

Published in Computer Graphics, 21(4), July 1987, pp. 25-34.
(ACM SIGGRAPH '87 Conference Proceedings, Anaheim, California, July 1987.)

Flocks, Herds, and Schools:
A Distributed Behavioral Model 1

Craig W. Reynolds
Symbolics Graphics Division

[obsolete addresses removed 2]

Abstract

The aggregate motion of a flock of birds, a herd of land animals, or a school of fish is a
beautiful and familiar part of the natural world. But this type of complex motion is rarely seen
in computer animation. This paper explores an approach based on simulation as an alternative
to scripting the paths of each bird individually. The simulated flock is an elaboration of a
particle system, with the simulated birds being the particles. The aggregate motion of the
simulated flock is created by a distributed behavioral model much like that at work in a
natural flock; the birds choose their own course. Each simulated bird is implemented as an
independent actor that navigates according to its local perception of the dynamic environment,
the laws of simulated physics that rule its motion, and a set of behaviors programmed into it
by the "animator." The aggregate motion of the simulated flock is the result of the dense
interaction of the relatively simple behaviors of the individual simulated birds.

Categories and Subject Descriptors: 1.2.10 [Artificial Intelligence]: Vision and Scene
Understanding; 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling;
1.3.7 [Computer Graphics]: Three Dimensional Graphics and Realism-Animation: 1.6.3
[Simulation and Modeling]: Applications.

General Terms: Algorithms, design.b

Additional Key Words, and Phrases: flock, herd, school, bird, fish, aggregate motion, particle
system, actor, flight, behavioral animation, constraints, path planning.

Introduction

The motion of a flock of birds is one of nature's delights. Flocks and related synchronized
group behaviors such as schools of fish or herds of land animals are both beautiful to watch
and intriguing to contemplate. A flock* exhibits many contrasts. It is made up of discrete birds
yet overall motion seems fluid; it is simple in concept yet is so visually complex, it seems
randomly arrayed and yet is magnificently synchronized. Perhaps most puzzling is the strong
impression of intentional, centralized control. Yet all evidence indicates that flock motion
must be merely the aggregate result of the actions of individual animals, each acting solely on
the basis of its own local perception of the world.

One area of interest within computer animation is the description and control of all types of
motion. Computer animators seek both to invent wholly new types of abstract motion and to
duplicate (or make variations on) the motions found in the real world. At first glance,
producing an animated, computer graphic portrayal of a flock of birds presents significant
difficulties. Scripting the path of a large number of individual objects using traditional
computer animation techniques would be tedious. Given the complex paths that birds follow,
it is doubtful this specification could be made without error. Even if a reasonable number of
suitable paths could be described, it is unlikely that the constraints of flock motion could be
maintained (for example, preventing collisions between all birds at each frame). Finally, a
flock scripted in this manner would be hard to edit (for example, to alter the course of all birds
for a portion of the animation). It is not impossible to script flock motion, but a better
approach is needed for efficient, robust, and believable animation of flocks and related group
motions.

This paper describes one such approach. This approach assumes a flock is simply the result of
the interaction between the behaviors of individual birds. To simulate a flock we simulate the
behavior of an individual bird (or at least that portion of the bird's behavior that allows it to
participate in a flock). To support this behavioral "control structure," we must also simulate
portions of the bird's perceptual mechanisms and aspects of the physics of aerodynamic flight.
If this simulated bird model has the correct flock-member behavior, all that should be required
to create a simulated flock is to create some instances of the simulated bird model and allow
them to interact.**

Some experiments with this sort of simulated flock are described in more detail in the
remainder of this paper. The success and validity of these simulations is difficult to measure
objectively. They do seem to agree well with certain criteria [25] and some statistical
properties [23] of natural flocks and schools which have been reported by the zoological and
behavioral sciences. Perhaps more significantly, many people who view these animated flocks
immediately recognize them as a representation of a natural flock, and find them similarly
delightful to watch.

Our Foreflocks

The computer graphics community has seen simulated bird flocks before. The Electronic
Theater at SIGGRAPH `85 presented a piece labeled "motion studies for a work in progress
entitled `Eurythmy'" [4] by Susan Amkraut, Michael Girard, and George Karl from the
Computer Graphics Research Group of Ohio State University. In the film, a flock of birds
flies up out of a minaret and, passing between a series of columns, flies down into a lazy
spiral around a courtyard. All the while the birds slowly flap their wings and avoid collision
with their flockmates.

That animation was produced using a technique completely unlike the one described in this
paper and apparently not specifically intended for flock modeling. But the underlying concept
is useful and interesting in its own right. The following overview is based on unpublished
communications [3]. The software is informally called "the force field animation system."
Force fields are defined by a 3 x 3 matrix operator that transform from a point in space (where
an object is located) to an acceleration vector: the birds trace paths along the "phase portrait"
of the force field. There are "rejection forces" around each bird and around static objects. The
force field associated with each object has a bounding box, so object interactions can be
culled according to bounding box tests. An incremental, linear time algorithm finds bounding

box intersections. The "animator" defines the space field(s) and sets the initial positions,
orientations, and velocities of objects. The rest of the simulation is automatic.

Karl Sims of MIT's Media Lab has constructed some behaviorally controlled animation of
groups of moving objects (spaceships, inchworms, and quadrupeds), but they are not
organized as flocks [35]. Another author kept suggesting [28, 29, 30] implementing a flock
simulation based on a distributed behavioral model.

Particle Systems

The simulated flock described here is closely related to particle systems [27], which are used
to represent dynamic "fuzzy objects" having irregular and complex shapes. Particle systems
have been used to model fire, smoke, clouds, and more recently, the spray and foam of ocean
waves [27]. Particle systems are collections of large numbers of individual particles, each
having its own behavior. Particles are created, age, and die off. During their life they have
certain behaviors that can alter the particle's own state, which consists of color, opacity,
location, and velocity.

Underlying the boid flock model is a slight generalization of particle systems. In what might
be called a "subobject system," Reeves's dot-like particles are replaced by an entire
geometrical object consisting of a full local coordinate system and a reference to a
geometrical shape model. The use of shapes instead of dots is visually significant, but the
more fundamental difference is that individual subobjects have a more complex geometrical
state; they now have orientation.

