
Space-time sketching of character animation
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Martin Guay, Rémi Ronfard, Michael Gleicher, Marie-Paule Cani. Space-time sketching of
character animation. ACM Transactions on Graphics (TOG), ACM New York, NY, USA,
2015, 34 (4), pp.1. <hal-01153763>

HAL Id: hal-01153763

https://hal.archives-ouvertes.fr/hal-01153763

Submitted on 20 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Université de Grenoble

LJK, INRIA

Abstract

We present a space-time abstraction for the sketch-based design of
character animation. It allows animators to draft a full coordinated
motion using a single stroke called the space-time curve (STC).
From the STC we compute a dynamic line of action (DLOA) that
drives the motion of a 3D character through projective constraints.
Our dynamic models for the line’s motion are entirely geometric,
require no pre-existing data, and allow full artistic control. The re-
sulting DLOA can be refined by over-sketching strokes along the
space-time curve, or by composing another DLOA on top lead-
ing to control over complex motions with few strokes. Addition-
ally, the resulting dynamic line of action can be applied to arbi-
trary body parts or characters. To match a 3D character to the 2D
line over time, we introduce a robust matching algorithm based on
closed-form solutions, yielding a tight match while allowing squash
and stretch of the character’s skeleton. Our experiments show that
space-time sketching has the potential of bringing animation design
within the reach of beginners while saving time for skilled artists.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation

Keywords: Sketch-based animation, space-time, stylized anima-
tion, squash-and-stretch.

1 Introduction

Creating artistic and exaggerated styles of character animation re-
quires flexible tools that allow expressive devices such as squash
and stretch, as well as animating imaginary creatures such as
dragons—often precluding the use of motion capture or database
look-up. Yet, creating quality movements with current free-form
animation technologies is a challenge.

The main approach to free-form motion design is keyframing: char-
acter poses at specific times are interpolated to produce motion.
Over the years, significant advances have been made to more nat-
urally specify key-poses. For example, by sketching skeletons or
lines of action, or by handling deformations. However, the standard
keyframing approach divides spatial and temporal control, making
coordination of shape over time difficult. Hence, achieving qual-
ity results with the standard approach remains beyond the ability of
unskilled artists and time consuming for skilled ones.

In this work, we introduce a novel space-time sketching concept en-
abling an animator to draft a full coordinated movement—that in-
cludes shape deformation over time—by sketching a single stroke.
Further strokes can be used to progressively refine the animation.
While strokes have been used in the past to specify both temporal
and spatial iso-values of motion—with static lines of action (LOA)
serving as shape abstraction at a given time as well as trajectories
describing the successive positions over time of a single point—
space-time sketching was never used to define animations. In our
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Figure 1: Current shape interpolation techniques assume point-to-
point blending (first row, result shown in grey), making it hard to
create path-following motions. In contrast, our space-time sketch-
ing abstraction enables animators to sketch shapes and paths with
a single stroke (second row).

approach, we allow the user to control both the shape and trajectory
of a character by sketching a single space-time curve (STC).

To illustrate our approach, consider the simple example of animat-
ing a flying dragon (Fig. 1). Animating the dragon requires the
coordination of its shape over time as to follow the path’s shape.
With our approach, the basic animation can be created with a single
sketched stroke. The stroke is used not only to provide the path of
travel, but also to define how an abstraction of the character’s shape
(its line of action) changes over time. Additional strokes can be
used to refine the movement, or add details such as the flapping of
the wings. Creating such motion with existing approaches would
require coordinating a large number of keyframes that specify de-
formations and positions along the path, or a method for puppeteer-
ing the degrees of freedom of the dragon.

The key to our approach is an interpretation of the space-time
curve to define a 2D dynamic skeletal line abstraction, or dynamic
line of action (DLOA). From the STC, we extract the DLOA’s
shape at discrete moments in time, or continuously over time—
depending on the curve’s features. In simple cases, such as Fig. 1,
a path-following DLOA is defined as a moving window within
the parametric space of the stroke. Looking closely at existing
ways of sketching animations (see Fig. 2), we observe that the
stroke encodes shape near singular points as well as between self-
intersections, enabling us to easily define bouncing and rolling mo-
tions from the STC. The speed at which the stroke is drawn directly
controls squash and stretch deformations. The animation can be
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further refined by adding wave and twist specifications, by over-
sketching lines of action or by adding secondary lines—possibly
drawn from other viewpoints.

Figure 2: Inspiration: a hopping mug. The artist made the lines of
action “dynamic” by having them match the blue trajectory (green
marks were added on the right to show the matching parts). This
shows that the blue stroke carries both shape and path information.

In addition to synthesizing a complete DLOA from a space-time
curve, a second challenge is to animate a 3D character matching the
shape of the DLOA over time. A frame-by-frame computation of
the character’s 3D pose from its LOA [Guay et al. 2013] is not suffi-
cient to produce smooth motions in the dynamic case. Additionally,
this method solves only for rigid bone transformations and does not
allow squash and stretch. To solve these problems, we provide a ro-
bust line matching algorithm combining closed-form solutions with
dynamic programming yielding a tight match between the character
and the line as well as allowing squash and stretch of the character.

We evaluate our approach with an informal pilot user study show-
ing that space-time sketching is much faster than using keyframes
alone—even compared with sketching expressive lines of action.
Moreover, it makes animation possible for beginners.

2 Related work

Specifying new and complex character movements using only low
dimensional input such as a mouse, pen or other hand held device
has been an active area of research in recent years. In previous
works, partial solutions are proposed to control different aspects
of the animation, i.e. the shape (poses) and motion (timing and
trajectories), separately.

