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Abstract

A piecewise quintic G1 spline surface interpolating the vertices of a triangular surface mesh of
arbitrary topological type is presented. The surface has an explicit triangular Bézier representation,
is affine invariant and has local support. The twist compatibility problem which arises when joining
an even number of polynomial patches G1 continuously around a common vertex is solved by
constructing C2-consistent boundary curves. Piecewise C1 boundary curves and a regular 4-split
of the domain triangle make shape parameters available for controlling locally the boundary curves.
A small number of free inner control points can be chosen for some additional local shape effects.
 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Defining surfaces from a set of points, which control in an intuitive way the form of a
surface due to Bernstein–Bézier or B-spline basis functions has been becoming one of the
most popular methods for modeling free form surfaces. The surface hereby is defined as
a regular polynomial (possibly rational) map of a planar domain, tessellated into a regular
grid of rectangles or triangles, resulting in a collection of tensor product or triangular
patches. Such surface definitions generally don’t allow the representation of surfaces of
arbitrary topological type.n-sided patches can fill inn-sided holes in rectangular patch
configurations and offer therefore the possibility to represent general closed surfaces or
surfaces with handles. Nevertheless if one wants to model entire surfaces withn-sided
patches, restrictions on the control net must be accepted.
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A widely accepted and popular way in defining surfaces without any limit of topologies
is the use of smoothly joined triangular patches, where each patch is defined over the
unit triangle. They have the advantage to provide a uniform description for all possible
topologies without any restriction on the number of faces that meet at a vertex, or on the
number of edges of the faces.

The paper is concerned with defining a geometrical smooth surface by interpolating a
triangulated set of points inR3. Such a triangulated point set which we callsurface mesh
should be 2-manifold and is allowed to represent surfaces of arbitrary topological type.
There is no restriction on the order of the mesh vertices (i.e., the number of faces that meet
at a vertex). Furthermore the surface mesh furnishes topology information, which is a data
structure generating adjacency informations relating vertices, edges and faces. We assume
that the surfaces mesh is already given.

Local smoothtriangular interpolantsof an arbitrary surface mesh have been developed
by many. These previous works are the most directly related to the results found here in the
sense that they interpolate a control net and not only approximate it. They can be divided
into different groups depending on how they solve the “vertex consistency problem”, which
occurs when joining with G1 continuity an even number of C2-patches around a vertex. The
earliest of these schemes are Clough–Tocher-like domain splitting methods (Farin, 1982;
Piper, 1987; Shirman and Séquin, 1987; Jensen, 1987). Since the surface mesh triangles
are divided into sub-triangles, we refer to them asmacro-triangles. Three quartic G1

patches per macro-triangle interpolating positions and normals are produced. One problem
is how to employ the free parameters in order to get pleasing shapes. Convex combination
schemes (Nielson, 1987; Hagen, 1986; Hagen and Pottmann, 1989; Gregory, 1986), blend
side-side or side-vertex operators in order to interpolate transfinite position, tangent or
curvature data of the boundary curves. They are rational patches without consistently
defined twists at the vertices. The use of singular parameterizations (Neamtu and Pluger,
1994) is another possibility but seems to have problems in defining pleasing shapes. The
boundary curve schemes (Peters, 1991a; Loop, 1994) first create C2-consistent boundary
curves and then fill in the patches polynomial. Furthermore some special interpolation
methods can be found in (Herron, 1985; Van Wijk, 1986; Sarraga, 1987). They all make
either restrictions on the mesh topology or on the input data, and are therefore not
general enough in order to be compared with the methods listed above. An overview
and comparison of most of these methods can be found in (Mann, 1992; Mann et al.,
1992).

The surface interpolation scheme of an arbitrary mesh of points inR3, which is presented
in this paper will satisfy the following requirements. They are desirable for the reasons that
will be explained below:

– the surfaceinterpolates the verticesof the given surface mesh. And if desired, the
interpolation condition can be relaxed in order to only approximate the mesh,

– the surface is G1 continuousfor visual smoothness,
– the surface ispiecewise triangularand the definition domain of the surface is the input

surface mesh itself,
– the surface can be of arbitrary topological type,
– the surface results of a local interpolation method, where only a few data of the
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corresponding mesh triangle and its neighbors is used. Global interpolation schemes
generally result in a big system of equations where all input data influences the shape
of every patch,

– an explicitclosed form polynomial and low degreeparameterization is given for each
patch. Fast surface evaluations and calculus on the surfaces, such as derivatives and
curvature, are important for rendering and interrogation purposes,

– the surface isaffine invariantand shape parametersare available for local shape
control.

An interesting triangular G1 surface spline, which motivated this work, was recently given
by Loop, and consists of triangular Bézier patches of degree six, one per macro-triangle.
All requirements are satisfied except one: interpolation is theoretically possible, but leads
to unwanted surface undulations in practice (Loop, 1994). These undulations are due to
severe constraints on the second derivatives along the boundary curves, at each end-point.
The surface mesh therefore only acts as a control mesh which is approximated and not
interpolated.

In this paper we present an interpolating quintic G1 triangular spline surface, which is
a generalization of Loop’s scheme. All requirements are fulfilled. Four Bézier patches per
macro-triangleare created by a local scheme. The basic idea, which allows to perform
interpolation without undulations, is to use a regular 4-split of the domain triangles. As
a consequence of the 4-split, the constraints between derivatives at each end-point of
the boundary curves are relaxed, and an interpolating curve network, without unwanted
undulations, can be built. This approach has never been used before for parametric G1

interpolation of triangulated surface meshes inR3. The advantage over the Clough–Tocher-
split is that tiny triangles are avoided, the sub-triangles are more regular. Mesh vertices
of arbitrary order are allowed. The vertex consistency problem is solved by constructing
C2-consistent boundary curves. The 4-split doesn’t solve the vertex consistency problem,
like the Clough–Tocher-split does, but it introduces enough degrees of freedom enabling
to produce this new quintic surface spline. It will furthermore been shown in this paper
that the additional vertices of order six which are introduced by the 4-split don’t present
the vertex consistency problem and that the four patches per macro-triangle join C1-
continuously to each other.

