ~ 1
by = yobly + y1by + 37200+ pi + i),

are solutions of these three equations.
It follows that

ort + 0%2% = 601 (b} — b)) + 240°(b), — 2b', + b))
= (-6 +240°)b)) + (60" — 480°)b), + 240°b},
= T[(~60 + 24(L+ yo) 8°)bl + (601 + (—48+ 24y1) @) B}

+ 8V2¢0(v + Di + pH_l)].
From Eq.(ll 7) the following expression of the twists is obtained:
t; =8y»@°(1 — 3a)v
L —24y,d0(1 —
T e i )

n

j:l
4 (69 + @4 — 49 2%)[cosZ=0 + tan() sin(=41)] -
J
n
+8720°%(p; + i), i=1....n. an

Since the method of this paper is an interpolation scheme,1 is generally chosen. In
order to avoid undulations of the boundary curves, for each vertex a set of three free shape
parameter$, y1, y2 (Yo =1 — y1 — y2) is available. As mentioned abovg,controls the
magnitude of the tangents amdg, y» the second derivatives and therefore the shape of the
curves, see also Section 9.
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7. Cross boundary tangents

Once C-consistent boundary curves have been found, the second step in constructing
a network of G continuous patches is to define the cross-boundary tanggnts(u;, 0)

and Mj,i‘_ll (0, u;) for each boundary curve of the curve network. The conditions on them
are three

— satisfy the G condition(ll ¢) along the boundary curve,

— satisfy the twist constraint at the end points,

— be consistent to the curve network.
With the curve network, the values of the cross-boundary tangent functions at the corners
are already fixed, see Fig. 6.

A convenient way to define cross-boundary tangents that enstie®@inuity is the
following:

My, (i, 0) = ®; (u;) M, (u;, 0) + ¥ (ui) Vi (uy),
M (0, 1) = i (i) My, (i, 0) — Wi (up) Viui), (18)

1

whereY; is some scalar function ardd; some vector function.

To see that (18) impliedl ), simply add the two equations in (18). To see ttigt) im-
plies (18), choos®; (u;) Vi (u;) = ®; (u;) M}, (u;, 0)— M2 (0, u;) = —D; (ui) M}, (u;, 0)+
Mllli+1(ui’ 0).

The degree off; andV; in (18) decides now about the degree of the surfac@&he
productcb,-M,ii is piecewise € cubic, see (8) and Section 6. Therefofey; should not
be of degree higher than 3. Due to the domain 4-split it will again be possible to construct
these functions continuous and piecewise polynomial of degree 1 and 2.

The function value®; (0) andV;(0) are now determined following (Loop, 1994). The
cross-boundary tangents have to correspond to the tangents of the boundary curve tangents
at the end points. The first equation of (18) evaluated at 0, gives

M, ,(0,0)=®;(0)M, (0,0)+ ¥ (0)V;(0)

sri =%+ vV, (19)

i i+
M (0.0)= 6(b"™ by)

i+1

M '0.0)= 6(b" ™ by)
e Ui_q

Fig. 6. Cross-boundary tangents at the vertices are fixed by the boundary-curves.
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in terms of Section 5, with the simplifying assumptign0) = ¥° for all i . Expanding (19)
by using (12) and (6) results in

0 6/3 27T(j—i)
1z VI(O)_S|n<n>Z —sin———p,.

Jj=1

An appropriate choice of© is therefore

Y0 = sin(z—n)
n

From the opposite end point, the produ¢tl)V; (1) can be obtained analogously, which
givesy; (1) = sm ~ wheren; is the order of vertexp;. Hence the function?; can be
chosen linear, Wh|ch is minimal degree:

lI/(u)—sm(2 )(l—u)—f—SIn(i )ui, u; €[0,1]. (20)

The functionV; cannot be taken linear, because it's derivative depends on the twists. When
differentiating the first equation of (18) with respectitoand evaluating at; = 0

(0.0) = &}(0) M, (0.0) + &; (O M}, (0.0) + ¥ (O V;(0)
+ W (O)V;(0). (21)

The derivativeV’;(0) appears in relation to the twigt = A, , . (0,0) =M, . (0.0).
It explains, why the cross-boundary tangents have to be constructed subject to the twists.
From (21) one gets therefore

u iU

1
Vi'(0) = —O[ti — ol - o%2 —wlv,(0)], (22)

wherew! = ¢/ (0) = sm(Z”) — sin(2") depends on.