Keyframing. Inspired from the hand-drawn animation tradition,
computer animations are often decomposed into sequences of poses
in time. Specifying each pose individually and controlling the tim-
ing through a timeline remains to this day the established pipeline.
To facilitate the posing of complex character shapes, researchers
and engineers have proposed natural subspaces such as skeletons
[Burtnyk and Wein 1976] and cages [Sederberg and Parry 1986],
parameterizing the surface geometry with fewer degrees of freedom
to manipulate. More recently, efforts to allow hand drawings to con-
trol the character were brought forward with stick figures [Davis
et al. 2003], partial bone lines [Kho and Garland 2005; Öztireli
et al. 2013], and lines of action [Guay et al. 2013]—the latter al-
lowing animators to create more expressive poses in a single hand
gesture. However, poses are hard to coordinate through a timeline
disconnected from spatial realities. In contrast, our approach ab-
stracts several spatio-temporal aspects of the motion such as shape,
timing, and trajectories into a single stroke facilitating coordination,
while remaining compatible with the keyframing pipeline.

Layered motion. Instead of sequencing poses, researchers have
used the idea of layering partial motions [Dontcheva et al. ; Neff
et al. 2007; Shiratori et al. 2013]. The user selects body parts
[Dontcheva et al. ], or degrees of freedom [Neff et al. 2007; Shi-
ratori et al. 2013], and performs while the motion is recorded. Al-
though performing can be very intuitive, coordinating different lay-

ers of performance can be hard. As a result, the animator cannot
directly control the pose (shape) at a specific time. In contrast, we
allow the user to act-out aspects of trajectory and timing, decoding
which part of the character should follow the path and how, while
allowing the user to refine and control specific poses in time.

Data-driven animation. Because low level control only goes
so far, several works propose specifying as input high level mo-
tion abstractions like doodles and trajectories, along with pre-
existing motion—often humanoid—to “fill” the missing informa-
tion [Thorne et al. 2004; Min et al. 2009]. In [Min et al. 2009],
a small number of point trajectories are sketched to drive charac-
ters by using strong priors based on previously captured motions.
Closer to our work, [Thorne et al. 2004] use sketching to drive char-
acters in a very intuitive manner. However, they too rely on previ-
ously defined motion clips to map the strokes to whole character
motions. In contrast, our approach provides direct control over the
character without relying on strong priors from previous motions,
making possible the creation of novel motions even in the case of
unrealistic morphologies or exaggerated movements.

Procedural animation. Nonlinear deformers such as sinae and
waves motions can be applied to a character’s shape to produce
nice-looking animation effects in several authoring softwares such
as Blender and Maya. But such effects typically give very little con-
trol to the user. More sophisticated methods for physically-based
simulation have been proposed to synthesize realistic character an-
imation [Hodgins et al. 1995; Yin et al. 2007], but they suffer from
the same problem. One work attempted to combine physical sim-
ulation with gesture-based control [Laszlo et al. 2000], but cannot
prevent nonlinear chaotic behaviors. In our work, the user directly
controls the motion with a gestured stroke, providing predictable
movements, not necessarily bound to physical realism.

Paths. Several authors have proposed to create 3D animation by
sketching 2D paths [Davis et al. 2008] embedded in a 3D world
[Igarashi et al. 1998; Gleicher ; Thorne et al. 2004]. These are
typically drawn onto the floor to control the global rigid 2D con-
figuration of the character over time. Our space-time curves are a
different concept, as they drive both the temporal trajectory of char-
acters and their shape over time.

3 Overview

The main concept in our method is to enable space-time sketch-
ing through a single stroke, called the space-time curve. From this
curve and the speed at which it was drawn, we automatically ini-
tialize a dynamic line of action (DLOA), which itself drives a spe-
cific body line in the character model (e.g. spine, tail, wings, etc—
or combination of these). We enable refinement of the resulting
coarse motion through over-sketching the DLOA at specific times
or adding secondary lines or controls.

Both the space-time curve and the DLOA are planar, defining pro-
jective constraints for the 3D animated character. This allows sim-
pler user input and enables us to decouple expressive motion spec-
ification, done from a target camera viewpoint, from a specific 3D
character model. The same DLOA can be re-applied to other body
parts or to different characters, enabling the user to draft animations
even before the character is fully modeled.

The different ways a dynamic line of action can be initialized from
strokes are discussed in Section 4. In Section 4.1, we lay some
foundations were strokes are used to control only shape. Then
we build on this foundation to control both shape and trajectory
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with a single stroke (the space-time curve (STC) described in Sec-
tion 4.2). The STC can be used to produce path-following DLOAs,
critical to creating styles of animations such as Fig. 1, where stan-
dard keyframing falls short. In the abstract form, the STC initializes
DLOAs such as bouncing and rolling. We describe in Section 5
how to refine the animation by mixing and composing the result-
ing DLOA with other strokes, as well as controlling their twisting
orientation via space-time cans. Lastly, in Section 6 we present a
robust method to match a 3D character’s skeleton to the DLOA.

4 Dynamic lines of action from strokes

A dynamic line of action (DLOA) is a 2D parametric surface
xdloa(s, t), where t is time and s is the parameter along the line.
This surface can be displayed as a moving line by successively
showing temporal iso-lines xdloa(s, ti), i = 0...I . In Fig. 3, we
show a visualization of the whole DLOA surface.