The paper is organized as follows. Section 2 reviews the G1 conditions when a pair of
parametric surfaces meet and when a collection of parametric patches meet at a corner.
The “vertex consistency problem” which arises when an even number of patches meet at
a corner is discussed. Section 3 briefly recalls the results of Loop, and shows an example
where unwanted oscillations occur when interpolating meshes with this method. Section 4
gives some general remarks on the 4-split of the macro-patches. The following Sections
5–8 concentrate on the different steps of the surface construction resulting in an explicit
representation of the four Bézier patches which interpolate the corners of a mesh triangle.
Examples illustrating different meshes interpolation are given in Section 9. Eventually,
Section 10 offers some concluding remarks and directions for future work.
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2. Notations and G1-conditions

2.1. Surface mesh

LetM denote the inputsurface mesh. It consists of a list of vertices and a list of edges.
Together they describe a 2-manifold mesh inR3 whose faces are triangles. The number of
faces/edges incident in one vertex is referred asorder of a vertex.

We aim to construct a piecewise triangular surfaceS that interpolates the given
verticesV . The spline surface is composed of triangularmacro-patchesMi which are
in one-to-one correspondence with the mesh facets. They are all polynomial images of the
unit triangle inR2, composed of four Bézier triangles each, joining G1 continuously. We
assume the reader is familiar with Bézier curves and surfaces (Farin, 1997; Hoschek and
Lasser, 1993).

The algorithm for constructing the spline surface consists mainly of three steps
– constructing boundary curves,
– constructing cross-boundary tangents,
– filling in the patches.

The boundary curves of the macro-patches are constructed in correspondence with a mesh
edge. Therefore there is a one-to-one correspondence between the mesh faces and the
macro-triangles ofS. It is therefore convenient for the following sections to choose a
parameterization of the macro-patchesMi around a common vertex, sharing pairwise a
common boundary as illustrated in Fig. 1.

All subscriptsi = 1, . . . , n are taken modulon, wheren is the order of the mesh vertex
corresponding toMi(0,0). The parameterui lies in the interval[0,1].

In order to allow a unified treatment of the surface patches, the surface meshM is
supposed to be closed. We shall point out that since the scheme is local, there should be no
theoretical difficulties in treating meshes with boundaries. This is left for further research.

2.2. G1 continuity between two adjacent patches

Consider two adjacent patchesMi−1(ui−1, ui) andMi(ui, ui+1) that share a common
boundary, i.e.,Mi−1(0, ui)=Mi(ui,0) for 06 ui 6 1.

Fig. 1. Parameterization of macro-patches around a vertex.
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Two adjacent patchesMi , Mi−1 join at a common boundary with G1 continuity if and
only if there exist three scalar functionsΦi , νi andµi such that

Φi(ui)M
i
ui
(ui,0)= νi(ui)Mi

ui+1
(ui,0)+µi(ui)Mi−1

ui−1
(0, ui), ui ∈ [0,1], (IC )

whereνi(ui)µi(ui) > 0 (preservation of orientation) andMi
ui
(ui,0)×Mi

ui+1
(ui,0) 6= 0

(well defined normal vectors).Mi
ui

denotes the partial derivative ofMi with respect to the
parameterui .

2.3. G1 continuity of a network of patches

If one wants to join several patches together in a network of patches with G1 continuity, it
can happen that satisfying condition(IC) for all edges can present serious difficulties. This
problem has been mentioned by several authors, first by Van Wijk (Van Wijk, 1986) and is
called “vertex consistency problem”. At a vertex, wheren patches meet, G1 continuity can
generally not be achieved by simply solving the linear system ofn equations(IC). This
system can have singularities, which are not easy to overcome. At such a vertex, the G1

continuity is directly related to the twists (the second order mixed partial derivatives at a
patch corner). For polynomial patches, which lie in the continuity class C2, both twists are
identical:

∂2Mi

∂ui∂ui+1
(0,0)= ∂2Mi

∂ui+1∂ui
(0,0), i = 1, . . . , n.

Therefore, additional conditions at the patch corner, which involve the twists, have to be
satisfied for G1 continuity of a network of patches:

νi(0)M
i
uiui+1

(0,0)+µi(0)Mi−1
ui−1ui

(0,0)

=Φ ′i (0)Mi
ui
(0,0)+Φi(0)Mi

uiui
(0,0)+ ν′i (0)Mi

ui+1
(0,0)+µ′i (0)Mi−1

ui−1
(0,0),

i = 1, . . . , n. (IT )

This system of equations is obtained by differentiating(IC) with respect toui taken at
ui = 0.

Now, for solving the G1 problem at a vertex two strategies can be employed:
– fix the boundary curves and solve(IT ) for the twists, or
– fix the twists and solve then equations(IT ) for the boundary curves.

Both strategies, which should maken patches joining G1 at a common vertex, will not give
a solution in general for the same reason. They lead to linear systems of equations with a
circulant matrix, which is singular ifn is even and greater than 2 (Van Wijk, 1986; Peters,
1991b; Loop, 1994).

2.4. C2-consistent boundary curves

A closer look to (IT ) shows that the right hand side only contains first and second
derivatives of the patch boundary curves at the common vertex. Whether or not the
linear system (IT ) can be solved depends therefore on the choice of the boundary
curves. Boundary curves are called to beC2-consistent, if the right hand side vectors
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[. . . ,Mi
ui
(0,0), . . .]T and[. . . ,Mi

uiui
(0,0), . . .]T lie in the image space of the rank deficient

system (IT ).
The present interpolation scheme solves the problem by first constructing C2-consistent

boundary curves of the patch network. This ensures G1 continuity at the patch vertices by
(IT ). In order to get an overall G1 surface,(IC) has to be satisfied between all adjacent
patches. We therefore define cross-boundary tangents along each edge satisfying(IC) and
(IT ). It has to be noticed, that both steps are not independent, the values of the cross-
boundary tangents at the vertices are already fixed by the boundary curves because of the
following equality:Mi

ui+1
(0,0)=Mi+1

ui+1
(0,0), i = 1, . . . , n.

3. Loop’s scheme

Loop constructs sextic G1 triangular Bézier patches in one-to-one correspondence with
the input mesh faces. In this section we briefly recall the method of Loop in order to point
out later the differences with our work. Details are in (Loop, 1994).

Boundary curves & vertex consistency

Around a vertexp of ordern, with neighbor verticespi of orderni , Loop uses the
following scalar functionsΦi, νi,µi in systems (IC ) and (IT ):

Φi(ui)= cos

(
2π

n

)
B2

0(ui)+
1

2
B2

1(ui)+
(

1− cos

(
2π

ni

))
B2

2(ui), (quadratic) (1)

νi(ui)=µi(ui)= 1

2
. (constant)

The following choice for the first three Bézier pointsf 0
i ,f

1
i ,f

2
i of the boundary curve

betweenp andpi enables us to find a solution to system (IT ) aroundp:

f 0
i = αp+

(1− α)
n

n∑
j=1

pj ,

f 1
i = αp+

1

n

n∑
j=1

(
1− α + β cos

(
2π(j − i)

n

))
pj , (2)

f 2
i =

1

3
p+ 1

6
pi−1+

1

3
pi +

1

6
pi+1.