Another difference between boid flocks and particle systems is not as well defined. The
behavior of boids is generally more complex than the behaviors for particles as described in
the literature. The present boid behavior model might be about one or two orders of
magnitude more complex than typical particle behavior. However this is a difference of
degree, not of kind. And neither simulated behavior is nearly as complex as that of a real bird.

Also, as presented, particles in particle Systems do not interact with one another, although this
is not ruled out by definition. But birds and hence boids must interact strongly in order to
flock correctly. Boid behavior is dependent not only on internal state but also on external
state.

Actors and Distributed Systems

The behavioral model that controls the boid's flight and flocking is complicated enough that
rather than use an ad hoc approach, it is worthwhile to pursue the most appropriate formal
computational model. The behaviors will be represented as rules or programs in some sense,
and the internal state of each boid must be held in some sort of data structure. It is convenient
to encapsulate these behaviors and state as an object, in the sense of object-oriented
programming systems [10, 11, 21]. Each instance of these objects needs a computational
process to apply the behavioral programs to the internal data. The computational abstraction
that combines process, procedure, and state is called an actor [12, 26, 2]. An actor is
essentially a virtual computer that communicates with other virtual computers by passing
messages. The actor model has been proposed as a natural structure for animation control by
several authors [28, 13, 29, 18]. It seems particularly apt for situations involving interacting
characters and behavior simulation. In the literature of parallel and distributed computer

systems, flocks and schools are given as examples of robust self-organizing distributed
systems [15].

Behavioral Animation

Traditional hand-drawn cel animation was produced with a medium that was completely inert.
Traditional computer animation uses an active medium (computers running graphics
software), but most animation systems do not make much use of the computer's ability to
automate motion design. Using different tools, contemporary computer animators work at
almost the same low level of abstraction as do cel animators. They tell their story by directly
describing the motion of their characters. Shortcuts exist in both media: it is common for
computer animators and cel animators to use helpers to interpolate between specified
keyframes. But little progress has been made in automating motion description; it is up to the
animator to translate the nuances of emotion and characterization into the motions that the
character performs. The animator cannot simply tell the character to "act happy" but must
tediously specify the motion that conveys happiness.

Typical computer animation models only the shape and physical properties of the characters,
whereas behavioral or character-based animation seeks to model the behavior of the character.
The goal is for such simulated characters to handle many of the details of their actions, and
hence their motions. These behaviors include a whole range of activities from simple path
planning to complex "emotional" interactions between characters. The construction of
behavioral animation characters has attracted many researchers [19, 21, 13, 14, 29, 30, 41,
40], but it is still a young field in which more work is needed.

Because of the detached nature of the control, the person who creates animation with
character simulation might not strictly he an animator. Traditionally, the animator is directly
responsible for all motion in animation production [40]. It might he more proper to call the
person who directs animation via simulated characters a meta-animator, since the animator is
less a designer of motion and more a designer of behavior. These behaviors, when acted out
by the simulated characters, lead indirectly to the final action. Thus the animator's job
becomes somewhat like that of a theatrical director: the character's performance is the indirect
result of the director's instructions to the actor. One of the charming aspects of the work
reported here is not knowing how a simulation is going to proceed from the specified
behaviors and initial conditions; there are many unexpected, pleasant surprises. On the other
hand, this charm starts to wear thin as deadlines approach and the unexpected annoyances pop
up. This author has spent a lot of time recently trying to get uncooperative flocks to move as
intended ("these darn boids seem to have a mind of their own!").

Geometric Flight

A fundamental part of the boid model is the geometric ability to fly. The motion of the
members of a simulated school or herd can be considered a type of "flying" by glossing over
the considerable intricacies of wing, fin, and leg motion (and in the case of herds, by
restricting freedom of motion in the third dimension). In this paper the term geometric flight
refers to a certain type of motion along a path: a dynamic, incremental, rigid geometrical
transformation of an object, moving along and tangent to a 3D curve. While the motion is
rigid, the object's underlying geometric model is free to articulate or change shape within this
"flying coordinate system." Unlike more typical animated motion along predefined spline
curves, the shape of a flight path is not specified in advance.

Geometric flight is based on incremental translations along the object's "forward direction,"
its local positive Z axis. These translations are intermixed with steering-rotations about the
local X and Y axes (pitch and yaw), which realign the global orientation of the local Z axis. In
real flight, turning and moving happen continuously and simultaneously. Incremental
geometric flight is a discrete approximation of this; small linear motions model a continuous
curved path. In animation the motion must increment at least once per frame. Running the
simulation at a higher rate can reduce the discrete sampling error of the flight model and
refine the shape of motion blur patterns.

Flight modeling makes extensive use of the object's own coordinate system. Local space
represents the "boid's eye view;" it implies measuring things relative to the boid's own
position and orientation. In Cartesian terms, the left/right axis is X, up/down is Y, and
forward/pack is Z. The conversion of geometric data between the local and global reference
frames is handled by the geometric operators localize and globalize. It is convenient to use a
local scale so that the unit of length of the coordinate system is one body length. Biologists
routinely specify' flock and school statistics in terms of body lengths.

Geometric flight models conservation of momentum. An object in flight tends to stay in
flight. There is a simple model of viscous speed damping, so even if the boid continually
accelerates in one direction, it will not exceed a certain maximum speed. A minimum speed
can also be specified but defaults to zero. A maximum acceleration, expressed as a fraction of
the maximum speed, is used to truncate over-anxious requests for acceleration, hence
providing for smooth changes of speed and heading. This is a simple model of a creature with
a finite amount of available energy.

Many physical forces are not supported in the current boid model. Gravity is modeled but
used only to define banking behavior. It is defined procedurally to allow the construction of
arbitrarily shaped fields. If each boid was accelerated by gravity each frame, it would tend to
fall unless gravity was countered by lift or buoyancy. Buoyancy is aligned against gravity, but
aerodynamic lift is aligned with the boid's local "up" direction and related to velocity. This
level of modeling leads to effects like normally level flight, going faster when flying down (or
slower up), and the "stall" maneuver. The speed limit parameter could be more realistically
modeled as a frictional drag, a backward pointing force related to velocity. In the current
model steering is done by directing the available thrust in the appropriate direction. It would
be more realistic to separately model the tangential thrusting forces and the lateral steering
forces, since they normally have different magnitudes.