In this section, we discuss how such a surface can be created from
sketches: we first investigate the extension of the standard keyfram-
ing concept to LOAs. We then introduce a new abstraction, the
space-time curve, and explain how it can be used to quickly draft
and then refine the DLOA in a principled way.

The 2D stroke the user draws is denoted C = [c0, ..., cN−1] ∈
R2×N (cj ∈ R2 ∀ j), where the cj are the samples recorded by the
input pen device. A smooth curve is built with a set of piecewise
linear basis functions {bj}N−1

j=0 ∈ [0, 1] centered at the parameter-
ization points U = [u0, ..., uN−1] ∈ [0, 1]N , resulting in:

c(u) =

N−1∑
j=0

cjbj(u),

which can be written in matrix form, c(u) = CB(u), where
B(u) ∈ RN×1. By default, the parameterization is evenly
spaced, i.e. uj = j

N−1
. As the user does not sketch at con-

stant speed, squash and stretch will appear. Using an arc-length
re-parametrization will produce uniform local lengths (eventually
leading to uniform stretch of the character).

4.1 Keyframing lines of action

While this paper is focused on specifying DLOAs from a single
space-time curve, we first describe the interpolation of static LOAs
at key moments k, xdloa(s, tk), k = 0...M−1. The user can create
a DLOA by sketching multiple key-LOAs, as shown in Fig. 3.

Figure 3: The user can create the space-time surface (DLOA) by
sketching strokes (red) at key moments. Our matching method (Sec-
tion 6) allows squash and stretch of the character’s bones. Note
that squash and stretch may require volume preservation which is
not provided by linear blend skinning used in these figures.

Enabling this keyframing process to take place in screen space is
different from using each key-LOA to pose the 3D character and
interpolating the character’s configuration space, as done in [Guay
et al. 2013]. 2D interpolation is an improvement over the prior
approach as it can be used to ensure fluidity in the perceived motion,
and has the advantage of decoupling animation specification from
the 3D character model. However, two issues need to be solved for
good quality interpolation between LOAs: length preservation and
C1-smooth motion.

Local length-preserving interpolation. Static LOAs are 1D
shapes. Interpolating two of them—best in a rigid as possible
manner—requires local length preservation: if parts of the two ex-
treme LOAs have the same length, the same part in all the interme-
diates should have the same length as well. Simply interpolating be-
tween their cartesian points (e.g. xdloa(s, tk) and xdloa(s, tk+1))
does not preserve length.

We achieve length preservation as in [?; Alexa et al. 2000] by de-
composing each LOA xdloa(s, tk) into polar components—local
angle and length of each polyline—to perform the interpolation,
and then recover the interpolated curve by integrating the rotated
and scaled polylines. The angles and lengths are respectively de-
noted Θ = [θ0, ..., θN−2] and L = [l0, ..., lN−2]. Given angles
lengths, and a root position x0, the curve is recovered with:

xj =

j∑
n=0

lnR(θn) x̄ + x0, (1)

where x̄ = (1, 0) is the reference x-axis and R is a rotation the
2D plane. We compute the absolute angle between each polyline
xj+1 − xj and the reference x-axis x̄ together with local length:

{θj , lj} = {∠ (x̄, xj+1 − xj) , ‖xj+1 − xj‖} . (2)

C1-smooth motion. Linear interpolation of sparse keyframes
can produce discontinuities at keyframe transitions—imagine a
robot performing one action at a time. To allow creating fluent
motion with few keyframes, we need an interpolation that provides
smooth first derivatives (tangents). To do so, we use cubic Her-
mite spline interpolation, where the tangents at the key frames are
computed automatically using Catmul-Rom averaging.

Suppose we want to interpolate between two key-lines x(s, tk)
and x(s, tk+1) over a time interval [tk, tk+1]. The polar compo-
nents [θ(s, tk) l(s, tk)x(0, tk)]T are sequenced into a matrix Ψ =

[Θ(s) l(s)X0]T ∈ R3×M of M lines (in our example M = 2 ).
We build a C1-smooth interpolation by stacking the first derivatives
(the tangents) Ψ̇ to the right of the matrix

([
Ψ Ψ̇

]
∈ R3×2M

)
, and

using Hermite basis functions B(t) ∈ R2M×1:

 θ(s, t)
l(s, t)
x(0, t)

 =

 Θ(s)
L(s)
X0

Θ̇(s)

L̇(s)

Ẋ0

B(t). (3)

Given the smooth angles, lengths and root positions
[θ(s, t), l(s, t), x(0, t)]T , we compute a smooth dynamic
line of action by following Eq (1):

xdloa(s, t) =

∫ 1

s=0

l(s, t)R(θ(s, t)) x̄ ds + x(0, t).
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4.2 Space-time curves

Although keyframing is a useful building block for defining
DLOAs, it cannot easily handle cases shown in Fig. 1 and Fig. 2,
where shape and movement need to be carefully coordinated. The
key idea to our approach is to enable the initialization of a complete
spatio-temporal surface xdloa(s, t) from a single sketched stroke by
re-interpreting the stroke parameter u into separate space and time
parameters s and t.

We start by describing a simple path-following behavior, which is
critical in generating styles of movement such as the one in Fig. 1.
Then we extend our concept to non-degenerate initialization, pro-
ducing bouncing (hopping) and rolling motions. In all cases, the
resulting animation can be immediately shown to the user, and then
refined by adding more strokes and controls (Section 5).

Figure 4: Top image: character model and space-time curve (STC).
Bottom image: we dynamically warp (red window) within the para-
metric space of the STC to produce a dynamic line of action. Squash
and stretch is controlled directly by drawing faster and slower.