The boundary curve betweenp andpi is of degree 4, and has control pointsf 0
i , . . . ,f

4
i ,

wheref 3
i ,f

4
i are constructed as̃f

0
i , f̃

1
i from the opposite vertexpi .

α andβ in (2) are shape parameters. There is no shape parameter forf 2
i . In fact, since the

boundary curve has degree 4, the middle control pointf 2
i must be computed symmetrically

from both end-points.
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Fig. 2. A typical case where undulations in the curve network happen, when interpolating with Loop’s
patches. The top shows the interpolation case,α = 1. To remove the oscillations, a smaller value ofα

has to be chosen, and the original mesh is not interpolated (bottom).

Cross-boundary tangents

The cross-boundary tangents are set to be equal

∂Hi

∂ui+1
(ui,0) =Φi(ui)∂Hi

∂ui
(ui,0)+Ψi(ui)V i (ui), (quintic)

∂Hi−1

∂ui−1
(0, ui) =Φi(ui)∂Hi

∂ui
(ui,0)−Ψi(ui)V i (ui), (quintic)

(3)

which ensures automatically that (IC ) is satisfied. The scalar functionΨi and the vector
function V i are built of minimal degree so as to interpolate the values of the cross-
derivatives and the twists at the verticesp andpi :

Ψi(ui) = sin
2π

n
(1− ui)+ sin

2π

ni
ui, (linear)

V i (ui) =
n∑
k=1

vki B
3
k (ui), (cubic)

(4)



738 S. Hahmann, G.-P. Bonneau / Computer Aided Geometric Design 17 (2000) 731–757

wherev0
i =

∑n
j=1V

0
ijpj and

v1
i =

n∑
j=1

κiV
0
ij + pj


2
3
Φi(0)
Ψi (0)

if j = i + 1,

−2
3
Φi(0)
Ψi (0)

if j = i − 1,
0 otherwise,

with

V 0
ij =

1

n
4β sin

2π(j − i)
n

and

κi = 1− 1

3Ψi(0)

[
tan

π

n

(
6Φi(0)−Φ ′i (0)

)+Ψ ′i (0)].
v2
i andv3

i are constructed as̃v0
i , ṽ

1
i from the opposite vertex.

Each triangular patchH must be of degree 6 because of the quintic cross-boundary
tangent functions (3). From the boundary curves (2 times degree elevated) and the cross-
boundary tangents the first two rows of Bézier control points ofH are calculated. The
remaining middle control point of each patch is chosen so thatH has quintic precision. In
two special cases Loop’s patches are quintic (the three patch vertices have same order) or
quartic (the three patch vertices are of order 6).

4. Regular 4-split

Subdivision of the domain into several pieces has been shown to be of benefit to
interpolation by piecewise polynomial curves or tensor product surfaces. The polynomial
degree can be kept low and additional degrees of freedom allow for shape improvements.

For the same purpose we split the domain triangles into 4 sub-triangles by joining the
edge midpoints together, see Fig. 3. Each triangularmacro-patchM, which interpolates
the 3 vertices of a surface mesh triangle, will be a piecewise C1 quintic surface.

For the following developments we first consider the macro-patch as a whole.
The boundary curves and cross-boundary tangents are thereforepiecewise polynomial

Fig. 3. 4-split of all domain triangles.
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functions. The four sub-patches are then considered independently when filling-in the
macro-patches with the C1 quintic Bézier triangles.

4-splitting the domain triangles for parametric G1 interpolation is the key issue of the
present method. It doesn’t cause additional problems, as one would probably think; in
contrary! We shall point out, that we don’t use the 4-split in order to solve the vertex
consistency problem as the Clough–Tocher methods do. The advantages are obvious,
because the number of degrees of freedom per macro-patch is increased. They can be used
to perform interpolation of vertices and to efficiently control the shape. The additional
vertices, which are created at the edge midpoints, are of order 6. But the vertex consistency
problem is implicitly solved by the special construction of the boundary curves and the
cross-boundary tangents of the macro-patches, as will be shown in Section 8.

5. Choice of scalar functionsΦi, νi ,µi

For the interpolating spline surface presented in this paper one of the most important
targets is to keep the total degree of the patches as low as possible. IfMi(ui, ui+1)

is a triangular surface of total parametric degreed , thenMi
ui
(ui ,0), Mi

ui+1
(ui,0), and

Mi−1
ui−1

(0, ui) are of degreed − 1 in Eq.(IC). When joining patches G1 continuously, the
conditions(IC) and (IT ) must be satisfied. It is important to choose the scalar valued
functionsΦi, νi ,µi such that they don’t raise the degree of the final patches. Ideally this
would mean to takeΦi linear andνi,µi constant and the degree of the patches would not
be raised when satisfying Eq.(IC).

One of the main contributions of this paper is to show that we can make it possible. First
important point is the choice ofΦi . For locality reasons, Loop is not able to takeΦi linear,
he takes it quadratic, which finally leads to patches of degree six, one degree more than our
proposal.

For symmetry reasons we chooseνi = µi = 1
2 and as a simplification we suppose that

Φ0 := Φi(0) andΦ1 := Φ ′i (0) for i = 1, . . . , n. These assumptions imply that the G1

conditions now state as follows:

Φi(ui)M
i
ui
(ui,0)= 1

2
Mi
ui+1

(ui ,0)+ 1

2
Mi−1
ui−1

(0, ui), (IIC )

νi(0)Mi
uiui+1

(0,0)+µi(0)Mi−1
ui−1ui

(0,0)=Φ ′i (0)Mi
ui
(0,0)+Φi(0)Mi

uiui
(0,0).

Varying i from 1 ton leads to the following linear system of equations:

T t̄ =Φ1r1+Φ0r2, (II T )

where

T =


1
2 0 · · · 0 1

2
1
2

1
2 · · · 0

. . .

0 · · · 1
2

1
2 0

0 · · · 0 1
2

1
2

 ,
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r1=



M1
u1
(0,0)

...

Mn
un
(0,0)

 , r2=



M1
u1u1

(0,0)

...

Mn
unun

(0,0)

 ,

and t̄ is the vector of the twists. In (Loop, 1994) it was now shown, that it is possible
to determineΦ0 andΦ1. For ui = 0 it is easy to see thatMi

ui+1
(0,0) = Mi+1

ui+1
(0,0).