Banking

Geometric flight relates translation, pitch, and yaw, but does not constrain roil, the rotation
about the local Z axis. This degree of freedom is used for banking-rolling the object to align
the local Y axis with the (local XY component of the total) acceleration acting upon it.
Normally banking is based on the lateral component of the acceleration, but the tangential
component can be used for certain applications. The lateral components are from steering and
gravity. In straight flight there is no radial force, so the gravitational term dominates and
banking aligns the object's -Y axis with "gravitational down" direction. When turning, the
radial component grows larger and the "accelerational down" direction swings outward, like a
pendulum hanging from the flying object. The magnitude of the turning acceleration varies
directly with the object's velocity and with the curvature of its path (so inversely with the
radius of its turn). The limiting case of infinite velocity resembles banking behavior in the

absence of gravity. In these cases the local + Y (up) direction points directly at the center of
curvature defined by the current turn.

Figure 1.

With correct banking (what pilots call a coordinated turn) the object's local space remains
aligned with the "perceptual" or "accelerational" coordinate system. This has several
advantages: it simplifies the bird's (or pilot's) orientation task, it keeps the lift from the airfoils
of the wings pointed in the most efficient direction ("accelerational up"), it keeps the
passengers coffee in their cups, and most importantly for animation, it makes the flying boid
fit the viewer's expectation of how flying objects should move and orient themselves. On the
other hand, realism is not always the goal in animation. By simply reversing the angle of bank
we obtain a cartoony motion that looks like the object is being flung outward by the
centrifugal force of the turn.

Boids and Turtles

The incremental mixing of forward translations and local rotations that underlies geometric
flight is the basis of "turtle graphics" in the programming language Logo [5]. Logo was first
used as an educational tool to allow children to learn experimentally about geometry,
arithmetic, and programming [22]. The Logo turtle was originally a little mechanical robot
that crawled around on large sheets of paper laid on the classroom floor, drawing graphic
figures by dragging a felt tip marker along the paper as it moved, Abstract turtle geometry is a
system based on the frame of reference of the turtle, an object that unites position and
heading. Under program control the Logo turtle could move forward or back from its current
position, turn left or right from its current heading, or put the pen up or down on the paper.
The turtle geometry has been extended from the plane onto arbitrary manifolds and into 3D
space [1]. These "3d turtles" and their paths are exactly equivalent to the boid objects and
their flight paths.

Natural Flocks, Herds, and Schools

"...and the thousands off fishes moved as a huge beast, piercing
the water. They appeared united, inexorably bound to a common

fate. How comes this unity?"
 --Anonymous, 17th century (from Shaw)

For a bird to participate in a flock, it must have behaviors that allow it to coordinate its
movements with those of its flockmates. These behaviors are not particularly unique; all
creatures have them to some degree. Natural flocks seem to consist of two balanced, opposing
behaviors: a desire to stay close to the flock and a desire to avoid collisions within the flock
[34]. It is clear why an individual bird wants to avoid collisions with its flockmates. But why
do birds seem to seek out the airborne equivalent of a nasty traffic jam? The basic urge to join
a flock seems to be the result of evolutionary pressure from several factors: protection from
predators, statistically improving survival of the (shared) gene pool from attacks from
predators, profiting from a larger effective search pattern in the quest for food, and advantages
for social and mating activities [33].

There is no evidence that the complexity of natural flocks is bounded in any way. Flocks do
not become "full" or "overloaded" as new birds join. When herring migrate toward their
spawning grounds, they run in schools extending as long as 17 miles and containing millions
of fish [32]. Natural flocks seem to operate in exactly the same fashion over a huge range of
flock populations. It does not seem that an individual bird can be paying much attention to
each and every one of its flockmates. But in a huge flock spread over vast distances, an
individual bird must have a localized and filtered perception of the rest of the flock. A bird
might be aware of three categories: itself, its two or three nearest neighbors, and the rest of the
flock [23].

These speculations about the "computational complexity" of flocking are meant to suggest
that birds can flock with any number of flockmates because they are using what would be
called in formal computer science a constant time algorithm. That is, the amount of "thinking"
that a bird has to do in order to flock must be largely independent of the number of birds in
the flock. Otherwise we would expect to see a sharp upper bound on the size of natural flocks
when the individual birds became overloaded by the complexity of their navigation task. This
has not be observed in nature.

Contrast the insensitivity to complexity of real flocks with the situation for the simulated
flocks described below. The complexity of the flocking algorithm described is basically O(N
2). That is, the work required to run the algorithm grows as the square of the flock's
population. We definitely do see an upper bound on the size of simulated flocks implemented
as described here. Some techniques to address this performance issue are discussed in the
section Algorithmic Considerations.

Simulated Flocks

To build a simulated flock, we start with a boid model that supports geometric flight. We add
behaviors that correspond to the opposing forces of collision avoidance and the urge to join
the flock. Stated briefly as rules, and in order of decreasing precedence, the behaviors that
lead to simulated flocking are:

1. Collision Avoidance: avoid collisions with nearby flockmates
2. Velocity Matching: attempt to match velocity with nearby flockmates
3. Flock Centering: attempt to stay close to nearby flockmates

Velocity is a vector quantity, referring to the combination of heading and speed. The manner
in which the results from each of these behaviors is reconciled and combined is significant
and is discussed in more detail later. Similarly, the meaning nearby in these rules is key to the
flocking process. This is also discussed in more detail later, but generally one boid's
awareness of another is based on the distance and direction of the offset vector between them.

Static collision avoidance and dynamic velocity matching are complementary. Together they
ensure that the members of a simulated flock are free to fly within the crowded skies of the
flock's interior without running into one another. Collision avoidance is the urge to steer a
way from an imminent impact. Static collision avoidance is based on the relative position of
the flockmates and ignores their velocity. Conversely, velocity matching is based only on
velocity and ignores position. It is a predictive version of collision avoidance: if the boid does
a good job of matching velocity with its neighbors, it is unlikely that it will collide with any
of them any time soon. With velocity matching, separations between boids remains
approximately invariant with respect to ongoing geometric flight. Static collision avoidance
serves to establish the minimum required separation distance; velocity matching tends to
maintain it.

