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11 Squash & Stretch

The most important principle is called squash and stretch. When an object
is moved, the movement emphasizes any rigidity in the object. In real life,
only the most rigid shapes (such as chairs, dishes and pans) remain so
during motion. Anything composed of living flesh, no matter how bony,
will show considerable movement in its shape during an action. For
example, when a bent arm with swelling biceps straightens out, only the
long sinews are apparent. A face, whether chewing, smiling, talking, or
Just showing a change of expression, is alive with changing shapes in the
checks, the lips, and the eyes. [26]

The most important rule to squash and stretch is that, no matter how
squashed or stretiched out a particular object gets, ils volume remains
constant. If an object squashed down without its sides streiching, it would
appear to shrink; if it stretched up without its sides squeezing in it would
appear to grow. Consider the shape and volume of a half filled flour sack:
when dropped on the floor, it squashed out to its fullest shape. If picked up
by the top comers, it stretched out 10 its longest shape. It never changes
volume. [(26]
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11 Squash & stretch
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Physical animation of the human body
_ ]

2 Dynamics much more
complex than
kinematics

= 320 pairs = 640
"voluntary" skeletal
muscles in the human
body move the various
parts of the body.




Forward and inverse dynamics

7 Inverse dynamics (Newton-Euler)

O from joint trajectories (positions, velocities, accelerations) to
joint (muscle) forces

O Useful for motion capture and control

2 Forward dynamics (Featherstone)

o from joint (muscle) forces to joint trajectories (positions,
velocities, accelerations)

O Useful for animation and simulation



Spatial vectors
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Spatial vectors

The spatial inertia of a ngid body isa tensor that maps its veloc-
ity to its momentum (which is a force vector). If a body has an

inertia of I and a velocity of v, then its momentum, h € F® is

h = Iv. (23)

Iw (25)

3‘+mcxcx' mex
mex? mil |

where m & the body’s mus, ¢ s 3 3-D vector locating the
body's center of masw, and I, 1s the body’s muational nerta
about 1ts center of mass. Observe that 2 ngd-body mernia 15 a
function of ten parametens: one in m, three in ¢, and wx in [,
More general kinds of sparal inern, such as amiculied-body
and operational-space mermia, do not have the specul form
shown m (25), and they can be funcoons of up to 21 mde-
pendent parameters.



Inverse dynamics : Newton-Euler

5 From accelerations to forces

5 Combine Newton and Euler equations of motion
O Linear acceleration

ft’ + f!r = It' a; + v; x Ii Vi

O Angular acceleration
5 As a result of direct forces on the joint  f;

o External forces fllr

7 And inertia matrix |
i



Inverse dynamics : Newton-Euler

The 1inverse dynamics of a general kinematic tree can
be calculated 1n three steps as follows:

1. Calculate the velocity and acceleration of each
body 1n the tree.

2. Calculate the forces required to produce these
accelerations.

3. Calculate the forces transmitted across the joints
from the forces acting on the bodies.



Inverse dynamics : Newton-Euler

Figure 5.1: Forces acting on body 4



Inverse dynamics : Newton-Euler

Step 1@ Let v, and a; be the velocity and acceleration of body i. The velocity
of any body in a Kinemsatic tree can be defined recursively as the sum of the
velocity of its parent and the velocity across the joint connecting it to its parent.
Thus,

O =0y +8q,. (vg=0) (5.7)

({Initial walues are shown in brackets.) The recurrence relation for accelerntions
= obtained by differentiating this equation, resulting in

ai=ay + 8§+ 8iq.  (ae=0) (5.8)

Sucossive iterations of these two formulae, with ¢ ranging from 1 to Ny, will
calculate the velocity and acceleration of every body in the tree,



Inverse dynamics : Newton-Euler

Step 2: Let f.” be the net force acting on body i. This force is related to the
acceleration of body ¢ by the equation of motion

f,-B =La;+v; < I;v;. (5.9)



Inverse dynamics : Newton-Euler

Step 3:  Referring to Figure 5.1, let £, be the force transmitted from body A{f)
to body @ across joint ¢, and Jet £ be the external foree (if any) acting on body
i. External forces can model a variety of environmental influences: foroe fielkds,
physical contacts, and so on. They are regarded as inputs to the algorithm;
that &, thedr vadues are sssumed 1o be known, The net foree on body 1 is then

=5+0'- ) ¥4
JEm(1)
which can be rearranged to give a recurrence relation for the Joint foroes:

1 SO B0y ¢ (5.10)

epln)



Inverse dynamics : Newton-Euler

Having computed the spatial force across each joint, it remains only to
calculate the generalized forces at the joints, which are given by

Ti=S!f, (5.11)



Inverse dynamics

lnvere dynamics 1 the problem of caculating the forces
required to produce 3 given acceleration, It i 2 relanvely
¢aty problem, and therefore, a good place to start, A model-
based mverse dynamics calculation can be expressed mathe-
matically as

¢ = [D{model, 9.49. 9). (1)

where 4, 4. 4. and £ denote veatons of omt poution, velocty,
acceleraton, and force varuble, repectively, and modd
denotes 3 data structure comtamng a dacnpoon of the robee,
The objective s to calculate the numenc value of 1D given the

numenc values of its arguments.