Eqs. (IIC) (i = 1, . . . , n) taken atui = 0 are therefore transformed into the following
homogeneous system

Φ0 −1
2 0 . . . 0 −1

2
−1

2 Φ0 −1
2 0

0
. . .

. . .
. . .

...
... 0
0 −1

2
−1

2 −1
2 Φ0





M1
u1

...

Mn
un


=O, (5)

where the determinant is equal to

n−1∏
i=0

cos

(
2πk

n

)
−Φ0

for some integerk (Davis, 1979). A non-trivial solution exists if and only ifΦ0= cos(2πk
n
),

wheren is the order of the vertexui = 0. k = 1 was set to insure that theMi
ui

span a plane
and are ordered properly, thus

Φ0=Φi(0)= cos

(
2π

n

)
. (6)

In an analogous way, one obtains

Φi(1)= 1− cos

(
2π

ni

)
, (7)

whereni is the order of the opposite vertex.
If one takes the functionsΦi as linear blending functions, this would imply that

Φ1 = Φ ′i (0) in (II T ) depends on the orderni of the opposite vertex. This would make
the algorithm global instead of local, which is not acceptable. Since (Loop, 1994) wanted
a single polynomial patch per input triangle, he was forced to takeΦi quadratic in order to
separate vertex informations and to keep the algorithm local.

In our new method, the 4-splitting of domain triangles enables us to separate vertex
informations by taking the functionsΦi piecewise linear, continuous, defined on[0, 1

2]
and[12,1], with Φi(1

2)= 1
2, as shown in Fig. 4.

Φi(ui)=
{

cos2π
n
(1− 2ui)+ ui for ui ∈ [0, 1

2],
(1− ui)+ (1− cos2π

ni
)(2ui − 1) for ui ∈ [12,1].

(8)
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Fig. 4. Scalar valued functionΦi(ui), piecewise linear.

This choice is justified by the observations thatn = ni implies Φi(1) = 1 − Φi(0)
(and thereforeΦi is a single linear function) andn = ni = 6 impliesΦi(ui) = 1

2 for all
ui ∈ [0,1].

This choice forΦi would not have been possible without 4-splitting the domain
triangles.

6. Boundary curve network

The boundary curves of the macro-patches are constructed in correspondence to the
edges ofM. This is the most important step in the surface construction method, because
the shape of this curve network has great influence on the surface shape. The requirements
on the boundary curves are the following:

– interpolating the vertices ofM,
– satisfying the G1 conditions(II C), (II T ) at the end points,
– keeping the surface scheme local.

The locality requirement imposes to construct the curves such that they satisfy(IIC),
(II T ) at one vertex (end point) independently from the opposite vertex. The first and
second derivatives at the curve’s end points are involved in system(II T ). A polynomial
curve which separates these informations of both end points should be of degree> 5. The
advantage of the domain 4-split is now, that it allows to takepiecewise C1 polynomial
curves of degree3. Each boundary curve between two adjacent mesh vertices consists of 2
cubic pieces, which are constructed independently from each other.

Let denote the polynomial piece of the boundary curve between the neighboring vertices
v of ordern and the vertexpi of orderni in Bézier form by the control pointsbi0, . . . ,b

i
3,

see Fig. 5.{0, 1
2,1} is the subdivision of the parameter interval for the whole boundary

curve. Around each vertex ofM the control pointsbi0,b
i
1,b

i
2, i = 1, . . . , n, of all incident

boundary curves can be constructed independently from the joining curve piece of the
opposite vertices, i.e., the first and second derivatives can be isolated at each vertex. The
“midpoints” bi3 are constructed in order to have C1 joints between the two curve pieces.
These points correspond to the parameterui = 1

2, i.e., the midpoint of an edge ofM, where
the 4-split has been accomplished. The control points of the joining piecesbk0,b

k
1,b

k
2 and
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Fig. 5. Control points of the boundary curves at vertexv.

bk3 = bi3 are found when treating the boundary curve pieces incident inpi , wherek is the
index ofv relative to the neighborhood ofv.

For simplification it is convenient to adopt a matrix notation:

b̄0 :=
b1

0
...

bn0

 , b̄1 :=
 b1

1
...

bn1

 , b̄2 :=
 b1

2
...

bn2

 , p̄ :=
p1
...

pn

 ,
wherep̄ is referred as to thevertex neighborhoodof v.

The boundary curves have to be constructed in order to have one-to-one correspondence
between the macro-patches and the faces ofM. Therefore the boundary curve end points
should correspond to the vertices ofM. Looking at vertexv,

bi0= v, i = 1, . . . , n,

should hold for interpolation. This is a special case of the more general setting

bi0= αv + (1− α)
n∑
j=1

pj

n
, (9)

whereα ∈R is a shape parameter controlling the interpolation. In matrix representation (9)
corresponds to

b̄0= αv̄ +B0p̄, (10)

whereB0 is an× n matrix withB0
ij = 1−α

n
, i, j = 1, . . . , n, andv̄ = [v, . . . ,v]T.

The pointsbi1 define the tangent plane ofS and the first derivative at the boundary curve
end point:

r1
i :=Mi

ui
(0,0)= 6

(
bi1− bi0

)
. (11)

Additionally, they have to maker1 lying in the image space ofT in (II T ) and to satisfy
(IIC). A solution to that problem is to taker1 as the local averaging of the vertex
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neighborhood ofv which is known asfirst order discrete Fourier approximation tōp (Van
Wijk, 1986; Peters, 1993; Loop, 1994):

r1
i =

6β

n

n∑
j=1

cos

(
2π(j − i)

n

)
pj , i = 1, . . . , n, (12)

whereβ is a shape parameter controlling the magnitude of the tangent vectors.
Combining (11) with (10) and (12) gives

b̄1= αv̄ +B1p̄, (13)

where

B1
ij =

1− α + β cos
(2π(j−i)

n

)
n

, i, j = 1, . . . , n.

The pointsbi2 are related to the second derivatives at the boundary curve end point:

r2
i :=Mi

uiui
(0,0)= 12

(
bi2− 2bi1+ bi0

)
(14)

and have to lie in the image space ofT in (II T ).
It has been shown (Loop, 1994) thatd i = 1

6(2v + pi−1+ 2pi + pi+1) suffices to that
condition. Since any affine combination of points, which lie in the image space ofT also
does, let define

bi2 := γ0b
i
0+ γ1b

i
1+ γ2d

i , γ0+ γ1+ γ2= 1

= bi0+ γ1
(
bi1− bi0

)+ γ2
(
d i − bi0

)
,

whereγ0, γ1, γ2 are shape parameters controlling the value of the second derivative. The
matrix expression is given by

b̄2=
[
(γ0+ γ1)α + γ2

3

]
v̄ +B2p̄, (15)

where

B2
ij =

(γ0+ γ1)(1− α)+ γ1β cos
(2π(j−i)

n

)
n

+ γ2

{
1/6 if j = i − 1, i + 1,
1/3 if j = i ,
0 otherwise.

