Virtual Cinematography

Theory and Practice for Automatic Real-Time Camera Control and Directing

Liwei He

Microsoft Research

http://research.microsoft.com/users/lhe

Motivation

- There are 3 elements in computer graphics
 - lights, scene objects, and
 - the camera (focus of this talk)
- ©Camera control is hard (7 DOFs)
 - -position (3), direction (3), field of view (1)
- We may learn from cinematography

Roles in cinematography

- Cameraman
 - Position and move the camera
- Film editor
 - Keep the film to proper length
 - Decide shot transitions

MHigh-level responsibilities

- Script writer and director
 - Story-telling

Camera control level 1

- Input: camera position and direction
- ©Output: camera transformation
- MApplication: low-level graphics library routines (Direct3D)

Camera control level 2

- Input: show both A and B, follow C, etc.
- MOutput: camera position and direction
- MApplication: 3D game, computer animation package

Camera control level 3

- Input: high-level user directions
 - show a conversation
 - show a car chase scene
- ©Output: a sequence of level 2 camera spec
- MApplications: graphical chat, teleconferencing, Virtual Reality games

Camera control level 3 (cont.)

- MEncodes cinematographic expertise
 - -an interesting problem in itself
- Provides an interface that is
 - -real-time
 - -visually entertaining
 - -more informative

Principles of Cinematography

Film structure

Camera distance

Close up

Close shot

Medium shot

Full shot

Long shot

The line of interest

External camera

External camera

Internal camera

Apex camera

Moving cameras

Some rules in film editing

- MDon't cross the line of interest
- Mayoid jump cuts
- Let the actor lead
- WBreak movement

Don't cross the line of interest

Some rules in film editing

- MDon't cross the line of interest
- Avoid jump cuts
- Let the actor lead
- WBreak movement

Avoid jump cut

Some rules in film editing

- **™**Don't cross the line of interest
- Mayoid jump cuts
- Let the actor lead
- **™**Break movement

Two-person conversation

Three-person conversation

Three spaces

The universe space

Three spaces

The eye space (z-axis is the look at direction)

Three spaces

The screen space (screen is ctan(fov/2) away from eye point)

Given eye position P_{from} , a look at direction \hat{T}

Want a rotation matrix R and a translation to transform a vector from universe space to eye space

But this is not unique

But this is not unique

But this is not unique

We will need to specify an up vector \hat{U} , usually [0,1,0]

In eye space Z-axis is \hat{T} X-axis is $\hat{V} = \hat{U} \times \hat{Z}$ Y-axis is $\hat{U}' = \hat{T} \times \hat{V}$ Rotation matrix $R_{3\times3} = \begin{vmatrix} \hat{V} & \hat{U} & \hat{T} \end{vmatrix}$ Translation is -P_{from} Translation is -P_{from}

Internal close-up of actor A

Look at [x_{at},y_{at}] transformation

Look at [x_{at},y_{at}] transformation

 $H = [x_{at}, y_{at}, ctan(fov/2)]$

Solve \hat{T} from the following equations:

$$\hat{H} \cdot [0,0,1] = \hat{A} \cdot \hat{T}$$

$$\hat{H} \cdot [0,1,0] = \hat{A} \cdot \hat{U}'$$

$$\hat{T} \cdot \hat{U}' = 1$$

External of actor A and actor B

Look at $[x_A, y_A]$ and $[x_B, y_B]$

Look at $[x_A, y_A]$ and $[x_B, y_B]$

Medium panning shot of actor A

References

- WJim Blinn's CG&A '88 article
 - —Where am I? What am I looking at?
- Steve Drucker's Interactive 3D '92, '94, '95 papers
 - -Cast camera positioning as an optimization problem

System Design

Overall system diagram

At each time step

- 1. Application generates events to VC
 - (subject, verb, object)
- 2. VC determines
 - camera specifications
 - acting hints
- 3. Renderer outputs the image

At each time step

- 1. Application generates events to VC
 - (subject, verb, object)
- 2. VC determines
 - camera specifications
 - acting hints
- 3. Renderer outputs the image

At each time step

- 1. Application generates events to VC
 - (subject, verb, object)
- 2. VC determines
 - camera specifications
 - acting hints
- 3. Renderer outputs the image

A networked virtual party game

Actors are simulated

- WWalk, converse, look around, drink, etc.
- Can be controlled by the users

Networked virtual party game

Inside the Virtual Cinematographer

VC architecture

VC architecture

Camera modules

- ☐ Geometric placement of specific cameras for each shot
- Choose the side of the line of interest
- MInfluence acting

Camera module: ext(B,A)

Static camera modules

Moving camera modules

Camera modules

- Geometric placement of specific cameras for each shot
- Choose the side of the line of interest
- MInfluence acting

Don't cross the line of interest

Camera modules

- Geometric placement of specific cameras for each shot
- ©Choose the side of the line of interest
- MInfluence acting

Acting hints

VC architecture

Previous works

- Dave Christianson's AAAI '96 paper
 - -Declarative camera control for automatic cinematography
 - An off-line algorithm
 - -Need to know all events ahead
 - –Use plan algorithms in AI

Film idioms

- ©Capture a particular type of scene
- Register relevant events
- Select shot types
- Determine the transitions between shots

Hierarchical idiom structure

Hierarchical idiom structure

- Mayoids exponential growth of states
- MAllows expertise to be reused
- Provides robustness

3Talk idiom

Invoking a sub-idiom ext(A,B) ext(B,A) ext(B,A) 2Talk (A, B ext(A,B) 2Talk

Contributions

- Real-time camera control
 - lightweight
 - automatic camera placement
 - automatic shot transitions
- Do a reasonable job
 - not to replace human in computer animation

Work in Progress

Camera control for chat

Camera control for live meeting

Image after warping

Camera control for classroom

- Multiple cameras per classroom
 - -Lecturer cameras
 - -Audience camera
- WUse audio and vision techniques to
 - Track the lecturer
 - -Activate the audience camera

Dramatic lighting

Virtual Cinematography

Theory and Practice for Automatic Real-Time Camera Control and Directing

Liwei He

Microsoft Research

http://research.microsoft.com/users/lhe