Path-following. Let us consider Fig. 4 (top), where a long curve
c(u) is drawn, and the character (or line of action) is expected to
move through the curve. This is achieved by defining a moving
window within the parametric space of c:

xdloa(s, t) = c(w(s, t)), (4)

where w(s, t) is a warping function that scales and shifts in time a
parameter s. To compute w(s, t), we first scale s with a constant
b. To some extent, b reflects the character’s length in parametric
space (its computation being detailed below). Then we shift the
window forward in time with t; only t has to be scaled, as to ensure
the window remains within the STC’s parametric space (e.g. ⊆
[0, 1])—leading to the following warping function, to be used as
the parameter in Equation (4):

w(s, t) = t(1− b s) + b s, (5)

The scale b sets the length of the line xdloa(s, ti) at a given time
step ti, and ultimately, of the character in screen space.

The choice of parameterization U for the input stroke also has an
impact on the local lengths of the dynamic lines: as the user rarely
draws at a constant speed (sample points along the curve are not
evenly spaced), using a uniform parameterization U leads to lo-
cal variations in length—useful for controlling squash and stretch

along the dynamic lines. This can be removed if desired by re-
parameterizing the curve U at constant arc-lengths.

A simple way to estimate b given an arbitrary parameterization U is
to define it as the average length ratio between the skeleton’s initial
rest pose and the full length of the path:

b =

∫ 1

s=0
‖ ∂Pvpxbody

∂s
(s)‖ds∫ 1

u=0
‖ ∂c
∂u

(u)‖du
. (6)

Remembering that the DLOA xdloa(s, t) is a 2D surface, we can
note that the simple initialization we just described is very spe-
cific, since it fits the full surface into a curve. We now describe
two, more abstract ways of initializing DLOAs from a curve, in-
spired by the way people tend to sketch motion (Fig. 2 and Fig.
7). In these sketches, the singular points and the self-interactions
along the curve are interpreted as bouncing and rolling indications,
used to automatically create a non-degenerated space-time surface
for the DLOA. Note that in [Thorne et al. 2004] sketches are also
used to specify motions, but only to select pre-defined motion clips.
In this work, we formally establish a geometric link between the
strokes and the shape of an abstract line; which in turn can be ap-
plied to arbitrary character morphologies.

Bouncing Let us consider the sketch in Fig. 2 used to represent
a bouncing motion. In this case, semi-circles are drawn to specify
contact intervals, interleaved by in-air paths. Important to note is
how the semi-circles provide not only a rough trajectory, but also
the shapes at takeoff and landing (red lines of action).

Inspired from this sketch, we provide an automatic way to syn-
thesize a DLOA from a space-time curve c(u) that holds singu-
lar points. From this single stroke, we extract both shape (the red
lines) and trajectory, as well as timing—which is determined from
the time spent at the contact points when drawing the stroke.

We detect singular points along the curve and define a suitable
warping window (Equation (5)) to pick-out individual key LOAs
(the red curves touching the singular points in Fig. 2), while pro-
viding their respective timing via the speed at which the curve was
drawn. Interpolating these key LOAs using Equation (3) gives a
first intermediate DLOA that is denoted x̂dloa. It has the right shape
over time, but not the right trajectory yet—at least not in the air
stage between contact points.

We now adjust the trajectory of the intermediate DLOA x̂dloa as
to approximately match the trajectory conveyed by the stroke. Our
solution is based on two steps: first, we detect which point s∗(t)
on the line needs to follow the trajectory, based on the off-ground
angle (detailed below). The second step is to ensure smoothness
between contact and flight stages by constructing a trajectory T (t)
that will smoothly link 3 points for each semicircle: takeoff c(u1) ,
middle of semicircle c(u2), and landing uair = (u1 + u2)/2.

Given the point s∗(t) in the dynamic LOA that is to match the
trajectory T (t), we define the constraint T (t) = xdloa(s∗(t), t).
The constraint is linear and can be met by adding a correc-
tion term ∆x(t) = T (t) − x̂dloa(s∗(t), t), to the intermediate
x̂dloa(s∗(t), t); resulting in the final bouncing DLOA:

xdloa(s, t) = x̂dloa(s, t) + ∆x(t). (7)

The point in the line (or character’s body) s∗(t) that follows the tra-
jectory is computed based on the off-ground angle of the semicircle.
For angles smaller than a threshold, s∗(t) is the bottom tip of the
LOA, and it goes to the the middle of the line for a vertical takeoff.
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Figure 5: The user sketches a loop shape (first row). The resulting motion blends between the key frames at the side (second column) and a
path-following DLOA in the middle section of the stroke—between self-intersecting points. Third column is the intermediate DLOA before a
trajectory correction (solid) and the final DLOA is ghosted.

The coordinate s∗(t) is the interpolation between the coordinate at
the takeoff keyframe s∗1 and the coordinate at the landing keyframe
s∗2, resulting in: s∗(t) = s∗1t+ (1− t)s∗2.

Figure 6: Our method parses the space-time curve for singular
points, and uses a warping step function to pick individual key
frames (red lines)—which are then interpolated to provide the shape
of the character over time, while the trajectory is determined by the
path. First row: the user sketches a space-time curve. Second row:
the key frames that are automatically picked out. Third row: inter-
polated motion with a trajectory correction. Fourth row: the user
edits the initial motion by over-sketching keyframes on the space-
time curve—automatically providing its timing.