The boundary curves have to be C1-continuous at the knotui = 1/2 in order to get
continuous cross boundary tangents later, which results in

bi3=
1

2

(
bi2+ bk2

)
, (16)

wherebk2 belongs to the joining curve piece constructed from the vertex neighborhood of
pi .

The piecewise cubic boundary curves of the macro-patches ofS can now be calculated
by using Eqs. (10), (13), (15) and (16) for each vertexv ofM. They form a C2-consistent
curve network.
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The first and second derivatives at the corners,r1
i , r

2
i , lie in the image space ofT . It is

now possible to solve(II T ) for the twist

t̄ =
 t1...
tn

 , with t i =Mi
uiui+1

(0,0), i = 1, . . . , n,

by observing that the control points (10), (13), (15) are constructed such that they lie in the

image space ofT , i.e., there exist some points̃b
i

0, b̃
i

1, b̃
i

2 such that

T b̃
i

0= bi0, T b̃
i

1= bi1, T b̃
i

2= bi2.
Due to the simple structure of the matrixT , it is easy to verify that

b̃
i

0=
1

2

(
bi0+ bi−1

0

)
,

b̃
i

1= αv +
n∑
j=1

(1− α)+ β[cos
(2π(j−i)

n

)+ tan
(
π
n

)
sin
( 2π(j−i)

n

)]
n

pj ,

b̃
i

2= γ0b
i
0+ γ1̃b

i

1+
1

3
γ2(v + pi + pi+1),

are solutions of these three equations.
It follows that

Φ1r1+Φ0r2= 6Φ1(bi1− bi0)+ 24Φ0(bi2− 2bi1+ bi0
)

= (−6Φ1+ 24Φ0)bi0+ (6Φ1− 48Φ0)bi1+ 24Φ0bi2

= T [(−6Φ1+ 24(1+ γ0)Φ
0)bi0+ (6Φ1+ (−48+ 24γ1)Φ

0)̃bi1
+ 8γ2Φ

0(v + pi + pi+1)
]
.

From Eq.(II T ) the following expression of the twists is obtained:

t i = 8γ2Φ
0(1− 3α)v

+
n∑
j=1

−24γ2Φ
0(1− α)
n

+ (6Φ
1+ (24γ1− 48)Φ0)β

[
cos2π(j−i)

n
+ tan

(
π
n

)
sin
( 2π(j−i)

n

)]
n

pj

+ 8γ2Φ
0(pi + pi+1), i = 1, . . . , n. (17)

Since the method of this paper is an interpolation scheme,α = 1 is generally chosen. In
order to avoid undulations of the boundary curves, for each vertex a set of three free shape
parametersβ,γ1, γ2 (γ0 = 1− γ1− γ2) is available. As mentioned above,β controls the
magnitude of the tangents andγ1, γ2 the second derivatives and therefore the shape of the
curves, see also Section 9.
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7. Cross boundary tangents

Once C2-consistent boundary curves have been found, the second step in constructing
a network of G1 continuous patches is to define the cross-boundary tangentsMi

ui+1
(ui,0)

andMi−1
ui−1

(0, ui) for each boundary curve of the curve network. The conditions on them
are three

– satisfy the G1 condition(IIC) along the boundary curve,
– satisfy the twist constraint at the end points,
– be consistent to the curve network.

With the curve network, the values of the cross-boundary tangent functions at the corners
are already fixed, see Fig. 6.

A convenient way to define cross-boundary tangents that ensure G1 continuity is the
following:

Mi
ui+1

(ui ,0)=Φi(ui)Mi
ui
(ui,0)+Ψi(ui)V i (ui),

Mi−1
ui−1

(0, ui)=Φi(ui)Mi
ui
(ui,0)−Ψi(ui)V i (ui), (18)

whereΨi is some scalar function andV i some vector function.
To see that (18) implies(II c), simply add the two equations in (18). To see that(II c) im-

plies (18), chooseΨi(ui)V i (ui)=Φi(ui)Mi
ui
(ui,0)−Mi−1

ui−1
(0, ui)=−Φi(ui)Mi

ui
(ui ,0)+

Mi
ui+1

(ui,0).
The degree ofΨi andV i in (18) decides now about the degree of the surfaceS. The

productΦiMi
ui

is piecewise C0 cubic, see (8) and Section 6. Therefore,ΨiV i should not
be of degree higher than 3. Due to the domain 4-split it will again be possible to construct
these functions continuous and piecewise polynomial of degree 1 and 2.

The function valuesΨi(0) andV i (0) are now determined following (Loop, 1994). The
cross-boundary tangents have to correspond to the tangents of the boundary curve tangents
at the end points. The first equation of (18) evaluated atui = 0, gives

Mi
ui+1

(0,0)=Φi(0)Mi
ui
(0,0)+Ψi(0)V i (0)

⇔ r1
i+1=Φ0r1

i +Ψ 0V i (0) (19)

Fig. 6. Cross-boundary tangents at the vertices are fixed by the boundary-curves.
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in terms of Section 5, with the simplifying assumptionΨi(0)= Ψ 0 for all i. Expanding (19)
by using (12) and (6) results in

Ψ 0V i (0)= sin

(
2π

n

) n∑
j=1

6β

n
sin

2π(j − i)
n

pj .

An appropriate choice ofΨ 0 is therefore

ψ0= sin

(
2π

n

)
.

From the opposite end point, the productΨi(1)V i (1) can be obtained analogously, which
givesΨi(1) = sin 2π

ni
, whereni is the order of vertexpi . Hence the functionΨi can be

chosen linear, which is minimal degree:

Ψi(ui)= sin

(
2π

n

)
(1− ui)+ sin

(
2π

ni

)
ui, ui ∈ [0,1]. (20)

The functionV i cannot be taken linear, because it’s derivative depends on the twists. When
differentiating the first equation of (18) with respect toui and evaluating atui = 0

Mi
ui+1ui

(0,0)=Φ ′i (0)Mi
ui
(0,0)+Φi(0)Mi

uiui
(0,0)+Ψ ′i (0)V i (0)

+Ψi(0)V ′i (0). (21)

The derivativeV ′i (0) appears in relation to the twistt i =Mi
uiui+1

(0,0) =Mi
ui+1ui

(0,0).
It explains, why the cross-boundary tangents have to be constructed subject to the twists.
From (21) one gets therefore

V i
′(0)= 1

Ψ 0

[
t i −Φ1r1

i −Φ0r2
i −Ψ 1

i V i (0)
]
, (22)

whereΨ 1
i = Ψ ′i (0)= sin(2π

ni
)− sin(2π

n
) depends oni.