Flock centering makes a boid want to be near the center of the flock. Because each boid has a
localized perception of the world. "center of the flock" actually means the center of the nearby
flockmates. Flock centering causes the boid to fly in a direction that moves it closer to the
centroid of the nearby boids. if a boid is deep inside a flock, the population density in its
neighborhood is roughly homogeneous; the boid density is approximately the same in all
directions. In this case, the centroid of the neighborhood boids is approximately at the center
of the neighborhood, so the flock centering urge is small. But if a boid is on the boundary of
the flock, its neighboring boids are on one side. The centroid of the neighborhood boids is
displaced from the center of the neighborhood toward the body of the flock. Here the flock
centering urge is stronger and the flight path will be deflected somewhat toward the local
flock center.

Real flocks sometimes split apart to go around an obstacle. To be realistic, the simulated flock
model must also have this ability. Flock centering correctly allows simulated flocks to
bifurcate. As long as an individual boid can stay close to its nearby neighbors, it does not care
if the rest of the flock turns away. More simplistic models proposed for flock organization
(such as a central force model or a follow the designated leader model) do not allow splits.

The flock model presented here is actually a better model of a school or a herd than a flock.
Fish in murky water (and land animals with their inability to see past their herdmates) have a
limited, short-range perception of their environment. Birds, especially those on the outside of
a flock, have excellent long-range "visual perception." Presumably this allows widely
separated flocks to join together. If the flock centering urge was completely localized, when
two flocks got a certain distance apart they would ignore each other. Long-range vision seems
to play a part in the incredibly rapid propagation of a maneuver wave" through a flock of
birds. It has been shown that the speed of propagation of this wavefront reaches three times
the speed implied by the measured startle reaction time of the individual birds. The
explanation advanced by Wayne Potts is that the birds perceive the motion of the oncoming
"maneuver wave" and time their own turn to match it [25]. Potts refers to this as the "chorus
line" hypothesis.

Arbitrating Independent Behaviors

The three behavioral urges associated with flocking (and others to be discussed below) each
produce an isolated suggestion about which way to steer the boid. These are expressed as
acceleration requests. Each behavior says: "if I were in charge, I would accelerate in that
direction." The acceleration request is in terms of a 3D vector that, by system convention, is
truncated to unit magnitude or less. Each behavior has several parameters that control its
function; one is a "strength," a fractional value between zero and one that can further
attenuate the acceleration request. It is up to the navigation module of the boid brain to collect
all relevant acceleration requests and then determine a single behaviorally desired
acceleration. It must combine, prioritize, and arbitrate between potentially conflicting urges.
The pilot module takes the acceleration desired by the navigation module and passes it to the
flight module, which attempts to fly in that direction.

The easiest way to combine acceleration requests is to average them. Because of the included
"strength" factors, this is actually a weighted average. The relative strength of one behavior to
another can be defined this way, but it is a precarious interrelationship that is difficult to
adjust. An early version of the boid model showed that navigation by simple weighted
averaging of acceleration requests works "pretty well." A boid that chooses its course this way
will fly a reasonable course under typical conditions. But in critical situations, such as
potential collision with obstacles, conflicts must be resolved in a timely manner. During high-
speed flight, hesitation or indecision is the wrong response to a brick wall dead ahead.

The main cause of indecision is that each behavior might be shouting advice about which way
to turn to avoid disaster, but if those acceleration requests happen to lie in approximately
opposite directions, they will largely cancel out under a simple weighted averaging scheme.
The boid would make a very small turn and so continue in the same direction, perhaps to
crash into the obstacle. Even when the urges do not cancel out, averaging leads to other
problems. Consider flying over a gridwork of city streets between the skyscrapers; while "fly
north" or "fly east" might be good ideas, it would be a bad idea to combine them as "fly
northeast."

Techniques from artificial intelligence, such as expert systems, can be used to arbitrate
conflicting opinions. However, a less complex approach is taken in the current
implementation. Prioritized acceleration allocation is based on a strict priority ordering of all
component behaviors, hence of the consideration of their acceleration requests. (This ordering
can change to suit dynamic conditions.) The acceleration requests are considered in priority
order and added into an accumulator. The magnitude of each request is measured and added
into another accumulator. This process continues until the sum of the accumulated magnitudes
gets larger than the maximum acceleration value, which is a parameter of each boid. The last
acceleration request is trimmed back to compensate for the excess of accumulated magnitude.
The point is that a fixed amount of acceleration is under the control of the navigation module;
this acceleration is parceled out to satisfy the acceleration request of the various behaviors in
order of priority. In an emergency the acceleration would be allocated to satisfy the most
pressing needs first; if all available acceleration is "used up," the less pressing behaviors
might be temporarily unsatisfied. For example. the flock centering urge could be correctly
ignored temporarily in favor of a maneuver to avoid a static obstacle.

Simulated Perception

The boid model does not directly simulate the senses used by real animals during flocking
(vision and hearing) or schooling (vision and fishes' unique "lateral line" structure that

provides a certain amount of pressure imaging ability [23, 24]). Rather the perception model
tries to make available to the behavior model approximately the same information that is
available to a real animal as the end result of its perceptual and cognitive processes.

This is primarily a matter of filtering out the surplus information that is available to the
software that implements the boid's behavior. Simulated boids have direct access to the
geometric database that describes the exact position, orientation, and velocity of all objects in
the environment. The real bird's information about the world is severely limited because it
perceives through imperfect senses and because its nearby flockmates hide those farther away.
This is even more pronounced in herding animals because they are all constrained to be in the
same plane. In fish schools. visual perception of neighboring fish is further limited by the
scattering and absorption of light by the sometimes murky water between them These factors
combine to strongly localize the information available to each animal.

Not only is it unrealistic to give each simulated boid perfect and complete information about
the world, it is just plain wrong and leads to obvious failures of the behavior model. Before
the current implementation of localized flock centering behavior was implemented. the flocks
used a central force model. This leads to unusual effects such as causing all members of a
widely scattered flock to simultaneously converge toward the flock's centroid. An interesting
result of the experiments reported in this paper is that the aggregate motion that we intuitively
recognize as "flocking" (or schooling or herding) depends upon a limited, localized view of
the world.

