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Abstract

Many of the problems of simulating and rendering
complex systems of non-rigid objects can be min-
imized by describing the geometry and dynamics
separately, using representations optimized for ei-
ther one or the other, and then coupling these rep-
resentations together. We describe a system which
uses polynomial deformation mappings to couple
a vibration-mode (“modal”) representation of ob-
ject dynamics together with volumetric models of
object geometry. By use of such a hybrid rep-
resentation we have been able to gain up to two
orders of magnitude in efficiency, control temporal
aliasing, and obtain simple, closed-form solutions
to common (non-rigid) inverse dynamics problems.
Further, this approach to dynamic simulation nat-
urally lends itself to the emphasis and exaggera-
tion techniques used in traditional animation.

1 INTRODUCTION

The idea of using computers to provide interactive simula-
tion of non-rigid object dynamics has been a major goal of
computer graphics, starting with Sketchpad [13], Thinglab
[5], and the recent profusion of new computer graphics work
on non-rigid dynamics [4,7,14]. Our project, which we have
named Thingworld [10,11,12], was conceived as direct de-
scendant of Sketchpad and Thinglab: our goal is to use in-
teractive dynamic simulation of multibody situations to aid
in physical design. In common with all previous attempts
at achieving this goal, we have been confronted with the
problem that the huge computational expense of calculating
dynamic interactions prevents interactive simulation except
for limited, toy situations. Furthermore, to be really useful
to a designer, we must also be able to solve complex inverse
dynamics problems, perform dynamic simulations for objects

*This research was made possible by National
Science Foundation Grant No. IRI-87-19920 and by ARO
Grant No. DAAL03-87-K-0005

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1989 ACM-0-89791-312-4/89/007/0215 $00.75

defined by large spline surfaces or by constructive solid ge-
ometry, and render objects without undue temporal aliasing
— all of which are quite difficult with standard techniques
and representations.

In the Thingworld system we have been able to minimize
each of these problems by describing the geometry and dy-
namics separately, using representations optimized for either
one or the other, and then coupling these representations
together using deformation mappings. In our system dy-
namic properties are described by modal analysis, a method
of breaking non-rigid dynamics down into the sum of in-
dependent vibration modes. The advantage of the modal
approach is that it breaks the dynamics problem into many
small, independent problems. This allows us to achieve a
level of control not possible with the massed equations nor-
mally used in dynamic simulation. As a consequence many
common inverse dynamics problems can be solved in closed
form, and many traditional animation techniques can be eas-
ily automated.

Because formulations for describing non-rigid motion have
been based on point-wise representations of shape, the de-
tection and characterization of collisions has always been a
ma jor fraction of the computational cost in multibody sim-
ulation systems. Further, analytic models of geometry (e.g.,
B-splines) cannot be used because there has been no way to
relate analytically-specified shape to object dynamics. Be-
cause the Thingworld system describes non-rigid deforma-
tion in terms of whole-body deformation modes, we can re-
late object dynamics to object shape via global polynomial
deformation mappings. This allows us to couple non-rigid
object dynamics with analytic models of geometry (in our
case superquadrics) so that we can more efficiently and ac-
curately characterize the forces produced by collisions.

The plan of this paper is to first present short description
of the modal method for representing and calculating non-
rigid object dynamics. We will then show how the modal
representation can be modified to produce great gains in ef-
ficiency, to reduce temporal aliasing, and to solve inverse dy-
namics problems. We will then describe how the method can
be generalized to arbitrary geometric representations, thus
allowing more efficient and accurate detection and charac-
terization of object collisions. Finally, we will discuss how
this system can be adapted to automatically produce many
of the effects used in traditional animation.
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2 MODAL DYNAMICS

2.1 Background: Finite Element Method

The finite element method (FEM) is a technique for simu-
lating the dynamic behavior of an object. In the FEM the
continuous variation of displacements throughout an object
is replaced by a finite number of displacements at so-called
nodal points. Displacements between nodal points are in-
terpolated using a smooth function. Energy equations (or
functionals) can then be derived in terms of the nodal un-
knowns and the resulting set of simultaneous equations can
be iterated to solve for displacements as a function of im-
pinging forces. In the dynamical case these equations may
be written:

Mi+Du+Ku=f (1)

where u is a 3n x 1 vector of the (z, y, z) displacements of the
n nodal points relative to the objects’ center of mass, M, D
and K are 3n by 3n matrices describing the mass, damping,
and material stiffness between each point within the body,
and f is a 3n x 1 vector describing the (z,y, z) components
of the forces acting on the nodes. This equation can be
interpreted as assigning a certain mass to each nodal point
and a certain material stiffness between nodal points, with
damping being accounted for by dashpots attached between
the nodal points. The damping matrix D is often taken to be
equal to sM for some scalar s; this is called mass damping.