V i (1) andV i ′(1) are known from the opposite vertexpi . A Hermite interpolation of
these four valuesV i (0),V i ′(0),V i (1),V i ′(1) would result in a cubic polynomial. The
domain 4-split of the present method allows to lower the degree by one by takingV i as a
piecewise C0 quadratic function requiring thatV i (1

2
−
)= V i (1

2
+
). In fact, as will be shown

in Section 8.3, it is only required thatV i is C0-continuous.
For the quadratic piece ofV i corresponding to the vertexv one gets in terms of

Bernstein–Bézier representation the following control points:

vi0=
n∑
j=1

6β

n
sin

2π(j − i)
n

pj ,

vi1=
n∑
j=1

1

ψ0
i

[(
6φ1− 48φ0+ 24φ0) tan

(
π

n

)
− 6ψ1

i

]
× β
n

sin

(
2π(j − i)

n

)
pj +

4

ψ0
i

γ2φ
0(pi+1− pi−1),

vi2 free subject toV i

(
1

2

−)
= V i

(
1

2

+)
.

(23)
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In matrix form, the control points ofV i are given by

v̄0= V 0p̄,

v̄1= V 1p̄,

where

V 0
ij =

6β

n
sin

(
2π(j − i)

n

)
, i, j = 1, . . . , n,

V 1
ij =

1

ψ0
i

[(
6φ1− 48φ0+ 24φ0) tan

(
π

n

)
− 6ψ1

i

]
β

n
sin

(
2π(j − i)

n

)
+ 4

ψ0
i

γ2φ
0
{

1 if j = i + 1,
−1 if j = i − 1.

As written above,V i is only required to be C0-continuous, and therefore the value ofvi2 is
free. Nevertheless, in the example shown in Section 9, we have chosen C1-continuousV i
functions by takingvi2= 1

2v
i
1+ 1

2v
k
1, wherevk1 is known from the opposite vertexpi .

Piecewise cubic cross-boundary tangents have been constructed in this section. How-
ever, the surface will only be piecewise quintic, because up to now, it is an open question
how to use the degrees of freedoms in order to obtain a local piecewise quartic surface.
This is subject of current research.

8. Macro-patches in Bézier form

From now up, the macro-patches are considered individually. The domain 4-split leads
to the construction of 4 triangular patches per macro-patch for which the Bézier control
points will be given in this section. The border and first inner row of control points of the
macro-patch can be found from the boundary curves (Section 6) and the cross-boundary
tangents (Section 7). They ensure the G1-join to the neighboring macro-patches. In order
to have an overall visually smooth surface, the remaining inner control points are used to
join the 4 sub-patches C1-continuously. Six control points per macro-patch remain free for
local shape control.

8.1. Notations

A triangular Bézier patch of degreed is given by

B(u, v,w)=
∑

i+j+l=d
i,j,l>0

b(i,j,l)B
d
i,j,l (u, v,w), u+ v +w = 1,

whereu,v,w ∈ [0,1] are the barycentric coordinates of a point inside the domain triangle,
and bi are the Bézier control points. The basis functionsBdi,j,l (u, v,w) = i!j !l!

d ! u
ivjwl

are known as generalized Bernstein polynomials. For more details about triangular Bézier
patches, see (Farin, 1997; Hoschek and Lasser, 1993).
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Fig. 7. Parameterization of the macro-patchM , labeling of sub-patches and derivative directions.

The 4 triangular Bézier patches of degree 5 which compose the macro-patchM are
denoted byS1, S2, S3, Sm and are parameterized as in Fig. 7.

The Bézier control points ofM are therefore denoted resp. bys1
(i,j,l), s

2
(i,j,l), s

3
(i,j,l),

sm(i,j,l), wherei + j + l = 5. uk = ak+1 − ak are vectors between the domain vertices
and define the directional derivatives[DukM](u, v,w) of M. Furthermore, letEk(u) =
ak(1− u)+ ak+1u, for u ∈ [0,1], define an edge function and letnk be the order of the
mesh vertex which is interpolated byM(Ek(0)).

8.2. Finding boundary and first (row) derivative control points ofM

Let denote the piecewise cubic boundary curve by

M
(
Ek(u)

)= {∑3
i=0 b

L
i B

3
i (2u) for u ∈ [0, 1

2],∑3
i=0 b

R
i B

3
i (2u− 1) for u ∈ [12,1],

k = 1,2,3, (24)

wherebLi ,b
R
i are the control points of the two curve pieces, computed in Section 6.

The cross-boundary tangentMi
ui+1

(ui ,0) of Section 7 is here given by

[−Duk+2M]
(
Ek(u)

)=Φk(u)[DukM](Ek(u))+Ψk(u)V k(u), (25)

where

[DukM](Ek(u))

=
{

6
∑2
i=0(b

L
i+1− bLi )B2

i (2u) for u ∈ [0, 1
2],

6
∑2
i=0(b

R
i+1− bRi )B2

i (2u− 1) for u ∈ [12,1],
k = 1,2,3, (26)

is the derivative ofM(Ek(u)) along the edgeuk ,

V k(u)=
{∑2

i=0 v
L
i B

2
i (2u) for u ∈ [0, 1

2],∑2
i=0 v

R
i B

2
i (2u− 1) for u ∈ [12,1],

k = 1,2,3, (27)

is the cross-derivative function of Section 7, andΦk,Ψk are the scalar functions defined,
respectively, in Sections 3 and 7 by

Φk(u)=
{

cos2π
nk
(1− 2u)+ u for u ∈ [0, 1

2],
(1− u)+ (1− cos 2π

nk+1
)(2u− 1) for u ∈ [12,1],

(28)
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Fig. 8. Boundary and first derivative control points ofM corresponding to boundaryu1.

Ψk(u)= sin

(
2π

nk

)
(1− u)+ sin

(
2π

nk+1

)
u, u ∈ [0,1]. (29)

Let us now consider the boundary ofM corresponding tou1 which is common to the
patchesS1 andS2. The control points are labeled as in Fig. 8.