The behaviors that make up the flocking model are stated in terms of "nearby flockmates." In
the current implementation, the neighborhood is defined as a spherical zone of sensitivity
centered at the boid's local origin. The magnitude of the sensitivity is defined as an inverse
exponential of distance. Hence the neighborhood is defined by two parameters: a radius and
exponent. There is reason to believe that this field of sensitivity should realistically be
exaggerated in the forward direction and probably by an amount proportional to the boid's
speed. Being in motion requires an increased awareness of what lies ahead, and this
requirement increases with speed. A forward-weighted sensitivity zone would probably also
improve the behavior in the current implementation of boids at the leading edge of a flock,
who tend to get distracted by the flock behind them. Because of the way their heads and eyes
are arranged, real birds have a wide field of view (about 300 degrees), but the zone of overlap
from both eyes is small (10 to 15 degrees). Hence the bird has stereo depth perception only in
a very small, forward-oriented cone. Research is currently under way on models of forward-
weighted perception for boids.

In an early version of the flock model, the metrics of attraction and repulsion were weighted
linearly by distance. This spring-like model produced a bouncy flock action, fine perhaps for
a cartoony characterization, but not very realistic. The model was changed to use an inverse
square of the distance. This more gravity-like model produced what appeared to be a more
natural, better damped flock model. This correlated well with the carefully controlled
quantitative studies that Brian Partridge made of the spatial relationships of schooling fish
[23]; he found that "a fish is much more strongly influenced by its near neighbors than it is by
the distant members of the school. The contribution of each fish to the [influence] is inversely
proportional to the square or the cube of the distance." In previous work he and colleagues
[23, 24] demonstrated that fishes school based on information from both their visual system
and from their "lateral line" organ which senses pressure waves. The area of a perspective
image of the silhouette of an object (its "visual angle") varies inversely with the square of its

distance, and that pressure waves traveling through a 3D medium like water fall off inversely
with the cube of the distance.

The boid perception model is quite ad hoc and avoids actually simulating vision. Artificial
vision is an extremely complex problem [38] and is far beyond the scope of this work. But if
boids could "see" their environment, they would be better at path planning than the current
model. It is possible to construct simple maze like shapes that would confuse the current boid
model but would be easily solved by a boid with vision.

Impromptu Flocking

The flocking model described above gives boids an eagerness to participate in an acceptable
approximation of flock like motion. Boids released near one another begin to flock together,
cavorting and jostling for position. The boids stay near one another (flock centering) but
always maintain prudent separation from their neighbors' (collision avoidance), and the flock
quickly becomes "polarized"-its members heading in approximately the same direction at
approximately the same speed (velocity marching); when they change direction they do it in
synchronization. Solitary boids and smaller flocks join to become larger flocks, and in the
presence of external obstacles (discussed below), larger flocks can split into smaller flocks.

For each simulation run, the initial position (within a specified ellipsoid), heading, velocity,
and various other parameters of the boid model are initialized to values randomized within
specified distributions. A restartable random number generator is used to allow repeatability.
This randomization is not required; the boids could just as well start out arranged in a regular
pattern, all other aspects of the flock model are completely deterministic and repeatable.

When the simulation is run, the flock's first action is a reaction to the initial conditions. If the
boids started out too closely crowded together, there is an initial "flash expansion" where the
mutual desire to avoid collision drives the boids radially away from the site of the initial over-
pressure. If released in a spherical shell with a radius smaller than the "neighborhood" radius,
the boids contract toward the sphere's center; otherwise they begin to coalesce into small
flockettes that might themselves begin to join together. If the boids are confined within a
certain region, the smaller flocks eventually conglomerate into a single flock if left to wander
long enough.

Scripted Flocking

The behaviors discussed so far provide for the ability of individual birds to fly and participate
in happy aimless flocking. But to combine flock simulations with other animated action, we
need more direct control over the flock. We would like to direct specific action at specific
times (for example, "the flock enters from the left at :02.3 seconds into the sequence, turns to
fly directly upward at :03.5, and is out of the frame at :04.0").

The current implementation of the boid model has several facilities to direct the motion and
timing of the flock action. First, the simulations are run under the control of a general-purpose
animation scripting system [36]. The details of that scripting system are not relevant here
except that, in addition to the typical interactive motion control facilities, it provides the
ability to schedule the invocation of user-supplied software (such as the flock model) on a
frame-by-frame basis. This scripting facility is the basic tool used to describe the timing of
various flock actions. It also allows flexible control over the time-varying values of

parameters, which can be passed down to the simulation software. Finally the script is used to
set up and animate all nonbehavioral aspects of the scene, such as backgrounds, lighting,
camera motion, and other visible objects.

The primary tool for scripting the flock's path is the migratory urge built into the boid model.
In the current model this urge is specified in terms of a global target, either as a global
direction (as in "going Z for the winter") or as a global position-a target point toward which
all birds fly. The model computes a bounded acceleration that incrementally turns the boid
toward its migratory target.

With the scripting system. we can animate a dynamic parameter whose value is. a global
position vector or a global direction vector. This parameter can be passed to the flock, which
can in turn pass it along to all boids, each of which sets its own "migratory goal register."
Hence the global migratory behavior of all birds can be directly controlled from the script. (Of
course, it is not necessary to alter all boids at the same time, for example, the delay could be a
function of their present position in space. Real flocks do not change direction simultaneously
[25], but rather the turn starts with a single bird and spreads quickly across the flock like a
shock wave.)

We can lead the flock around by animating the goal point along the desired path, somewhat
ahead of the flock. Even if the migratory goal point is changed abruptly the path of each boid
still is relatively smooth because of the flight model's simulated conservation of momentum.
This means that the boid's own flight dynamics implement a form of smoothing interpolation
between "control points."

Avoiding Environmental Obstacles

The most interesting motion of a simulated flock comes from interaction with other objects in
the environment. The isolated behavior of a flock tends to reach a steady state and becomes
rather sterile. The flock can be seen as a relaxation solution to the constraints implied by its
behaviors. For example, the conflicting urges of flock centering and collision avoidance do
not lead to constant back and forth motion, but rather the boids eventually strike a balance
between the two urges (the degree of damping controls how soon this balance is reached).