Rolling Another abstraction is when the user sketches a loop to
convey a rolling movement (see Fig. 7). Indeed the loop could be
interpreted as a single rigid rotation. However, looking closely, we
see how the upper body of the character matches the shape of the
loop over time (dashed line in the right of Fig. 7). This is similar to
the path-following behavior described earlier, only the difference is
that in the rolling case, the trajectory and shape do not coincide; if a
point in the body did follow the red curve in Fig. 7, the body would
move backward to the left before continuing its flight to the right. In
other words, between self-intersections we have a shape-following
constraint and the sketch only roughly indicates a trajectory. We
use this abstract interpretation of rolling motions to automatically
extract a rolling DLOA from a space-time curve c(u) holding self-
intersections as follows.

Figure 7: In these artist sketches, the character’s upper body
matches the shape of the blue curve, between the two self-
intersecting points (see the red dashed lines on the right). Note on
the left how the character’s global trajectory (green overlay) does
not strictly match the sketched trajectory.

To fulfill the dynamic shape-matching constraint between intersect-
ing points while blending with the shapes at the landing and take-
off, we blend between a path-following DLOA x̄dloa, defined over
the looping region, and a bouncing DLOA x̌dloa defined from the
takeoff and landing keyframes, resulting in an intermediate DLOA
x̂dloa—that we finally correct for trajectory (to follow the green
trajectory in Fig. 7) using eq.( 7).

First, we detect singular points (indicating takeoff and landing) and
self-intersections in-between. Let (u0, u1, u2, u3) be the four asso-
ciated parameter values, where c(u0) is the takeoff point, c(u1) =
c(u2) is the self intersection point, and c(u3) is the landing point.

The path-following DLOA x̄dloa is extracted using a continuous
warping (eq. (4)) within the looping region of c(u), i.e. between u1,
and u2. The bouncing DLOA x̌dloa is defined as the interpolated
keyframes extracted at takeoff and landing coordinates u0 and u3.
With these two different DLOA motions, we perform a blending in
order to go from the takeoff shape, to the rolling motion, and back
to the landing shape, following a classic blending operation:

x̂dloa(s, t) = t x̌dloa(s, t) + (1− t) x̄dloa(s, t), (8)

where t is equal to 1 at takeoff (influence interval for the first
keyframe), then smoothly drops to zero, which sets the DLOA to
x̄dloa (path-following), before the influence of the second keyframe
becomes non-zero and increases to 1. To perform this blending, we
use our length-preserving interpolation equation (3), where t and
1− t in eq. (8) are replaced by their Hermite basis function analogs
B(t) in eq. (3).

Lastly, the resulting (intermediate) DLOA x̂dloa needs to be cor-
rected in order to prevent the backward motion we already men-
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tioned. This is done by constraining the center of mass m̂(t) of
x̂dloa to follow the green trajectory in Fig. 7. We build the green
trajectory T (t) by interpolating the three points c(u0) (takeoff),
c(uair) and c(u3) (landing), with uair = (u1+u2)/2. We then add
the correction term ∆x(t) = T (t)− m̂(t) to x̂dloa, where m̂(t) is
the intermediate center-of-mass after the blending operation eq.( 8);
resulting in both the expected trajectory and shape—over time—as
shown in Fig. 5.

These constructions show that different DLOAs can be easily
blended over time. Next, we re-use and extend this methodology
in order to allow the user to refine and extend the rough animation
he just created.

5 Editing and refining animations

5.1 Over-sketching keyframes

A natural way for a user to edit an animation is to stop it and over-
sketch one or several keyframes. Implementing this is straightfor-
ward when the DLOA was created using the keyframing approach
in Section 4.1: the user selects or inserts a keyframe at a time tk,
and over-sketches the current line of action xdloa(s, tk) displayed
by the system. Time intervals are automatically re-set when a new
keyframe is inserted. The user can edit timing by sliding the tk
values along a timeline.

This type of interaction is also supported when the DLOA is created
from a space-time curve (STC) (Section 4.2). A further benefit in
this case is that the STC can be used as a visual timeline where
keyframe strokes can be directly sketched-over. As each point ui in
the STC maps to a time value ti, we can identify the closest point
u∗ to the drawn stroke, providing us with a time t∗ where the new
keyframe is to be inserted. Sketching over the space-time curve
greatly eases shape and motion coordination. However, since the
DLOA now holds continuous motion, blending is required to take
the new keyframe(s) into account.

Blending DLOAs. Let [tk−1, tk+1] be the interval of influence
of a new key-stroke (the user can edit this interval using the time-
line). Let x1dloa(s, t) be an existing DLOA on which is sketched
a second stroke x2dloa(s, t) defined as a constant keyframe shape.
The goal is to transition from x1dloa to x2dloa over [tk−1, tk], before
transitioning back to x1dloa over [tk, tk+1]. This is done by using
Equation (8), where x̄ is replaced by x1 and x̌ by x2. A result is
shown in Fig. 9, where the dragon’s tail first follows a path, is then
constrained by the sketched curve at tk, and then goes back to the
path-following.

Figure 9: The user sketches a line of action stroke on top of a path-
following DLOA to alter the motion of the tail over a time interval.
The path-following motion (a DLOA) blends with another DLOA,
the static key frame sketched for the tail, over a time interval. Right:
the user edits secondary lines onto a separate plane and view.

Sketching secondary lines. Another type of refinement con-
sists in animating secondary lines of action by sketching keyframes
from other viewpoints. This can be used to animate secondary
body-lines such as the wings of a dragon. To do this, the user
chooses another viewpoint, plays the animation, stops it when de-
sired and over-sketches a few key-LOAs for the secondary line. The
secondary keyframes are thus easily synchronized with the main
DLOA. They are interpolated using the method in Section 4.1 and
can be played in loop if desired. See Fig. 9, right.

