Computer Animation Lesson 10 - Rigid Body Dynamics Remi Ronfard, Nov 2019

Principle 11 - Solid drawing

11. Solid Drawing

From kinematics to dynamics

- Compute positions, velocities, angles and angular velocities as a function of time
- Integration of Newton's equations of motion

$$\begin{bmatrix} p(t) \\ v(t) \\ q(t) \\ \omega(t) \end{bmatrix} \rightarrow \begin{bmatrix} p(t + \Delta t) \\ v(t + \Delta t) \\ q(t + \Delta t) \\ \omega(t + \Delta t) \end{bmatrix}$$

Important concepts in dynamics

Forces

contact force

field force (gravity) torque

envir. force (bouyancy)

Center of mass and moment of inertia

low moment of inertia

center of mass

high moment of inertia

Newton's Law and Euler integration

- Euler method, named after Leonhard Euler, is a firstorder numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
- It is the most basic kind of explicit method for numerical integration of ordinary differential equations.

- Start at x0
- Compute
 acceleration from
 f = ma (Newton)
- Update velocity and position

$$\mathbf{x}' = \mathbf{x} + \mathbf{v} \cdot \Delta t$$

$$\mathbf{v}' = \mathbf{v} + \mathbf{a} \cdot \Delta t,$$

Ordinary differential equations

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- **x**(*t*): a moving point.
- **f**(**x**,*t*): **x**'s velocity.

Ordinary differential equations

Vector Field

The differential equation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t)$$

defines a vector field over x.

Ordinary differential equations

Euler's method

- Simplest numerical solution method
- Discrete time steps
- Bigger steps, bigger errors.

 $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \, \mathbf{f}(\mathbf{x}, t)$

Euler's method

Error turns x(t) from a circle into the spiral of your choice.

Midpoint method

a. Compute an Euler step $\Delta \mathbf{x} = \Delta t \, \mathbf{f}(\mathbf{x}, t)$ b. Evaluate f at the midpoint $\mathbf{f}_{\text{mid}} = \mathbf{f}\left(\frac{\mathbf{x} + \Delta \mathbf{x}}{2}, \frac{t + \Delta t}{2}\right)$

c. Take a step using the midpoint value

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}_{mid}$$

Other integration methods

- Euler's method is 1st Order.
- The midpoint method is 2nd Order.
- Just the tip of the iceberg. See Numerical Recipes for more.
- Helpful hints:
 - Don't use Euler's method (you will anyway.)
 - Do use adaptive step size.

Verlet integration

- Verlet integration was used by Carl Størmer to compute the trajectories of particles moving in a magnetic field (hence it is also called Störmer's method) and was popularized in molecular dynamics by French physicist Loup Verlet in 1967.
- It is frequently used to calculate trajectories of particles in molecular dynamics simulations and video games.
- Stability of the technique depends fairly heavily upon either a uniform update rate, or the ability to accurately identify positions at a small time delta into the past.

Verlet integration

- Current position
 is x
- Remember previous position x*'=2x-x'+a \ \ \ dt²
 Update x and x*
- Advantage : velocity cannot go wrong !
- Applications to particle systems, mass-spring models, rigid and soft bodies

Runge-Kutta integration

Physically-based animation

- Vertex x with mass m and forces f
- Newton's equation
 F = m a
- Integrate to find x(t+1) given x(t) and v(t) or x(t) and x(t-1)
- Applications to mass-spring systems, cloth animation, fluid animation
- Smoothed Particle
 Hydrodynamics
 (SPH)

Integrating Newton's laws of motion

A Newtonian Particle

- Differential equation: f = ma
- Forces can depend on:
 - Position, Velocity, Time

$$\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$$

Second-order motion equation

 $\ddot{\mathbf{x}} = \frac{\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)}{m}$ $\begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{f}/m \end{cases}$

Not in our standard form because it has 2nd derivatives

Add a new variable, v, to get a pair of coupled 1st order equations.

Phase space

 $\begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix}$ $\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix}$ $\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{f}/m \end{bmatrix}$

Concatenate **x** and **v** to make a 6-vector: *Position in Phase Space*.

Velocity in Phase Space: another 6-vector.

A vanilla 1st-order differential equation.

Particle structure

Forces acting on a particle

Rigid body motion

We represent orientation as a rotation matrix' $\mathbf{R}(t)$. Points are transformed from body-space to world-space as:

 $p(t) = \mathbf{R}(t)p_0 + x(t)$

Rigid body motion

• **R**(t) and $\omega(t)$ are related by: $\frac{d}{dt}\mathbf{R}(t) = \begin{pmatrix} 0 & -\omega_z(t) & \omega_y(t) \\ \omega_z(t) & 0 & -\omega_x(t) \\ -\omega_y(t) & \omega_x(t) & 0 \end{pmatrix} \mathbf{R}(t)$ $= \omega(t)^* \mathbf{R}(t)$

Rigid body motion

Moment of inertia

$$I(t) = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$

diagonal terms off-diagonal terms $I_{xx} = M \int_{V} (y^2 + z^2) dV$ $I_{xy} = -M \int_{V} xy dV$

Torque

Rigid body equation of motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ \mathbf{R}(t) \\ \mathbf{M}v(t) \\ \mathbf{I}(t)\boldsymbol{\omega}(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \boldsymbol{\omega}(t)^* \mathbf{R}(t) \\ F(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

Paper 10 - Artist-directed dynamics

Figure 1: Artist-Directed Dynamics provides an interactive workflow with sparse keyframing, simulation, and example artwork. After creating an expressive walk with keyframes for hand and feet we add a single keyframe to the neck to introduce overlap (a); add two art examples to transform the motion to a sad walk (b, left); or two alternate poses for a sneak walk (b, right).