V(1) andV;’(1) are known from the opposite vertgx. A Hermite interpolation of
these four valued;(0), V;’(0), V; (1), V;’(1) would result in a cubic polynomial. The
domain 4-split of the present method allows to lower the degree by one by tikiag a
piecewise € quadratic function requiring that; (3 ) = V;(3 7). In fact, as will be shown
in Section 8.3, it is only required that; is C°-continuous.

For the quadratic piece o¥; corresponding to the vertex one gets in terms of
Bernstein—Bézier representation the following control points:

6/3 Zn(j—i)

i
vh =
0= n

j=1
e 1
W=> 5 [(eqsl — 4890 +249°) tan(%) - Gw}}
j=1 7
21 (j — 4
X Ssm(%)pj + WV2¢O(P,-+1 —Pi-1);

; . 1- 1t
v, free subjecttd/; > =V; 5 )

ja

(23)
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In matrix form, the control points oF; are given by

o= V°p,
v1=V'p,
where
68 . [2n(j—1i
Vl.?z—ﬂ&n(M), i,j=1...,n,
n n

1 i B (27—

vij = 40 [(6051 — 48p° + 24¢°) tan(;) - Gw}} - sm(T>
4 1 ifj=i+1,

¢0y2¢ { 1 ifj=i—1.

As written abovey ; is only required to be &continuous, and therefore the valuevgfis
free. Nevertheless, in the example shown in Section 9, we have chésemm@nuousy ;
functions by takingﬂ'2 = %vll + %”li Wherev’i is known from the opposite vertgx.

Piecewise cubic cross-boundary tangents have been constructed in this section. How-
ever, the surface will only be piecewise quintic, because up to now, it is an open question
how to use the degrees of freedoms in order to obtain a local piecewise quartic surface.
This is subject of current research.

8. Macro-patches in Bézier form

From now up, the macro-patches are considered individually. The domain 4-split leads
to the construction of 4 triangular patches per macro-patch for which the Bézier control
points will be given in this section. The border and first inner row of control points of the
macro-patch can be found from the boundary curves (Section 6) and the cross-boundary
tangents (Section 7). They ensure thkj@in to the neighboring macro-patches. In order
to have an overall visually smooth surface, the remaining inner control points are used to
join the 4 sub-patches'@ontinuously. Six control points per macro-patch remain free for
local shape control.

8.1. Notations

A triangular Bézier patch of degrekis given by

Bu.v,wy= Y banBl wv,w), utv+w=1
i+j+=d
i,j.1=>0
whereu, v, w € [0, 1] are the barycentric coordinates of a point inside the domain triangle,
andb; are the Bézier control points. The basis functidsf§ , (u, v, w) = LPE i y) !
are known as generalized Bernstein polynomials. For more deta|Is about trlangular Bézier
patches, see (Farin, 1997; Hoschek and Lasser, 1993).
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a,,,=(0,0,1)

Fig. 7. Parameterization of the macro-pafdh labeling of sub-patches and derivative directions.

The 4 triangular Bézier patches of degree 5 which compose the macro/datoie
denoted bys?, §2, $3, §” and are parameterized as in Fig. 7.

The Bézier control points oM are therefore denoted resp. b%{,j.l)' S<2i,j.1)' S<3i,j.1)'
s 1) Wherei + j +1=5. uy = a1 — a; are vectors between the domain vertices
and define the directional derivativeéP,, M1(u, v, w) of M. Furthermore, letEy (1) =
apy(1—u) + ay41u, foru € [0, 1], define an edge function and let be the order of the
mesh vertex which is interpolated By (Ex (0)).

8.2. Finding boundary and first (row) derivative control points\éf

Let denote the piecewise cubic boundary curve by
>3 obEB3(2u) for u € [0, 31,

2 obRB32u—1) forueli, 1y,

M(Ex(u)) = { k=123, (24)

whereb?, b® are the control points of the two curve pieces, computed in Section 6.

