Virtual Cinematography Theory and Practice for Automatic Real-Time Camera Control and Directing Liwei He Microsoft Research http://research.microsoft.com/users/lhe ### Motivation - There are 3 elements in computer graphics - lights, scene objects, and - the camera (focus of this talk) - ©Camera control is hard (7 DOFs) - -position (3), direction (3), field of view (1) - We may learn from cinematography # Roles in cinematography #### - Cameraman - Position and move the camera - Film editor - Keep the film to proper length - Decide shot transitions #### MHigh-level responsibilities - Script writer and director - Story-telling ### Camera control level 1 - Input: camera position and direction - ©Output: camera transformation - MApplication: low-level graphics library routines (Direct3D) ### Camera control level 2 - Input: show both A and B, follow C, etc. - MOutput: camera position and direction - MApplication: 3D game, computer animation package ### Camera control level 3 - Input: high-level user directions - show a conversation - show a car chase scene - ©Output: a sequence of level 2 camera spec - MApplications: graphical chat, teleconferencing, Virtual Reality games # Camera control level 3 (cont.) - MEncodes cinematographic expertise - -an interesting problem in itself - Provides an interface that is - -real-time - -visually entertaining - -more informative # Principles of Cinematography ### Film structure ### Camera distance Close up Close shot Medium shot Full shot Long shot ### The line of interest ### External camera ### External camera ### Internal camera # Apex camera # Moving cameras # Some rules in film editing - MDon't cross the line of interest - Mayoid jump cuts - Let the actor lead - WBreak movement ### Don't cross the line of interest # Some rules in film editing - MDon't cross the line of interest - Avoid jump cuts - Let the actor lead - WBreak movement # Avoid jump cut # Some rules in film editing - **™**Don't cross the line of interest - Mayoid jump cuts - Let the actor lead - **™**Break movement # Two-person conversation # Three-person conversation # Three spaces The universe space ### Three spaces The eye space (z-axis is the look at direction) ### Three spaces The screen space (screen is ctan(fov/2) away from eye point) Given eye position P_{from} , a look at direction \hat{T} Want a rotation matrix R and a translation to transform a vector from universe space to eye space But this is not unique But this is not unique But this is not unique We will need to specify an up vector \hat{U} , usually [0,1,0] In eye space Z-axis is \hat{T} X-axis is $\hat{V} = \hat{U} \times \hat{Z}$ Y-axis is $\hat{U}' = \hat{T} \times \hat{V}$ Rotation matrix $R_{3\times3} = \begin{vmatrix} \hat{V} & \hat{U} & \hat{T} \end{vmatrix}$ Translation is -P_{from} Translation is -P_{from} ## Internal close-up of actor A # Look at [x_{at},y_{at}] transformation ## Look at [x_{at},y_{at}] transformation $H = [x_{at}, y_{at}, ctan(fov/2)]$ Solve \hat{T} from the following equations: $$\hat{H} \cdot [0,0,1] = \hat{A} \cdot \hat{T}$$ $$\hat{H} \cdot [0,1,0] = \hat{A} \cdot \hat{U}'$$ $$\hat{T} \cdot \hat{U}' = 1$$ ### External of actor A and actor B ## Look at $[x_A, y_A]$ and $[x_B, y_B]$ # Look at $[x_A, y_A]$ and $[x_B, y_B]$ ## Medium panning shot of actor A #### References - WJim Blinn's CG&A '88 article - —Where am I? What am I looking at? - Steve Drucker's Interactive 3D '92, '94, '95 papers - -Cast camera positioning as an optimization problem # System Design ### Overall system diagram ### At each time step - 1. Application generates events to VC - (subject, verb, object) - 2. VC determines - camera specifications - acting hints - 3. Renderer outputs the image ### At each time step - 1. Application generates events to VC - (subject, verb, object) - 2. VC determines - camera specifications - acting hints - 3. Renderer outputs the image ### At each time step - 1. Application generates events to VC - (subject, verb, object) - 2. VC determines - camera specifications - acting hints - 3. Renderer outputs the image ### A networked virtual party game #### Actors are simulated - WWalk, converse, look around, drink, etc. - Can be controlled by the users ### Networked virtual party game ### Inside the Virtual Cinematographer #### VC architecture #### VC architecture #### Camera modules - ☐ Geometric placement of specific cameras for each shot - Choose the side of the line of interest - MInfluence acting ### Camera module: ext(B,A) #### Static camera modules ### Moving camera modules #### Camera modules - Geometric placement of specific cameras for each shot - Choose the side of the line of interest - MInfluence acting ### Don't cross the line of interest #### Camera modules - Geometric placement of specific cameras for each shot - ©Choose the side of the line of interest - MInfluence acting # Acting hints #### VC architecture #### Previous works - Dave Christianson's AAAI '96 paper - -Declarative camera control for automatic cinematography - An off-line algorithm - -Need to know all events ahead - –Use plan algorithms in AI #### Film idioms - ©Capture a particular type of scene - Register relevant events - Select shot types - Determine the transitions between shots #### Hierarchical idiom structure #### Hierarchical idiom structure - Mayoids exponential growth of states - MAllows expertise to be reused - Provides robustness ### 3Talk idiom Invoking a sub-idiom ext(A,B) ext(B,A) ext(B,A) 2Talk (A, B ext(A,B) 2Talk #### Contributions - Real-time camera control - lightweight - automatic camera placement - automatic shot transitions - Do a reasonable job - not to replace human in computer animation # Work in Progress ### Camera control for chat ## Camera control for live meeting # Image after warping #### Camera control for classroom - Multiple cameras per classroom - -Lecturer cameras - -Audience camera - WUse audio and vision techniques to - Track the lecturer - -Activate the audience camera # Dramatic lighting #### Virtual Cinematography Theory and Practice for Automatic Real-Time Camera Control and Directing Liwei He Microsoft Research http://research.microsoft.com/users/lhe