A double degree elevation of (24) results in the control points of the piecewise C1 quintic
Bézier curve, which is the boundary curve ofM corresponding to directionu1:

s1
(5,0,0) = bL0 ,
s1
(4,1,0) =

2

5
bL0 +

3

5
bL1 ,

s1
(3,2,0) =

1

10
bL0 +

3

5
bL1 +

3

10
bL2 ,

s1
(2,3,0) =

3

10
bL1 +

3

5
bL2 +

1

10
bL3 ,

s1
(1,4,0) =

3

5
bL2 +

2

5
bL3 , s1

(0,5,0) = bL3 .

(30)

s2
(5−i,i,0), i = 0, . . . ,5, are found analogously frombRj , j = 0, . . . ,5.

The first row of inner control pointss1
(4−i,i,0), s

2
(4−i,i,0), i = 0, . . . ,4, ofM can be found

by the cross-boundary derivatives

[−Du3M]
(
E1(u)

)
=
{

10
∑4
i=0(b

L
(4−i,i,1) − bL(5−i,i,0))B4

i (2u) for u ∈ [0, 1
2],

10
∑4
i=0(b

R
(4−i,i,1) − bR(5−i,i,0))B4

i (2u− 1) for u ∈ [12,1].
(31)

The left hand-side of (31) can be found by combining (25) with (26)–(29). It is piecewise
cubic and must be degree elevated, before rearranging of (31) finally leads to

s1
(4,0,1) = s1

(5,0,0)−
3c1

5
bL0 +

3c1

5
bL1 +

s1

10
vL0 ,

s1
(3,1,1) = s1

(4,1,0)−
6c1+ 3

40
bL0 +

3− 6c1

40
bL1 +

3c1

10
bL2 +

3s1+ s2
80

vL0 +
s1

20
vL1 ,

s1
(2,2,1) = s1

(3,2,0)−
1

20
bL0 −

1+ 4c1

20
bL1 +

c1+ 1

10
bL2 +

c1

10
bL3 +

s1+ s2
120

vL0
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+ 3s1+ s2
60

vL1 +
s1

60
vL2 ,

s1
(1,3,1) = s1

(2,3,0)−
3

20
bL1 +

3− 6c1

40
bL2 +

6c1+ 3

40
bL3 +

s1+ s2
40

vL1 +
3s1+ s2

80
vL2 ,

s1
(0,4,1) = s1

(1,4,0)−
3

10
bL2 +

3

10
bL3 +

s1+ s2
20

vL2 , (32)

and

s2
(4,0,1) = s2

(5,0,0)−
3

10
bR0 +

3

10
bR1 +

s1+ s2
20

vR0 ,

s2
(3,1,1) = s2

(4,1,0)−
9− 6c2

40
bR0 +

3− 6c2

40
bR1 +

3

20
bR2 +

s1+ 3s2
80

vR0 +
s1+ s2

40
vR1 ,

s2
(2,2,1) = s2

(3,2,0)−
1

20
bR0 −

2− c2

10
bR1 +

5− 4c2

20
bR2 +

1

20
bR3 +

s2

60
vR0

+ s1+ 3s2
60

vR1 +
s1+ s2

120
vR2 ,

s2
(1,3,1) = s2

(2,3,0)−
3− 3c2

10
bR1 +

3− 6c2

40
bR2 +

9− 6c2

40
bR3 +

s2

20
vR1 +

s1+ 3s2
80

vR2 ,

s2
(0,4,1) = s2

(1,4,0)−
3− 3c2

5
bR2 +

3− 3c2

5
bR3 +

s2

10
vR2 ,

(33)

wherecj = cos(2π
nj
), sj = sin(2π

nj
). The control points corresponding to the boundariesu2

andu3 are obtained by shifting the indices in (30) and (32), (33) once and twice to the left.

8.3. Filling-in the macro-patches by piecewise quintic Bézier triangles

All control points, which are involved in joining the macro-patches pairwise G1 are
highlighted in Fig. 9. In this section, it will be shown that it is possible to join the 4 sub-
patchesS1, S2, S3, Sm with C1-continuity and how the remaining control points are used
for that.

Fig. 9. Control points known from the boundary curves and their cross-boundary tangents, ensuring
pairwise G1 continuity between macro-patches.
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Vertex consistency and C1-continuity at the edge mid-points
Two questions should be answered for the general understanding of the present

triangular interpolation scheme:
– The macro-triangle edge mid-points are vertices of order 6. Why don’t they present

the vertex consistency problem?
– Why using (the stronger) C1 conditions for filling-in the macro-patches (instead of

G1 conditions)?
In fact, both questions can be answered simultaneously: it turns out that the cross-

boundary tangents constructed in Section 7 already ensure continuity of the first partial
derivatives at the edge mid-points. To prove this, we temporarily switch to the notations of
Section 7. The partial derivatives around an edge mid-point are shown in Fig. 10.

We have to prove thatMi
ui+1

(1
2
+
,0) = Mi

ui+1
(1

2
−
,0), Mi−1

ui−1
(0, 1

2
+
) = Mi−1

ui−1
(0, 1

2
−
)

(continuity at 1
2 inside one macro-patch) andMi

ui+1
(1

2,0) =Mi−1
ui+1

(0, 1
2), M

i
ui−1

(1
2,0) =

Mi−1
ui−1

(0, 1
2) (continuity between the two macro-patches joining at the common edge). The

other identities follow from the C1-continuity of the common boundary curve.
The continuity of the partial derivatives inside one macro-patch can easily be seen

from (18): sinceΦi(ui),Mi
ui
(ui,0),Ψi(ui),V i (ui) are all continuous atui = 1

2, then

Mi
ui+1

(ui,0) andMi−1
ui−1

(0, ui) are also continuous atui = 1
2.

It remains to prove the continuity of the partial derivatives between the joining macro-
patches. We will prove the first identity,Mi

ui+1
(1

2,0) =Mi−1
ui+1

(0, 1
2), the second identity

Mi
ui−1

(1
2,0)=Mi−1

ui−1
(0, 1

2) can be proven analogously.

Sinceui+1= ui −ui−1, it follows thatMi−1
ui+1

(0, 1
2)=Mi−1

ui
(0, 1

2)−Mi−1
ui−1

(0, 1
2). In this

last identity, we replaceMi−1
ui−1

(0, 1
2) by its value from (18):

Mi−1
ui+1

(
0,

1

2

)
=Mi−1

ui

(
0,

1

2

)
−
[
Φi

(
1

2

)
Mi
ui

(
1

2
,0

)
−Ψi

(
1

2

)
V i

(
1

2

)]
.

Fig. 10. Partial derivatives at the edge mid-points.
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Fig. 11. The control points around macro-patch boundary mid-points form an affine transformation
of a regular 6-gon.