17

The cross-boundary tangeMl;;Hl(u,- , 0) of Section 7 is here given by

[_Duk+2M](Ek(u)) = <Pk(u)[DukM](Ek(u)) + W) Vi(u), (25)
where
[Dy, M1(Ek (1))
632 (b ., — bEYB2(2 for 0,1,
:{ Z’Z—O( i ’R) ‘2( ) e [1 ) (26)
6> 7 o, —bB2(2u—1) foruel3,1],
is the derivative of\f (E; (1)) along the edgay,
2 . Lp2 1
T oV BA(2 for 0, 51,
Vi) = 212—0 Vv, b; (2u) u el 2] k=123, (27)
> ovRB2(2u—1) foruel}, 1],

is the cross-derivative function of Section 7, abgd ¥, are the scalar functions defined,
respectively, in Sections 3 and 7 by

cosﬁ—f(l—Zu)jLu foru € [0, 31,

2y 2u—1) foruelz, 1],

n

28
(1—u)+(1-cos (28)

D (u) = {
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Fig. 8. Boundary and first derivative control pointsMfcorresponding to boundamy .

lI/k(u)—SIn(i )(1—u)+sm( 2 )u u [0, 1]. (29)

Nk+1
Let us now consider the boundary &f corresponding tat; which is common to the
patchess® andS2. The control points are labeled as in Fig. 8.
A double degree elevation of (24) results in the control points of the piecewigaifitic
Bézier curve, which is the boundary curveMfcorresponding to directiom; :

$(5.0,0 =53
Sta10 = gbé + gbL,
Sta20 = ibé + §b£ + ibL, (30)
Sta0 = 130” + gb 110113,
5140 = gbé + EbL’ 510,50 = b3
Sé_i,i,o), i=0,...,5, are found analogously frobf, j=0,...,5.

The first row of inner control pOim%_,-,i,o), s(24_l.’l.,0), i=0,...,4,0f M can be found
by the cross-boundary derivatives
[—Duz M1(E1(u))
1037 ol i i1y — bls_ii.0)BH2u) foru € [0, 11,
1057 obf 10— bR i 0)Bf@u—1) forue(3,1].

The left hand-side of (31) can be found by combining (25) with (26)—(29). It is piecewise
cubic and must be degree elevated, before rearranging of (31) finally leads to

(31)

3c1,;  3c1,,
1 1 oL
@01 =5500 " 5 —b§ + ?b 10 Vg,
6c1+3 3—6¢c1,;, 36‘1 351 + 52 s1

1 1 L Ly L oL

$@1D) = 5410 T T4 by + 20 bi + b 80 ot 20°1
1+ 4c c1 ~|— l c $1+ 852

1 1 Ly L

5221 =5320 — z)bo 20 by b5 10 5+ 120 Y0
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351 + 52 51
v + 55V

+

60 602"
StLan =530 ~ 2301’1 43 4§Clb% + 6623 31’5 + Sljosz vf + 3Sl8; 2t
S04 =5(140) ~ bz + 130 + 91;—_0921)% (32)
and
%01 = 5500 — lObO + 130 + MZ)Szvg’
StaLy =510 — 2 4chbO + > 4gcsz 230”2 + 2 :;O?ﬂz”g + Sl;:)sz vy,
S22 = 5620~ obg - Zzoczbf : 24621’2 + 5608 + 6% (33)

s1+3s2 5 S1+52 g
t 760 11130 Y2

3—3c2 3 —6¢2 9 — 6¢2 52 s1 + 3s2
2 2

3—3c 3—3c
2 2 2,R 2 iy
S04 =5140 " T g by + 5 b3 +2 10 v,

wherec; = cos(%), 5= sin(%). The control points corresponding to the boundauigs
andug are obtained by shifting the indices in (30) and (32), (33) once and twice to the left.

8.3. Filling-in the macro-patches by piecewise quintic Bézier triangles

All control points, which are involved in joining the macro-patches pairwisea
highlighted in Fig. 9. In this section, it will be shown that it is possible to join the 4 sub-
patchess?, §2, 53, §™ with Cl-continuity and how the remaining control points are used
for that.

s Uy et

Fig. 9. Control points known from the boundary curves and their cross-boundary tangents, ensuring
pairwise G continuity between macro-patches.
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Vertex consistency and'@ontinuity at the edge mid-points

Two questions should be answered for the general understanding of the present
triangular interpolation scheme:

— The macro-triangle edge mid-points are vertices of order 6. Why don’t they present

the vertex consistency problem?

— Why using (the stronger)Cconditions for filling-in the macro-patches (instead of

G! conditions)?

