Computer Animation
Lesson 3 - Animation curves

Remi Ronfard, Nov 2019



Animation curves
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Source: Koyama and Goto. OptiMo: Optimization-Guided Motion Editing
for Keyframe Character Animation. CHI 2018.



Animation and interpolation

]
7 Keyframe

e Secries of pairs (ime, parameter values)

@ interpolata inbetwean ClnimCIﬁOn
. ‘ ~ How to
| !\ —— L 0\ f,'—}—'\b . I
I r“" J Interpolate
( t 4 i motion between
oy 10 00 L e okeied g | by 7120 key-frq meS



Interpolation of translation
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Hermite splines
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Hermite polynomials
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Catmull-Rom splines

@ Derived from Hermite splines

@ Approximate tangents using control points
D: — %(Piﬂ - Pi l)

@ Arbitrary first and last points




Bezier curves, B-splines and NURBS
.,
o Bezier: Piece-wise
polynomials with
tangent continuity

° N
o B-splines: control //'\\ N\ RN
points, arcs and curves  “ '
2 NURBS: piece-wise . "
rational curves, i.e. S O~
projective splines in .

projective coordinates



Bezier curves, B-splines and NURBS




Three-dimensional interpolation




Interpolation of rotations
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Quaternion interpolation

q = [W- "1 V= (\ v, :). w = scalar

Arbitrary axis Angle of rotation
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Quaternion interpolation

1. Use a quaternion to represent the rotation.

2. Generate a temporary quaternion for the change from
the current orientation to the new orientation.

3. PostMultiply the temp quaternion with the original
quaternion. This results in a new orientation that

combines both rotations.

4. Convert the quaternion to a matrix and use matrix
multiplication as normal.



Spherical interpolation
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o SLERP : Interpolation on the sphere of unit

quaternions
2 LERP : Linear interpolation then normalization

2 US patent by Budge (2007): Fast approximation
to the spherical linear interpolation function



http://www.patentstorm.us/inventors-patents/William_Budge/4137019/1.html

Equivalence between Euler angles and quaternions
N

If you have three Euler angles (a, b, ¢),
then you can form three independent quatemions.

Qx = [ cos(a/2), (sin(a/2), 0, 0) ]
Qy =[ cos(b/2), (0, sin(b/2), 0) ]
Qz = [ cos(c/2), (0, 0, sin(c/2)) ]

And the final quaternion is obtained by Qx * Qy * Qz.



Rigid motion interpolation

2 Screw Theory : we can represent any movement of
a solid body by a single operation which combines
both the rotation and the translation.

O As Plucker coordinates.

O As Dual Quaternions.
O Using Motor Theory based on Clifford Algebra.

O More about this in Lessons 11 and 12


http://www.euclideanspace.com/maths/geometry/elements/line/plucker/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/other/dualQuaternion/index.htm
http://www.euclideanspace.com/maths/algebra/clifford/geometry/transforms/motors/index.htm
http://www.euclideanspace.com/maths/algebra/clifford/index.htm

Interpolation of matrices

7 Transformation matrix T, = [SR|1] with 12 parameters

2 Non independent

5 3 translations, 3 rotations, 3 re-scalings
7 Better to control them separately

o Automatic weight computation

2 Wang et Philips, Multi-weight enveloping: least-squares
approximation techniques for skin animation, SCA 2002



Dual quaternion interpolation

o Skinning with Dual Quaternions

Ladislav Kavan, Steven Collins, Jiri Zara, Carol O'Sullivan.
Symposium on Interactive 3D Graphics and Games, 2007.


http://isg.cs.tcd.ie/projects/DualQuaternions/
http://isg.cs.tcd.ie/projects/DualQuaternions/

Dual quaternion interpolation

Geometric Skinning with Dual Quaternions

L. Kavan, S. Collns, J. Zara, C. O'Sullivan

Trinity College Dublin
Czech Technical University in Prague




Timing curves




Slow-in and slow-out

e We want to control the velocity of a moving object along a
given path (spline)

@ Use arclength parameterization

@ Apply velocity control as s(t) with s = 0 at starting point
and s = 1 at end point

Vvl




Principle 3 - Timing







Principle 3 - Timing

Timing , or the speed of an action, is an important principle because it
gives meaning to movement-- the speed of an action defines how well the
idea behind the action will read to an audience. It reflects the weight and
size of an object, and can even carry emotional meaning.




Paper 3. Motion doodles (2004)

N

To appear in the ACM SIGGRAPH conference proceedings

Motion Doodles: An Interface for Sketching Character Motion

Matthew Thome David Burke Michiel van de Panne

University of British Columbia*



Paper 3. Motion doodles (2004)
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Figuee 7: Segmenting e motion sketch mpet.



Paper 3. Motion doodles (2004)

1) Description

2) Clarity of Exposition

3) Quality of References

4) Reproducibility

5) Strengths and weaknesses
6) Rating (1-5)



Paper 3. Motion doodles (2004)

1) Problem statement

2) Scientific contributions
3) Experimental validation
4) Limitations

5) Impact