To calculate the result of applying some force f to the ob-
ject one discretizes the equations in time, picking an appro-
priately small time step, solves this equation for the new u,
and iterates until the system stabilizes. Direct (implicit) so-
lution of the dynamic equations requires inversion the K ma-
trix, and is thus computationally expensive. Consequently
explicit Euler methods (which are less stable, but require no
matrix inversion) are quite often applied.

Even the explicit Euler methods are quite expensive, be-
cause the matrices M, D, and K are quite large: for in-
stance, the simplest 3-D parabolic element produces 60 x
60 matrices, corresponding to the 60 unknowns in the 20
nodal points (z:, ¥, zi} which specify the element shape. In
most situations M, D, and K are very much larger than 60 x
60, so that typically hundreds or thousands of very large ma-
trix multiplications are required for each second of simulated
time. For more details see references [4,7,14,15].

2.2 Modal Analysis

Because M, D and K are normally positive definite sym-
metric, and M and D are assumed to be related by a scalar
transformation, Equation 1 can be transformed into 3n inde-
pendent differential equations by use of the whitening trans-
form, which simultaneously diagonalizes M, D, and K. The
whitening transform is the solution to the following eigen-
value problem:

Xp=MTK¢ (2)
where XA and ¢ are the eigenvalues and ecigenvectors of
MK,

Using the transformation u = ¢& we can re-write Equa-
tion 1 as follows:

¢"Moi+ ¢ Doi+ ¢TKou=o¢Tf . (3)
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Figure 1: (a) A cylinder, (b) a linear deformation mode in
response to compression, (c) a linear deformation mode in re-
sponse to acceleration, (d) a quadratic mode in response to a
bending force, (e) superposition of both linear and quadratic
modes in response to compression, (f) superposition of both
linear and quadratic modes in response to acceleration.

In this equation ¢ M@, 7 D¢, and ¢T K ¢ are diagonal ma-
trices, so thatif welet M = ¢TM¢, D = T D¢, K = ¢TK ¢,
and f = ¢7f then we can write Equation 3 as 3n indepen-
dent equations:

Miii+ Diti + Kiwi = fi o (4)

where M; is the i*" diagonal element of M, and so forth. Be-
cause the modal representation diagonalizes these matrices
it may be viewed as preconditioning the mass and stiffness
matrices, with the attendant advantages of better conver-
gence and numerical accuracy.

What Equation 4 describes is the time course of one of
the object’s vibration modes, hence the name modal analy-
sis [16]. The constant M; is the generalized mass of mode 1,
that is, it describes the inertia of this vibration mode. Sim-
ilarly, Di, and K, describe the damping and spring stiffness
associated with mode 4, and f; is the amount of force cou-
pled with this vibration mode. The i*" row of ¢ describes the
deformation the object experiences as a consequence of the
force f;, and the eigenvalue ); is proportional to the natural
resonance frequency of that vibration mode.

Figure 1 illustrates the some of the first and second order
modes of a cylinder. Figure 1(a) shows the cylinder at rest,
(b) shows the cylinder experiencing a linear deformation in
response to a compressive force, (c) shows the cylinder expe-
riencing a linear shear deformation in response to an accel-
erating force, (d) shows a quadratic deformation in response
to a centrally-applied (bending) force, and (e) and (f) show
how both the linear and second order deformations can be
superimposed to produce a more accurate stimulation of the
object’s response to the compressive and accelerating forces
shown in (b) and (c).

To obtain an accurate simulation of the dynamics of an
object one simply uses linear superposition of these modes
to determine how the object responds to a given force. Be-
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cause Equation 4 can be solved in closed form, we have the
result that for objects composed of linearly-deforming ma-
terials the non-rigid behavior of the object in response to
an impulse force can be solved in closed form for any time
4. The solution is discussed in Section 5.1. In environments
with more complex forces, however, analytic solution be-
comes cumbersome and so numerical solution is preferred.
Either explicit or implicit solution techniques may be used
to calculate how each mode varies with time.

Non-linear materials may be modeled by summing the
modes at the end of each time step to form the material
stress state which can then be used to drive nonlinear plastic
or viscous material behavior.

3 USING THE MODAL METHOD

Although the simple modal method offers some benefits in
terms of efficiency and stability, its main advantage is that
it allows us to control the computation in ways that are ad-
vantageous to various applications. In this section we detail
some of the variations on the basic modal method that we
have found to be particularly useful.