Environmental obstacles and the boid's attempts to navigate around them increase the
apparent complexity of the behavior of the flock. (In fact the complexity of real flocks might
be due largely to the complexity of the natural environment.)

Environmental obstacles are also important from the standpoint of modeling the scene in
which we wish to place the flock. If the flock is scripted to fly under a bridge and around a
tree, we must be able to represent the geometric shape and dimension of these obstacles. The
approach taken here is to independently model the "shape for rendering" and the "shape for
collision avoidance." The types of shapes currently used for environmental obstacles are
much less complicated than the models used for rendering of computer graphic models. The
current work implements two types of shapes of environmental collision avoidance. One is
based on the force field concept, which works in undemanding situations but has some
shortcomings. The other model called steer-to-avoid is more robust and seems closer in spirit
to the natural mechanism.

The force field model postulates a field of repulsion force emanating from the obstacle out
into space; the boids are increasingly repulsed as they get closer to the obstacle. This scheme
is easy to model; the geometry of the field is usually fairly simple and so an avoidance
acceleration can be directly calculated from the field equation. These models can produce
good results, such as in "Eurythmy" [4], but they also have drawbacks that are apparent on
close examination. If a boid approaches an obstacle surrounded by a force field at an angle
such that it is exactly opposite to the direction of the force field, the boid will not turn away.
In this case the force field serves only to slow the boid by accelerating it backwards and
provides no side thrust at all. The worst reaction to an impending collision is to fail to turn.
Force fields also cause problems with "peripheral vision." The boid should notice and turn
away from a wall as it flies toward it, but the wall should be ignored if the boid is flying
alongside it. Finally, force fields tend to be too strong close up and too weak far away;
avoiding an obstacle should involve long-range planning rather than panicky corrections at
the last minute.

Steer-to-avoid is a better simulation of a natural bird guided by vision. The boid considers
only obstacles directly in front of it. (It finds the intersection, if any, of its local Z axis with
the obstacle.) Working in local perspective space, it finds the silhouette edge of the obstacle
closest to the point of eventual impact. A radial vector is computed which will aim the boid at
a point one body length beyond that silhouette edge (see figure 2). Currently steer-to avoid
has been implemented for several obstacle shapes: spheres, cylinders, planes, and boxes.
Collision avoidance for arbitrary convex polyhedral obstacles is being developed.

Figure 2.

Obstacles are not necessarily fixed in space; they can be animated around by the script during
the animation. Or more interestingly, the obstacles can be behavioral characters. Sparrows
might flock around a group of obstacles that is in fact a herd of elephants. Similarly,
behavioral obstacles might not merely be in the way; they might be objects of fear such as
predators. It has been noted [25] that natural flocking instincts seem to be sharpened by
predators.

Other Applications of the Flock Model

The model of polarized noncolliding aggregate motion has many applications, visual
simulation of bird flocks in computer animation being one. Certain modifications yield a fish
school model. Further modifications, such as [imitation to a 2D surface and the ability to
follow the terrain, lead to a herd model. Imagine a herd of PODA-style legged creatures [9],
using Karl Sims' techniques for locomotion over uneven, complex terrain [35]. Other
applications are less obvious. Traffic patterns, such as the flow of cars on a freeway, is a
flock-like motion. There are specialized behaviors, such as being constrained to drive within
the lanes, but the basic principles that keep boids from colliding are just as applicable on the
freeway. We could imagine creating crowds of "extras" (human or otherwise) for feature
films. However the most fun are the offbeat combinations possible in computer graphics by
mixing and matching: a herd of pogo sticks, a flock of Pegasus-like winged horses, or a traffic
jam of spaceships on a 3D interplanetary highway.

One serious application would be to aid in the scientific investigation of flocks, herds, and
schools. These scientists must work almost exclusively in the observational mode;
experiments with natural flocks and schools are difficult to perform and are likely to disturb
the behaviors under study. It might be possible, using a more carefully crafted model of the
realistic behavior of a certain species of bird, to perform controlled and repeatable
experiments with "simulated natural flocks." A theory of flock organization can be
unambiguously tested by implementing a distributed behavioral model and simply comparing
the aggregate motion of the simulated flock with the natural one.

Algorithmic Considerations

A naive implementation of the basic flocking algorithm would grow in complexity as the
order of the square of the flock's population ("O(N2)"). Basically this is because each boid
must reason about each of the other boids, even if only to decide to ignore it. This does not
say the algorithm is slow or fast, merely that as the size of the problem (total population of the
flock) increases, the complexity increases even faster. Doubling the number of boids
quadruples the amount of time taken.

However, as stated before, real birds are probably not as sensitive to the total flock
population. This gives hope that the simulated boid could be taught to navigate independently
of the total population. Certainly part of the problem is that we are trying to run the simulation
of the whole flock on a single computer. The natural solution is to use distributed processing,
as the real flock does. If we used a separate processor for each boid, then even the naive
implementation of the flocking algorithm would be O(N), or linear with respect to the
population. But even that is not good enough. It still means that as more boids are added to
the flock, the complexity of the problem increases.

What we desire is a constant time algorithm, one that is insensitive to the total population.
Another way to say this is that an N2 algorithm would be OK if there was an efficient way to
keep N very small. Two approaches to this goal are currently under investigation. One is
dynamic spatial partitioning of the flock; the boids are sorted into a lattice of "bins" based on
their position in space. A boid trying to navigate inside the flock could get quick access to the
flockmates that are physically nearby by examining the "bins" near its current position.
Another approach is to do incremental collision detection (x`nearness testing"). General
collision detection is another N2 algorithm, but if one does collision detection incrementally,
based on a partial solution that described the situation just a moment before, then the
algorithm need worry only about the changes and so can run much faster, assuming that the
incremental changes are small. The incremental collision detection algorithm used in Girard's
PODA system [9] apparently achieves constant time performance in the typical case.

