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Principle 11 - Solid drawing

11.Solid Drawing



From kinematics to dynamics
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Important concepts in dynamics
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Newton’s Law and Euler integration
T

2 Euler method, named after
Leonhard Euler, is a first-
order numerical procedure
for solving ordinary
differential equations (ODEs)
with a given initial value.

o It is the most basic kind of
explicit method for numerical
integration of ordinary
differential equations.
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Start at xO

Compute
acceleration from
= ma (Newton)

Update velocity
and position
X=x+v' /N

v=v+a A



Ordinary differential equations

x = f(x.7)

* X(7): a moving point.

* f(x,0): x’s velocity.




Ordinary differential equations
Vector Field

The differential
equation

x = f(x,1)

defines a vector
field over x.




Ordinary differential equations

Start Here

Pick any starting point,
and follow the vectors.




Euler’s method

Simplest numerical
solution method

Discrete time steps

Bigger steps, bigger
errors.

X(I+ A1) =x(1)+ Atf(x.,1)



Euler’s method

Error turns x(t) from a

circle into the spiral of
your choice.




Midpoint method

a. Compute an Euler step
Ax = Arf(x.,1)

b. Evaluate I at the midpoint

_ (x+Ax t+Ar
lmid =1
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¢. Take a step using the
midpoint value
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X(7+ At =x(1)+ At




Other integration methods

* Euler’s method is Isf Order.
* The midpoint method is 2nd Order.

* Just the tip of the iceberg. See
Numerical Recipes for more.

* Helpflul hints:

— Don’t use Euler’s method (you will
anyway.)

— Do use adaptive step size.




Verlet integration

5 Verlet integration was used by Carl Stermer to compute
the trajectories of particles moving in a magnetic field
(hence it is also called Stérmer's method) and was

popularized in molecular dynamics by French physicist
Loup Verlet in 1967.

o It is frequently used to calculate trajectories of particles
in molecular dynamics simulations and video games.

o Stability of the technique depends fairly heavily upon
either a uniform update rate, or the ability to
accurately identify positions at a small time delta into
the past.




Verlet integration
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2 Applications to
particle systems,
mass-spring models,

. rigid and soft

X =X

7 Update x and x* bodies

3 Remember

previous position
X>k'= 2x-x +a A



Runge-Kutta integration
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Physically-based animation

7 Vertex x with mass m

0 Applications to
and forces f PP

mass-spring systems,

-~ Newton’s equation cloth animation,
= ma fluid animation
- Integrate to find 5 Smoothed Particle

x(t+1) given x(t) and Hydrodynamics
v(t) or x(t) and x(t-1) (SPH)



Integrating Newton’s laws of motion
T

A Newtonian Particle

* Differential equation: f = ma
* Forces can depend on:

- Position, Velocity, Time

. f(X,X,1)
)

m




Second-order motion equation

Not 1n our standard form
because 1t has 2nd
derivatives

Add a new vanable, v, to gel
a pair of coupled 1st order
equations.




Phase space

Concatenate x and v to make
a 6-vector: Position in Phase
Space.

Velocity 1n Phase Space:
another 6-vector.

A vanilla 1st-order differential
equation.




Particle structure
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Forces acting on a particle

* Constant gravity

* Position/time dependent force fields

* Velocity-Dependent drag

* n-ary Springs




Rigid body motion

We represent orientation as a rotation matrix
R(7). Points are transformed from body-space to
world-space as:

p(t) = R(@)py +x(1)




Rigid body motion

R(7) and «(r) are related by:
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Rigid body motion




Moment of inertia
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Rigid body equation of motion
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Paper 10 - Artist-directed dynamics

Artist-Directed Dynamics for 2D Animation
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Figure 11 Artist-Direcred Dynamics provides an interactive workflow with sparse beyframing, simularion, and example artwork. After
crearing an expressive walk with kevframes for hand and feer we add a single keyframe 10 the neck 1o inrroduce overlap (a); add rwo an
examples 1o rransform the motion 1o a sad walk (b, ket ); or two alrernaze poses for a sneak walk (& righed