In fact, both questions can be answered simultaneously: it turns out that the cross-
boundary tangents constructed in Section 7 already ensure continuity of the first partial
derivatives at the edge mid-points. To prove this, we temporarily switch to the notations of
Section 7. The partial derivatives around an edge mid-point are shown in Fig. 10.

We have to prove thaM to=M ,+1(z ,0), Mi~1(0,3 = mi- 10,37

ui—-1 Uji—-1

(continuity at inside one macro-patch) and 1(2, 0) = M; +11(0 5), M;l,_l(z, 0) =

Mi—1(0, %) (COhtIhUIty between the two macro- patcheSJommg at the common edge). The

ui—1
other identities follow from the &Econtinuity of the common boundary curve.

The continuity of the partial derivatives inside one macro-patch can easily be seen
from (18): sinced; (u;), M. i, 0), Wi(u;), Vi(u;) are aII continuous at;; = % then

M, +1(u, ,0) andM’ l(0 u,) are also continuous at =

It remains to prove the continuity of the partlal denvatlves between the joining macro-

patches We will prove the first |dent|tM’ 1(2, 0) = M! +11(0, %), the second identity
M (3.0)=M."1(0, 3) can be proven analogously

Sinceu;+1 = u; — u;1, it follows that M2 (0, $)=M;-10,3)— Mi1(0, 3). Inthis
last identity, we replacé/— 1,3 3) by its value from (18):

uj—1

wi2(0d)-w203)- o (o (3) - (o )]

14+1(

MToyMiTo M M '@ o)
ur—21 ’ }u'—21 '+1,»-" |+1 Ui, 4
< Ui
‘i-.""1 g L - nR i1y Ui
MG 0): M Gom Gom G0
|+1 - u|+1 ul—j",. Ui

Fig. 10. Partial derivatives at the edge mid-points.
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M
1 S

fonwe
[ s ] \

Fig. 11. The control points around macro-patch boundary mid-points form an affine transformation
of aregular 6-gon.

But @;(3) = 3, and M.~1(0, 3) = M}, (3,0) (the two macro-patches share the same
common G-continuous boundary curve), therefore:

. 1 1 A 1 1 . 1
Ml_l 0,=)=o;| =M (=,0 il =)Vl =)= z—}i—l -, 0).
( 2) <2> “’(2 )+ <2> (2) (2 )

Thus we have shown that all’!@ontinuity conditions around the edge mid-points are
already fulfilled by the cross-boundary tangents constructed in Section 7. Therefore there
is no vertex-consistency problem at these points, and it is natural to use the strdnger C
continuity conditions for filling-in the macro-patches. In other words, the 6 Bézier points
around an edge mid-point form an affine transformation of a regular 6-gon, as shown in
Fig. 11.

Computing the unknown Bézier points

The necessary and sufficient-€ontinuity conditions between two internal Bézier
patches inside one macro-patch are shown in Fig. 12: all pairs of adjacent triangles in
Fig. 12 must form a parallelogram.

From the previous proof, we know that the first and last pairs of adjacent triangles in
Fig. 12 already form parallelograms.

c d
a-b-c+d=0

Fig. 12. G-conditions between two adjacent quintic Bézier patches inside one macro-patch.
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Fig. 13. Four steps for filling-in the macro-patthwith C1-continuity: (a) choose the three twists of

S™, which are free for local shape control, (b) compute the third and fourth Bézier points along each
edge using the &Econtinuity conditions, (c) choose the three last free Bézier poins&'ofvhich are

also free shape parameters, (d) compute the remaining three Bézier points usirfgcthituity
conditions.

It remains to compute the free Bézier points such that the other three pair of triangles
along each edge inside on macro-patch also form parallelograms. This is be done in four
steps:
e choose the three twists points of the internal Bézier patch arbitrarily; these are free
shape parameters (see Fig. 13(a)),

e compute the third and fourth Bézier points along each internal curve joining two
Bézier patches using the second and fourth parallelogram conditions (see Fig. 13(b)),

e choose the remaining three unknown Bézier points of the central patches arbitrarily;
these are free shape parameters (see Fig. 13(c)),

e compute the three remaining unknown Bézier points of the outer patches using the
third parallelogram condition along each edge (see Fig. 13(d)).