But Φi(1
2) = 1

2, andMi−1
ui
(0, 1

2) = Mi
ui
(1

2,0) (the two macro-patches share the same
common C1-continuous boundary curve), therefore:

Mi−1
ui+1

(
0,

1

2

)
=Φi

(
1

2

)
Mi
ui

(
1

2
,0

)
+Ψi

(
1

2

)
V i

(
1

2

)
=Mi+1

ui+1

(
1

2
,0

)
.

Thus we have shown that all C1-continuity conditions around the edge mid-points are
already fulfilled by the cross-boundary tangents constructed in Section 7. Therefore there
is no vertex-consistency problem at these points, and it is natural to use the stronger C1-
continuity conditions for filling-in the macro-patches. In other words, the 6 Bézier points
around an edge mid-point form an affine transformation of a regular 6-gon, as shown in
Fig. 11.

Computing the unknown Bézier points
The necessary and sufficient C1-continuity conditions between two internal Bézier

patches inside one macro-patch are shown in Fig. 12: all pairs of adjacent triangles in
Fig. 12 must form a parallelogram.

From the previous proof, we know that the first and last pairs of adjacent triangles in
Fig. 12 already form parallelograms.

Fig. 12. C1-conditions between two adjacent quintic Bézier patches inside one macro-patch.
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Fig. 13. Four steps for filling-in the macro-patchM with C1-continuity: (a) choose the three twists of
Sm, which are free for local shape control, (b) compute the third and fourth Bézier points along each
edge using the C1-continuity conditions, (c) choose the three last free Bézier points ofSm, which are
also free shape parameters, (d) compute the remaining three Bézier points using the C1-continuity
conditions.

It remains to compute the free Bézier points such that the other three pair of triangles
along each edge inside on macro-patch also form parallelograms. This is be done in four
steps:
• choose the three twists points of the internal Bézier patch arbitrarily; these are free

shape parameters (see Fig. 13(a)),
• compute the third and fourth Bézier points along each internal curve joining two

Bézier patches using the second and fourth parallelogram conditions (see Fig. 13(b)),
• choose the remaining three unknown Bézier points of the central patches arbitrarily;

these are free shape parameters (see Fig. 13(c)),
• compute the three remaining unknown Bézier points of the outer patches using the

third parallelogram condition along each edge (see Fig. 13(d)).

9. Results

The first example shows how the new shape parametersγ0, γ1 (γ2 = 1 − γ0 − γ1)
can be used to remove unwanted undulations in the curve network interpolating the
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Fig. 14. Removing unwanted undulations in the interpolating curve network. The left part shows
the interpolation of an icosahedron with the method of (Loop, 1994). The right part shows the
interpolation with the new method presented in this article. The new shape parameters enable us
to remove the undulations. The control-polygons are in red, and the boundary curves are in blue.

input triangular mesh. The left part of Fig. 14 shows the result from (Loop, 1994) when
interpolating an icosahedron by choosingα = 1.0. The value ofβ is 0.1. The right part
shows the curve network from the new interpolant presented in this paper, with the same
values forα andβ , but with the new shape parametersγ0 = −3.7, γ1 = 4.6, γ2 = 0.1.
The boundary curves are blue and the control-polygons are red. The bottom part of Fig. 14
shows one of the boundary curve in blue, with its control-polygon in red. The method
in (Loop, 1994) yields a single quartic control-polygon (bottom left), while our method
yields two cubic control-polygons joining C1-continuously (bottom right). Since the same
β value was chosen in both methods, the first and second control-points at each end of
the boundary curves are the same in both results. Choosing negative values for the new
shape parameterγ0 enables to smooth out the control-polygon and the associated boundary
curve.

The color plate (Fig. 15) shows the interpolation of a deformed icosahedron ((a) and (b))
and of a triangular mesh with vertices of various orders ((c) and (d), vertices of orders 3,
4, 5, 6, and 8 are visible on these views). For the surfaces shown in the color plate, the
six free control-points mentioned in section 8 were computed automatically based on the
minimization of an local energy functional.
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Fig. 15. Color plate: (a) and (b) show the interpolation of a deformed icosahedron, where all vertices
have order 5, (c) and (d) show a surface interpolating a mesh with vertices of various orders. The
left part shows the control-polygons of the Bézier patches (in blue and red), and of the boundary
curves (in turquoise). The yellow points along the boundary curves are the edge middle-points. The
interpolated points are red.

10. Discussion and conclusion

This paper has introduced a new method for interpolating a triangular surface mesh
with arbitrary topological type by a piecewise quintic G1 spline surface. A C2-consistent
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curve network solves the vertex consistency problem. Each macro-patch depends on only
3 vertex neighborhoods. The interpolant is therefore local.

The main contribution of this paper is to base the interpolation method on a 4-split of
the domain triangles. It has been shown that it can be of benefit for several reasons: First,
each macro-patch consists of four quintic Bézier patches. The number of control points is
therefore high enough in order to solve the G1 interpolation problem for arbitrary triangular
meshes. Second, the boundary curves of the macro-patches are allowed to be piecewise
polynomial curves. The degree of these curves can therefore be kept low.

Both characteristics of the 4-split imply finally that several degrees of freedom are
available for additional shape control. Thus, for a given input mesh quite different shapes
of the final surface are possible. This can go from a nearly flat surface imitating the control
net to a rounded and blew up surface. An in some sense optimal shape would probably
lie between it. The question of how to choose the degrees of freedom can not be treated
here in detail, since too much possibilities exist depending of the result one wishes to
obtain. However, in a first time one can proceed as follows: the degrees of freedom can be
separated into two groups whether they act on the boundary curves or inside a macro-patch.
The last group consists of the six control points per macro-patch which are highlighted in
Figs. 13(a) and 13(c). A minimization of an energy norm keeps the scheme local and gives
satisfactory results. The shape parameters of the boundary curves are the scalar values
α,β, γ0, γ1 ∈ R (see Chapter 6). For each mesh vertex one set of these parameters is
available.α is generally set to be equal 1, otherwise the control net is not interpolated
but approximated by the surface.β controls the length of the tangent vectors at the vertex
andγ0, γ1 determine the inner shape of the curve pieces incident to a vertex. It is obvious
that the curve network is of essential importance for the final surface shape. Up to now
we proceeded by choosing one globalβ > 0 by hand for the entire surface and then by
determiningγ0, γ1 for each vertex by minimizing some constrained curve energy norm.
This simple heuristic has both advantages, it keeps the scheme local and linear.

However, ongoing research focuses on completely automatic ways to determine
these scalar parameters. The free control points can also be incorporated into these
considerations subject to smooth the surface. Future work will also focus on the proper
handling of open triangular meshes.
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