Computing Environment

The boids software was written in Symbolics Common Lisp. The code and animation were
produced on a Symbolics 3600 Lisp Machine, a high-performance personal computer. The
flock software is implemented in Flavors, the object-oriented programming extensions to
Symbolics Common Lisp. The geometric aspects of the system are layered upon S-Geometry,
an interactive geometric modeler [37]. Boids are based on the flavor 3D:OBJECT, which
provides their geometric abilities. The flock simulations are invoked from scripts created and
animated with the S Dynamics [36] animation system, which also provided the real-time
playback facility used to view the motion tests. The availability of this graphical toolkit
allowed the author to focus immediately on the issues unique to this project. One example of
the value of this substrate is that the initial version of the flock model, including
implementation, testing, debugging, and the production of seven short motion tests was
accomplished in the ten days before the SIGGRAPH `86 conference.

The boid software has not been optimized for speed. But this report would be incomplete
without a rough estimate of the actual performance of the system. With a flock of 80 boids,
using the naive O(N2) algorithm (and so 6400 individual boid-to-boid comparisons), on a
single Lisp Machine without any special hardware accelerators, the simulation ran for about
95 seconds per frame. A ten-second (300 frame) motion test took about eight hours of real
time to produce.

Future Work

This paper has largely ignored the internal animation of the geometrical model that provides
the visual representation of the boid. The original motion tests produced with these models all
show flocks of little abstract rigid shapes that might be paper airplanes. There was no flapping
of wings nor turning of heads. and there was certainly no character animation. These topics
are all important and pertinent to believable animation of simulated flocks. But the underlying
abstract nature of flocking as polarized. noncolliding aggregate motion is largely independent
of these issues of internal shape change and articulation. This notion is supported by the fact
that most viewers of these simulations identify the motion of these abstract objects as
"flocking" even in the absence of any internal animation.

But doing a believable job of melding these two aspects of the motion is more than a matter of
concatenating the action of an internal animation cycle for the character with the motion
defined by geometrical flight. There are important issues of synchronization between the

current state of the flight dynamics model, and the amplitude and frequency of the wing
motion cycle. Topics of current development include internal animation. synchronization, and
interfaces between the simulation-based flock model and other more traditional. interactive
animation scripting systems. We would like to allow a skilled computer animator to design a
bird character and define its "wing flap cycle" using standard interactive modeling and
scripting techniques. and then be able to take this cyclic motion and "plug it in" to the flock
simulation model causing the boids in the flock to fly according to the scripted cycle.

The behaviors that have been discussed in this paper are all simplistic, isolated behaviors of
low complexity. The boids have a geometric and kinematic state. but they have no significant
mental state. Real animals have more elaborate, abstract behaviors than a simple desire to
avoid a painful collision: they have more complex motivations than a simple desire to fly to a
certain point in space. More interesting behavior models would take into account hunger,
finding food, fear of predators, a periodic need to sleep, and so on. Behavior models of this
type have been created by other investigators [6, 19, 21], but they have not yet been
implemented for the boid model described here.

Conclusion

This paper has presented a model of polarized. noncolliding aggregate motion. such as that of
flocks. herds. and schools. The model is based on simulating the behavior of each bird
independently. Working independently. the birds try both to stick together and avoid
collisions with one another and with other objects in their environment. The animations
showing simulated flocks built from this model seem to correspond to the observer's intuitive
notion of what constitutes "flock-like motion." However it is difficult to objectively measure
how valid these simulations are. By comparing behavioral aspects of the simulated flock with
those of natural flocks. we are able improve and refine the model. But having approached a
certain level of realism in the model. the parameters of the simulated flock can be altered at
will by the animator to achieve many variations on flock-like behavior.

Acknowledgements

I would like to thank flocks. herds. and schools for existing; nature is the ultimate source of
inspiration for computer graphics and animation. I would also like to acknowledge the
contributions to this research provided by workers in a wonderfully diverse collection of
pursuits:

To the natural sciences of behavior, evolution, and zoology: for doing the hard work, the Real
Science, on which this computer graphics approximation is based. To the Logo group who
invented the appropriate geometry, and so put us in the driver's seat. To the Actor semantics
people who invented the appropriate control structure, and so gave the boid a brain. To the
many developers of modern Lisp who invented the appropriate programming language. To
my past and present colleagues at MIT, III, and Symbolics who have patiently listened to my
speculations about flocks for years and years before I made my first boid fly. To the Graphics
Division of Symbolics, Inc., who employ me, put up with my nasty disposition, provide me
with fantastic computing and graphics facilities, and have generously supported the
development of the work described here. And to the field of computer graphics, for giving
professional respectability to advanced forms of play such as reported in this paper.

References

1.
Abelson, H., and diSessa, A., "Maneuvering a Three Dimensional Turtle" in Turtle
Geometry: The Computer as a Medium for Exploring Mathematics, The MIT Press,
Cambridge, Massachusetts, 1981, pp. 140-159.

2.
Agha, G., Actors: A Model of Concurrent Computation in Distributed Systems, The
MIT Press, Cambridge, Massachusetts. 1986.

3.
Amkraut, S., personal communication, January 8, 1987.

4.
Amkraut. S. Girard. M., Karl. G. "motion studies for a work in progress entitled
`Eurythmy'" in SIGGRAPH Video Review. Issue 21 (second item, time code 3:58 to
7:35). 1985. produced at the Computer Graphics Research Group. Ohio State
University. Columbus, Ohio.

5.
Austin, H., "The Logo Primer," MIT AI Lab, Logo Working Paper 19, 1974.

6.
Braitenberg. V. Vehicles: Experiments in Synthetic Psychology. The MIT Press.
Cambridge. Massachusetts. 1984.

7.
Burton, R., Bird Behavior, Alfred A. Knopf, Inc., 1985.

8.
Davis. J. R. Kay. A. Marion, A., unpublished research on behavioral simulation and
animation. Atari Research. 1983.

9.
Girard, M., Maciejewski, A. A., "Computational Modeling for the Computer
Animation of Legged Figures" in Computer Graphics V19 43. 1985. (proceedings of
acm SIGGRAPH `85), pp. 263-270.

10.
Goldberg. A. Robson. D. SMALLTALK-8O, The Language and the Implementation,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1983.

11.

Goldberg, A., Kay, A., SMALLTALK-72 Instruction Manual, Learning Research
Group, Xerox Palo Alto Research Center, 1976.