Note that the over-sketching method replaces the motion in an ab-
solute way, i.e. if we re-draw the STC, the tail will remain oriented
the same way. Another method is to treat the over-sketching as a
displacement map layered on top of the coarse STC, which we do
with wave refinements, described next.

5.2 Wave curves

A wave curve is a layered refinement enabling the animator to edit
the current DLOA in a relative manner. It allows adding periodic
wave motion to the DLOA, by composing it with a periodic dis-
placement map. To illustrate this concept, let us consider the fol-
lowing scenario: instead of sketching a path and having a line of
action follow it as in the path-following behavior (Section 4.2), we
draw a curve and make the curve move through the line of action
over time, as shown in the first column of Fig. 8. This type of be-
havior is often seen in spine-driven locomotion where a tail or flag
follows an oscillating driving mechanism.

Combining the current DLOA and this wave motion by directly ap-
plying the previous blending method would completely replace the
DLOA since the wave motion is periodic and covers the full time
range. In contrast, we would like to combine them in a way that
preserves the existing DLOA and allows subsequent editing of both
the existing coarse DLOA (e.g. by re-drawing keyframes) and the
wave refinement (see Fig. 8).

To enable this, we define the motion of the wave (i.e. its shape
over time defined by angles θ(s, t)) as relative—or as an offset
∆θ(s, t)—to a reference curve xref . This reference shape should
be coarser and representative of the more complex wave motion.
As a reference shape, we use the vector defined between the two
end-points of the wave stroke xref = c(1) − c(0), as it naturally
provides a coarse representation of the wave. We compute the rela-
tive angle w.r.t. the reference axis as follows:

∆θ(s, t) = ∠

(
xref ,

∂c(wπ(s, t))

∂s

)
,

where wπ is a periodic warping function that evolves over time.
Finally, the angle relative to the reference axis ∆θ(s, t) is com-
posed on top of an animated DLOA by adding the angle to the
shape blending Eq. (3), which is done by setting its temporal ba-
sis function to bwave(t) = 1. Fig. 8 depicts wave curves composed
with keyframed DLOAs.

5.3 Twisting around a space-time curve

2D skeletal lines can hardly specify 3D twist. In hand drawings, the
twist of characters is often established explicitly in the early stages
of the drawing; that is, in the abstract form. Annotations such as
lines or can-shape primitives shown in Fig. 11 are drawn over a line
of action to establish the orientation. It is worth noting how the
cans in Fig. 11 rarely conflict with the line’s shape serving only as
an extra dimension refinement.

6
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Figure 8: First column: a straight static line. Second column: a periodic wave curve (green) has its transformation (local angles) defined
relative to the straight line. Third column: the relative transformation is transferred to another (bent) line by adding its angle offsets to the
bent line. This allows controlling a wave motion by redrawing a single stroke, or creating a complex flying locomotion by layering a wave
curve on top of of a basic key framed line motion.

Figure 10: The cans are specified at space-time coordinates along
the space-time curves. In the bottom-right, we can see non-uniform
stretching of the character as it gradually enters an area of the
curve that was drawn faster.

We allow the user to specify twist along the strokes, may they be
key-LOAs (Section 4.1) or space-time curves (Section 4.2 as shown
in Fig. 10). The cans control a single angle γi that rotates around
the stroke. The user adds cans along the strokes, which are then
interpolated into a smooth twist function γ(s). Different key-LOA
strokes over time define different γj(s) to be interpolated, while
adding cans to a STC directly defines γj(s, t). We blend between
all the active cans at a time t using the same Hermite based in-
terpolation as in Equation (3). The smooth twist angle γ(s, t) is
then used along the dynamic line of action xdloa(s, t) to control the
character’s skeleton.

6 Matching a 3D skeleton to a DLOA

The 2D dynamic line (of action) xdloa(s, t) corresponds to the
shape of a projected skeletal line abstraction for parts of the char-
acter’s body such as: the spine, tail, wings, arms, or combinations
of them. As in [Guay et al. 2013], we call this skeletal line the body
line. The goal of this section is to match the shape of the 3D body
line to the shape of the DLOA—over time.

In [Guay et al. 2013], a measure of similarity between a 2D line
of action and a projected 3D skeletal line is introduced. They use
this definition to formulate an optimization problem and solve for
bone orientations, constrained to the viewing plane. Unfortunately,
applying their method directly to the dynamic case fails as it does
not ensure temporal coherence.

In this paper, we introduce a robust solution that solves for planar
transformations of the bones. It follows a dynamic programming
approach where, starting from the root of the chain, we solve ana-
lytically for the planar rotation (in the viewing direction) and length
of a bone, transfer the quantities to the 3D bone, and then go down
the chain; doings so for each chain constrained by the DLOA.

The bones match a line of action when their tangents (or direc-
tions) match in screen space [Guay et al. 2013], while a select bone
touches the line (often the root or head). Hence the goal is for the
projected direction of each bone to match the 2D direction of the
line. In our case, the root is touching the line, while other parts may
not be touching depending on the offsets present in the kinematic
tree.

We assume there is a skeletal rig providing the bones Ω and the
body line β ⊆ Ω. We also assume the ith bone positions xi(t) hold
a corresponding DLOA parameter si.

7
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Figure 11: The Two Cans Technique is a drawing tool often combined with the line of action to help specify the twist and relative depth of
the character. We use this visual handle to twist our dynamic lines in various ways. The user manipulates the cans to twist the body part over
the space-time curve. Illustration by c©Krishna M. Sadasivam, [Sadasivam 2012].