Inverse dynamics

1 function tau = ID( model, q, qd, qdd )

2 for i = 1:model. N

3 [ XJ, s{1} ] = jcalc( =model.pitch(i), q(i) );

4 vl = s{i)eqd(i);

5  Xup{i} = XJ * model.Xtree{i};

6 pi = sodel.parent(i);

7 if pi == 0

8 v{i} = vJ;

a a{i} = Xup{i} » [0;0;0;0;0,9.81) « s{ileqgad(i);
10 olse

1 v{i} = Xup{il}ev{pi} + vJ;

12 a1} = Xup{i)ealpi} + a{ileqdd(i) + crm{v{i})ev);
13 and

14 141} = model . I{1}sa{1} + cri(v{i})*model . I{3}ev{i};
15 end

16 for 1 = model N:-1:1

17 cauls,1) = s{4)}" « {5},

18  pi = model.parent(i);

19 ifpi "~ 0

20 f{pi} = 1{ps) » Xup{i}'et{i)};
21 end

22 ond




Recursive Newton Euler

]
i Wwp=-0
2 89 -~ -8,
3 for i » 1 to Ndo
4 Xy, 8;) = Scalecih; g
- Xy = XX )
& v, = X % * 9
7 8 = ‘X 8 * 8,G ¢ vV X0,q
¥ £, -~ .8, » v X1,
9 end
i0 for : » Nto ] do
i1 . ‘4‘ 3
12 If ALZ) # © then
i3 Oy = Ly = MHXL,
14 end
5 end




Forward dynamics

We have already exammed inverse dymamics mn some detail, so
let us now look at forward dynamics, which is the problem of
calculatmg a robot’s acceleranon reporse to apphed forces, In

anadogy with (1), we can express the forward-dynanacs prob-
lern mathenutically o

¢ = FD(model 4. 9. 7). (35)

where the obyective B o calculate the oumenc value of the
funcoon FID from the numenc values of its arguments, There

are many ways to do this, however, we shall conader only the
two most efficient ways.



Forward dynamics

The j'nim-q»cc-cqmu'm; of motion for 3 kinematic tree can
be expressed i the following canonical form:

t= Hj+C, (36)

where H 15 the jotnt-space inermu mamyx, and C &5 2 vector
contanng the Conolis, centnfugal, and gravitational terms, If
we can calculite H and C, then we can solve the forward-
dyrasmics problem smply by solvang (36) for g We already
know how to calculate C, because

C = [ID{moded, ¢, ¢.0) (37)

[ct. (1)), so the only remamng problem s how to calculate H.
The best algonthm for the job 1 called the composte-rigsd-
body algorichen, which we shall sow denve,



Composite rigid body

N0
for 1 = 1 to N do
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Forward dynamics: Featherstone

The articulated-body algorithm calculates the forward dynamics of a kinematic
tree in O(Ng) arithmetic operations, in exactly the manner outlined above. It
makes three passes over the tree, as follows: an outward pass (root to leaves) to
calculate velocity and bias terms; an inward pass to calculate articulated-body
inertias and bias forces; and a second outward pass to calculate the accelera-
tions.

Roy Featherstone. Rigid Body Dynamics Algorithms. Spinger,
2008.



Articulated body inertia

Articulated-body inertia is the inertia that a body appears to have when it is
part of a rigid-body system. Consider the rigid body B shown in diagram (a)
of Figure 7.1. The relationship between the applied force, f, and the resulting

acceleration, a, is given by the body’s equation of motion:

f=1a+p. (7.1)

The coeflicients T and p in this equation are the rigid-body inertia and bias
force, respectively, of body B. Now consider the two-body system shown in
diagram (b), in which a second body, B’, has been connected to B via a joint.
The effect of this second body is to alter the acceleration response of B, so that
the relationship between f and a is now given by

[=I"n+p“. (7.2)



Articulated body inertia

f=la+p f=1"a +p"

Figure 7.1: Comparing a rigid body (a) with an articulated body (b)



Forward dynamics: Featherstone

From the base to the tip

Pass 1 The job of the first pass is o caleulate the velocity-product acceler.
ations, ¢, and the rigid-body bias forces, p,, for use in later passes. Both are
functions of the body velocitios, vy, 30 it is neossary o calculate these as well,
The equations of the first pass are:

vy = 5.4, (V.32)
g = Sc i (7.53)
Uy = ) + Uy, {(vg = 0) (V.34)
Cp = C)+ vy X vy, (7.35)

p‘ = ¥ ' " Py - !‘:. (7,%)



Forward dynamics: Featherstone
T

From the tip to the base

Pass 2 The next step is to cakeulate the articulated-body mertias and biss
forces, I and p'. This is done using the assembly formulae in Eqgs. 7.21 to

7.24, which are mmdmul below,
= I+ Z;cm) ) (7.37)
pf‘ = Pt Lseniny 7§ (7.38)
I} = I} -1} 8,(S; I)'S,)~' s} I} (7.39)
p} = pi + ey + IS (ST1)S) vy - S p]). (7.40)

These caleulations are performed for each value of ¢« from Ny down to 1, This
implies that I and pf are not caleulated for every J, but only for those values

that satisfy A(j) # 0. If body i has no children then 1) = I, and p* = p,.



Forward dynamics: Featherstone
T

From the base to the tip

Pass 3 The third pass calculates the accelerations using Eqs. 7.30 and 7.31,
which we repeat here as
G = (S{I'S) N7 — S I (ary + <) — Si pl)) (7.41)
a; = ayg + ¢+ 5 q;. (ag = —a,) (7.42)
By initializing the base acceleration to —a,, rather than 0, we can simulate

the effect of a uniform gravitational field with a fictitious upward acceleration.
This is more efficient than treating gravity as an external force.



Paper 11 - Space-time constraints