12.
Hewitt, C. Atkinson. R. "Parallelism and Synchronization in Actor Systems," acm
Symposium on Principles of Programming Languages 4. January 1977, Los Angeles,
California.

13.
Kahn, K. M., Creation of Animation from Story Descriptions. MIT Artificial
Intelligence Laboratory, Technical Report 540 (doctoral dissertation), August 1979.

14.
Kahn, K. M., Hewitt, C., Dynamic Graphics using Quasi Parallelism, May 1978,
proceedings of ACM SIGGRAPH, 1978.

15.
Kleinrock, L., "Distributed Systems," in Communications of the AC,4t, V28#11,
November 1985, pp.1200- 1213.

16.
Lipton, J., An Exaltation of Larks (or, The Venereal Game), Grossman Publishers,
1977. Reprinted by Penguin Books 1977.

17.
Maciejewski, A. A., Klein, C. A., "Obstacle Avoidance for Kinematically Redundant
Manipulators in Dynamically Varying Environments," to appear in International
Journal of Robotic Research.

18.
Magnenat-Thalmann. N., Thalmann, D., Computer Animation: Theory and Practice,
Springer-Verlag, Tokyo, 1985.

19.
Marion, A., "Artificially Motivated Objects," [installation piece], ACM SIGGRAPH
art show, 1985.

20.
Moon, D. A., "Object-oriented Programming with Flavors," in Proceedings of the First
Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications, ACM, 1986.

21.
Myers, R., Broadwell, P., Schaufler, R., "Plasm: Fish Sample," [installation piece],
ACM SIGGRAPH art show, 1985.

22.
Papert, S., "Teaching Children to be Mathematicians vs. Teaching Them About
Mathematics," International Journal of Mathematical Education and Sciences, V3, pp.
249-262, 1972.

23.
Partridge, B. L., "The Structure and Function of Fish Schools," Scientific American,
June 1982, pp. 114-123.

24.
Pitcher, T. J., Partridge, B. L., Wardle, C. S., "Blind Fish Can School," Science 194,
#4268 (1976), p. 964.

25.
Potts, W. K., "The Chorus-Line Hypothesis of Manoeuvre Coordination in Avian
Flocks," letter in Nature, Vol. 309, May 24, 1984, pp. 344-345.

26.

Pugh, J., "Actors--The Stage is Set," acm SIGPLAN Notices, V19 #3, March 1984,
pp. 61-65.

27.
Reeves, W., T., "Particle Systems-A Technique for Modeling a Class of Fuzzy
Objects," acm Transactions on Graphics, V2 #2, April 1983. and reprinted in
Computer Graphics. V17 #3, July 1983, (acm SIGGRAPH `83 Proceedings), pp. 359-
376.

28.
Reynolds, C. W., Computer Animation in the World of Actors and Scripts, SM thesis,
MIT (the Architecture Machine Group), May 1978.

29.
Reynolds. C. W., "Computer Animation with Scripts and Actors," Computer Graphics,
V16 #3, July 1982, (acm SIGGRAPH `82 Proceedings), pp. 289-296.

30.
Reynolds, C. W. "Description and Control of Time and Dynamics in Computer
Animation" in the notes for the course on Advanced Computer Animation at acm
SIGGRAPH `85, and reprinted, and reprinted for the notes of the same course in 1986.

31.
Selous, E. Thought-transference (or what?) in Birds, Constable, London, 1931.

32.
Scheffer, V. B., Spires of Form.' Glimpses of Evolution, Harcourt Brace Jovanovich,
San Diego, 1983 (reprinted 1985 by Harvest/HBJ), p. 64.

33.
Shaw, E., "Schooling in Fishes: Critique and Review" in Development and Evolution
of Behavior. W. H.

Freeman and Company. San Francisco, 1970, pp. 452480.

34.
Shaw, E., "Fish in Schools," Natural History 84, no. 8 (1975), pp. 4046.

35.
Sims, K., Locomotion of Jointed Figures Over Complex Terrain, SM thesis, MIT
Media Lab, currently in preparation, April 1987.

36.
Symbolics Graphics Division, S-Dynamics (user's manual). Symbolics Inc., November
1986.

37.
Symbolics Graphics Division, S-Geometry (user's manual), Symbolics Inc., October
1986.

38.
Pinker, S. (editor), Visual Cognition, The MIT Press, Cambridge, Massachusetts,
1985.

39.
Thomas, K, Johnson, Ox, Disney Animation.' The Illusion of Life, Abbeville Press,
New York, 1981, pp. 47- 69.

40.
Wilhelms, J., "Toward Automatic Motion Control," IEEE Computer Graphics and
Applications. V7 #4, April 1987, pp. 11-22.

41.

Zeltser, D., "Toward an Integrated View of 3-D Computer Animation," The Visual
Computer, VI #4, 1985. pp. 249-259.

Footnotes

1
Note: this is a reprint of the original publication in the proceeding of SIGGRAPH `87
(Computer Graphics 21(4), July 1987, edited by Maureen C. Stone, pages 25-34). It
was produced by applying optical character recognition software to scanned images of
the original hardcopy pages. The author wishes to thank Ken Cushman of SGI who
generously donated his time and facilities to perform the OCR work, which allowed
this old paper to get back online. Be forewarned: the OCR process introduces errors
into the text. Most of these have been corrected through spell-checking and spotty
proof-reading. Some errors may persist.

2
Author's current address: Silicon Studio, 2011 North Shoreline Boulevard, MS 980,
Mountain View, CA 94043, USA -- craig@studio.sgi.com --
http://reality.sgi.com/employees/craig/

Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish requires a fee and/or specific permission.

(C)1987 ACM-0-89791-227-6/87/007/0025 $00.75

*
In this paper flock refers generically to a group of objects that exhibit this general
class of polarized, non colliding. aggregate motion. The term polarization is from
zoology. meaning alignment of animal groups. English is rich with terms for groups of
animals; for a charming and literate discussion of such words see An Exultation of
Larks. [16]

**
This paper refers to these simulated bird-like. "bird-oid" objects generically as "boids"
even when they represent other sorts of creatures such as schooling fish.

	