To measure the dissimilarity between both lines, we first project
both lines onto a single plane located at the root of the body line,
and oriented in the viewing direction. We start by inverse project-
ing the 2D DLOA (red stroke in Fig. 12) onto the 3D plane. We
cast rays along the DLOA xdloa(si, t) to recover the correspond-
ing 3D positions denoted zi(t). We then project the bone positions
xi(t) onto the same plane using the projection operator P (blue in
Fig. 12).

Figure 12: Both the body line and the DLOA at time t are projected
onto a plane located at the root of the body part. For sketching
secondary lines such as the wings, the character’s main line (e.g.
the spine) remains in a fixed reference pose. Last image on the right
is the pose at the time of the sketched DLOA key frame.

For the character’s skeleton, we denote the lengths of the bones
as li(t), the relative orientations qi(t), and the absolute orientation
Qi(t). To remove depth ambiguities, we assume a viewing plane
constraint. Hence, by construction, we are looking for a single (an-
gle θi(t)) rotating in the viewing direction vdir , i.e. an orientation
Q(θi(t), vdir), that rotates the bone as to match its corresponding
line direction (see Fig. 13).

For each bone i, we compute the angle θi(t), and then recover the
bone’s relative orientation w.r.t. to the parent orientation Qi−1(t):

θi(t) = ∠(Pxi+1(t)− Pxi(t), zi+1(t)− zi(t)),
qi(t) = Q−1

i−1(t)Q(θi(t), vdir)Qi(t).

For the length, we seek to preserve the length ratio between the ini-
tially projected skeleton bone direction, and the length of the non-
projected bone direction. Given the initial projected bone direction
length ai(0) = ‖Pxi+1(0) − Pxi(0)‖, the initial bone direction
length li(0) = ‖xi+1(0)−xi(0)‖, and the sketched bone direction
length at time t, ai(t) = ‖zi+1(t)− zi(t)‖, we have the relation:

ai(0)

li(0)
=
ai(t)

li(t)
,

and thus by extracting li(t), we obtain:

li(t) =
‖Pxi+1(t)− Pxi(t)‖

‖zi+1(0)− zi(0)‖‖xi+1(0)− xi(0)‖ .

Figure 13: Our skeletal line matching: blue and red are the pro-
jected bones and DLOA directions. Dashed lines are offsets in the
character’s kinematic tree. For each bone starting from the root,
we compute the angle, then adjust its length, and we repeat for
each bone down the chains.

To prevent drift from accumulating, we initialize the orientations
and lengths at each frame with an initial pose, i.e. qi(t) = qi(0),
and li(t) = li(0).

Including the twist: We incorporate the smooth twist angle
γ(s, t) from Section 5 by computing the differential twist angle of
each segment ∆γi(t) = γ(si, t)− γ(si−1, t), and applying a local
rotation around the local bone direction x̄:

q̂i(t) = qi(t)Q(∆γi(t), x̄).

Secondary parts are automatically taken into account due to the
hierarchical structure of the skeleton. For instance the wings are
attached to the spine of the dragon in Fig. 9, and inherit the parent’s
(spine) orientation, including the twist. Note, the length of parent
bones is not propagated to children bones with this formulation.

7 Experimental Results

Experimental results shown in the paper and the accompanying
video were created using our prototype implementation of the
space-time sketching tools described in Sections 4, 5 and 6. In
this section, we briefly describe our prototype and its user inter-
face, then describe a user study we conducted with both novice and
expert animators to assess the usability of our space-time sketching
tools.

7.1 System description

The user is presented with a canvas for drawing keyframes and
space-time curves, and a timeline for changing their timing. By de-
fault the user draws keyframes. A special key is pressed to sketch a
space-time curve. We automatically classify the space-time curves
as bouncing, rolling or path-following based on their geometry. The
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user draws over the path to automatically insert a keyframe, whose
timing is retrieved from the path.

The user is first presented with a character in a reference pose and
starts sketching. When the user selects a body part by pressing a key
and drawing over the reference pose, the system snaps a plane onto
the root of the body part, and is ready to animate the character using
our method in Section 6. At this point, the sketches are inverse-
projected onto the action plane, and linked to a body part.

Because the 2D sketch is decoupled from the 3D counter-part, the
user can apply same line motion to the body parts of a different
character, given the same viewpoint. To edit secondary parts of the
body, the user can add a second sketching panel, and rotate the cam-
era to a side view. The secondary sketches are freely sketched and
the user then selects the body part which will snap the plane onto
the root of the body part. The system will automatically snap the
secondary sketch to the position of the primary sketch. This is done
by taking the point at the intersection of the secondary plane and the
primary DLOA and assigning it to the root of the secondary line. In
our system, the user can chose to see the constrained parent-child
sketches or the free-floating sketch; which is the default behavior.

Many of the sketching tools described in this paper evolved as a
consequence of user interaction and feedback. For instance, we
initially offered only a basic keyframing interface for creating an-
imations such as the one in Fig. 1 and observed that users were
attempting to draw paths. After we introduced the path-following
STC, users started drawing abstractions such as bounce and roll
doodles—expecting our system to understand. We asked people to
draw over a dragon flying animation, resulting in the wave shape
that we implement as a periodic path to create the animation in the
video and Fig. 8.