9. Results

The first example shows how the new shape parameigng (2 =1 — y0 — 1)
can be used to remove unwanted undulations in the curve network interpolating the
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Interpolation as in [10], Interpolation with the new method,
a=1 =01 a=1,3=0.1,
Yo = —3.7, Y1 = 46, Y2 = 0.1

Fig. 14. Removing unwanted undulations in the interpolating curve network. The left part shows
the interpolation of an icosahedron with the method of (Loop, 1994). The right part shows the
interpolation with the new method presented in this article. The new shape parameters enable us
to remove the undulations. The control-polygons are in red, and the boundary curves are in blue.

input triangular mesh. The left part of Fig. 14 shows the result from (Loop, 1994) when
interpolating an icosahedron by choosiag= 1.0. The value of8 is 0.1. The right part
shows the curve network from the new interpolant presented in this paper, with the same
values fora and g, but with the new shape parametets= —3.7, y1 = 4.6, y» = 0.1.

The boundary curves are blue and the control-polygons are red. The bottom part of Fig. 14
shows one of the boundary curve in blue, with its control-polygon in red. The method
in (Loop, 1994) yields a single quartic control-polygon (bottom left), while our method
yields two cubic control-polygons joining*@ontinuously (bottom right). Since the same

B value was chosen in both methods, the first and second control-points at each end of
the boundary curves are the same in both results. Choosing negative values for the new
shape parametep enables to smooth out the control-polygon and the associated boundary
curve.

The color plate (Fig. 15) shows the interpolation of a deformed icosahedron ((a) and (b))
and of a triangular mesh with vertices of various orders ((c) and (d), vertices of orders 3,
4,5, 6, and 8 are visible on these views). For the surfaces shown in the color plate, the
six free control-points mentioned in section 8 were computed automatically based on the
minimization of an local energy functional.
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{b) Surface

(¢) Control-polygons {(d} Surface

Fig. 15. Color plate: (a) and (b) show the interpolation of a deformed icosahedron, where all vertices
have order 5, (c) and (d) show a surface interpolating a mesh with vertices of various orders. The
left part shows the control-polygons of the Bézier patches (in blue and red), and of the boundary
curves (in turquoise). The yellow points along the boundary curves are the edge middle-points. The
interpolated points are red.

10. Discussion and conclusion

This paper has introduced a new method for interpolating a triangular surface mesh
with arbitrary topological type by a piecewise quintié €pline surface. A &consistent
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curve network solves the vertex consistency problem. Each macro-patch depends on only
3 vertex neighborhoods. The interpolant is therefore local.

The main contribution of this paper is to base the interpolation method on a 4-split of
the domain triangles. It has been shown that it can be of benefit for several reasons: First,
each macro-patch consists of four quintic Bézier patches. The number of control points is
therefore high enough in order to solve thkiterpolation problem for arbitrary triangular
meshes. Second, the boundary curves of the macro-patches are allowed to be piecewise
polynomial curves. The degree of these curves can therefore be kept low.

Both characteristics of the 4-split imply finally that several degrees of freedom are
available for additional shape control. Thus, for a given input mesh quite different shapes
of the final surface are possible. This can go from a nearly flat surface imitating the control
net to a rounded and blew up surface. An in some sense optimal shape would probably
lie between it. The question of how to choose the degrees of freedom can not be treated
here in detall, since too much possibilities exist depending of the result one wishes to
obtain. However, in a first time one can proceed as follows: the degrees of freedom can be
separated into two groups whether they act on the boundary curves or inside a macro-patch.
The last group consists of the six control points per macro-patch which are highlighted in
Figs. 13(a) and 13(c). A minimization of an energy norm keeps the scheme local and gives
satisfactory results. The shape parameters of the boundary curves are the scalar values
a, B, 70, y1 € R (see Chapter 6). For each mesh vertex one set of these parameters is
available.« is generally set to be equal 1, otherwise the control net is not interpolated
but approximated by the surfagé controls the length of the tangent vectors at the vertex
andyyp, y1 determine the inner shape of the curve pieces incident to a vertex. It is obvious
that the curve network is of essential importance for the final surface shape. Up to now
we proceeded by choosing one glolgat- 0 by hand for the entire surface and then by
determiningyyo, y1 for each vertex by minimizing some constrained curve energy norm.
This simple heuristic has both advantages, it keeps the scheme local and linear.

However, ongoing research focuses on completely automatic ways to determine
these scalar parameters. The free control points can also be incorporated into these
considerations subject to smooth the surface. Future work will also focus on the proper
handling of open triangular meshes.
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