7.2 Evaluation

As an initial evaluation of our approach, we ran an informal user
study with eight participants with varying levels of expertise in an-
imation, ranging from complete beginners to professionally trained
animators. We asked each participant to reproduce three short ani-
mations, first by keyframing lines of action ; then again by sketch-
ing space-time curves. The target animations videos were not made
with our system. Animation (1) is a path-following motion of a
dragon with a lot of twisting. Animation (2) is a flying locomotion
of the same dragon. Animation (3) is a bouncing animation of a
lamp post.

Participants had never seen or used our system. They were each
given twenty minutes to learn the basic keyframing and space-time
sketching tools in our system: the participant was presented with
the basic operations of adding keyframes to a timeline; sketch-
ing the strokes; manipulating the twist cans; and editing secondary
parts (e.g. the wings). Then we showed each target animation and
asked the participant to reproduce it, first with keyframing and then
with space-time curves. In each case, the participants were allowed
to add twist cans. After completing each task, participants were
asked to self-evaluate the quality of their results on a scale from 0
to 5. Note that our experiment did not control for order effects. In
each case, we computed the time spent to complete the task, the
number of pen clicks, and the number of entities (strokes and cans)
used to obtain the final animation. The results are as follows:

We can see that space-time curves help the users achieve results
quicker than keyframes in all cases. We observed average speed-up
factors as high as 20 between sketching keyframes and sketching
path-following curves. The effect is less visible when reading the
total time because participants can spend more time on refining and
twisting the curves. Space-time curves also receive significantly

Animation time entities clicks score
dragon1 353 s. 13 95 1.6
dragon2 321 s. 9 69 2.1

lamp 260 s. 11 55 3.3

Table 1: User response to keyframing: time spent, number of
keyframes and twist cans, number of clicks, and self-evaluation
scores per participant.

Animation time entities clicks score
dragon1 139 s. 4 34 4.2
dragon2 229 s. 2 40 3.6

lamp 161 s. 5 48 4.5

Table 2: User response to space-time curves (STC): time spent,
number of curves and twist cans, number of clicks, and self-
evaluation scores per participant.

higher self-evaluation scores for all three animation targets. While
some of this may be explained by order effects, we feel the effects
are strong enough to warrant further study.

We observed novice users tended to be discouraged quickly by
keyframing. Most of the time, they were not able to finish the task.
Some participants gave up after trying for five minutes or more. In
contrast, our space-time curves allowed all participants to quickly
obtain results that matched their desires and expectations, encour-
aging them to spend more time polishing their animations. The
twisting tool was used consistently and comfortably by most par-
ticipants. Some participants had difficulty using the wave curves
and found them counter-intuitive, although this may be an issue
with the system’s interface and our training procedure.

Advanced users performed slightly better with the keyframing tools
than novice users, but still preferred to use the space-time curves,
as they obtained their results quicker and more naturally. They also
liked the fact that they had instantaneous results with space-time
curves followed by refinement and twisting.

8 Limitations and future work

Using sketching to freely create and refine 3D animations is a dif-
ficult problem. In this paper, we used sketching to specify 3D an-
imations from a given viewpoint, therefore limiting ourselves to
projective control. We used the notion of a moving line of action
for abstracting a part of the character’s body—allowing the same
moving line to be applied to different body parts or characters.

Although possible, we showed that defining a DLOA only from
keyframes (temporal slices) is not the best way. Taking an analogy
from geometric modeling, this method is similar to shape design
through sketching slices: getting a smooth result is not easy, and
we can only see the result when all the slices have been defined. In
contrast, our new space-time abstraction for sketching motion (the
STC) enables an animator to initialize a full coordinated motion
with a single stroke—providing immediate display and allowing for
rapid refinement.

This method brings several limitations. We focused on the mo-
tion of a single line and illustrated our concept with simple char-
acter morphologies (lamp, cactus and dragon). It would require
more work to drive the motion of a multi-legged figure (humanoid,
or dog) from a single moving line, which is explored in recent
work [Guay et al. 2015].

We defined three specific ways of creating a DLOA from a space-
time curve: path-following and two richer mechanisms for extract-
ing coordinated motion and trajectory from intuitive strokes. The
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resulting motion can then be refined, which increases the range of
possible results. While we can detect which behavior to adopt be-
tween the bouncing, rolling and path-following based on the geo-
metric features found in the strokes, we cannot automatically dif-
ferentiate with wave curves and other unit keyframes.

We focused on planar movement plus out-of-plane secondary mo-
tions and twist, since many motions meant to be seen by viewers
are in fact planar. While we think our DLOA models can be di-
rectly extended to 3D curves, the actual editing of 3D curves re-
mains a challenge. Another route to 3D motion could be to use our
new 2D dynamic line constraints along data-driven motion priors in
a space-time optimization framework [Min et al. 2009]. However,
one of the main reasons we devise free-form tools for character an-
imation is for the ability to produce arbitrary movements that may
include squash and stretch effects.

9 Conclusion

We introduced the new concept of space-time sketching for free-
form animation of 3D characters. Thanks to this new concept, a
coarse, but coordinated animation—possibly including squash and
stretch—can be drafted with a single stroke. Other strokes and con-
trols can then be added, enabling the user to progressively sculpt
and refine motion.

The animation is designed by sketching in 2D from viewpoints of
interest: it defines a dynamic line of action used as a projective
constraint that robustly drives the 3D character. The resulting in-
dependence between animation control and the 3D character model
enables the user to simultaneously edit the 3D model during the de-
sign stage. In future work, we plan on studying mechanisms for
swapping the selected body line over time, in order to extend our
formalism to the design of bipedal and quadrupedal motion—driven
by a single moving line abstraction.
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