3.1 Increased Speed

Modes associated with high resonance frequencies normally
have little effect on object shape. This is because, for a
fixed excitation energy, the displacement amplitude for each
mode is inversely proportional to the square of the mode’s
resonance frequency. Thus a relatively accurate and more
efficient simulation of an object’s dynamics can be accom-
plished by discarding the small-amplitude, high-frequency
modes, and superimposing only the large-amplitude, low-
frequency modes. We can determine which modes to discard
by examining their associated eigenvalue, which is propor-
tional to the resonance frequency.

The amount of error introduced by discarding high-
frequency modes can be checked by occasionally substituting
the displacements u produced by low-frequency modal anal-
ysis into the full equations. When significant error is found
additional modes can be added. Exactly which modes to
add can be determined by a principal components analysis
of the error residuals.

One effect of discarding modes is, of course, to reduce the
number of equations that must be considered within each
time step. However, because the maximum allowable time
step is inversely proportional to the highest resonance fre-
quency in the system of equations, a more important effect
of discarding high-frequency modes is that we can use much
larger time steps. In typical situations we have found that
the savings from fewer equations and larger times steps can
reduce computation time by up to two orders of magnitude,
while at the same time producing a reasonably accurate,
realistic-looking animation.

3.1.1 Number of modes required

For the sake of increased efficiency, our approach has been
to model only as many modes as are required. In a quick-
and-dirty analysis — often sufficient during the initial phase
of a design — only rigid-body or rigid-body plus linear strain
modes may be used, resulting in large computational savings.

Later, more modes can be added to achieve any level of
desired accuracy, although at greater cost.

We have found that most commonplace multi-body inter-
actions can be adequately modeled by use of only rigid-body,
linear, and quadratic strain modes, as is shown in Figures 1
and 2. Note that this is not true for bodies whose dimen-
sions are quite disparate, however it is exactly these cases
that can be adequately treated by either a one or two di-
mensional analysis, and thus are cases where the standard
FEM is quite efficient.

3.1.2 Recomputing matrices and modes

Normally, in either the finite element or modal methods,
the mass, damping, and stiffness matrices are not recom-
puted at each time step. The use of fixed M, D, and K
(or, equivalently, fixed modes) is well-justified as long as the
material displacements are small. The definition of “small,”
however, is quite different for different modes. Because the
eigenvalue decomposition in Equation 2 performs a sort of
principal-components analysis, it is the gross object shape
(e.g., its low-order moments of inertia) determine the low-
frequency modes, which as a consequence are quite stable.
High-frequency modes are much less stable because they are
determined by the fine features of the object’s shape.

In the standard finite element formulation the action of
each mode is distributed across the entire set of equations,
so that one must recompute the mass and stiffness matri-
ces as often as required by the very highest-frequency vi-
bration modes. When these high-frequency modes are dis-
carded the mass, damping, and stiffness matrices need to be
recomputed much less frequently — a large computational
savings. We have found, for instance, that in most anima-
tion sequences we can use a single, fixed set of low-frequency
modes throughout the entire simulation.

3.1.3 An example

Figure 2 shows a example of computing non-rigid dynamic
interaction: a ball colliding with a two-by-four. As can be
seen, theinteraction and resulting deformations look realistic
despite the use of only first and second order modes. Perhaps
the most impressive fact about this example, however, is the
speed of computation: Using a Symbolics 3600 (with a speed
of roughly one MIP), it requires only one CPU second to
compute each second of simulated time! i

3.2 Temporal Aliasing

One important side effect of discarding high-frequency
modes is reduction in temporal aliasing artifacts. A dy-
namic simulation using the standard finite element method
will produce very many small, high-temporal-frequency dis-
placements. This is especially true for stiff materials. To
avoid temporal aliasing artifacts these small displacements
must be accurately tracked (requiring a small time step), and
then averaged over time to produce each image. In modal
analysis these high frequency displacements can be directly
identified and discarded, thus reducing not only the number
of time steps required, but also the need for time averaging
in order to avoid temporal artifacts.
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Figure 2: A ball colliding with a two-by-four

(A)

(B)

(©)

Figure 3: Low-order deformation modes are visually similar
when objects have similar low-order moments of inertia.

3.3 Use of Approximate Modes

An object’s low-order deformation modes can be thought
of as the principal components of the object’s repertoire of
non-rigid behavior. These modes can be found by solving the
eigenvalue problem of Equation 2, however for visualization
purposes we have found that it is sufficient to use fixed, pre-
computed deformation modes that are parameterized only
by the object’s low order moments of inertia.

This is illustrated in Figure 3, which shows three objects
colliding with a post after having been dropped from a few
feet above the post. Figure 3(a) shows the original, unde-
formed objects. Figure 3(b) shows the collisions simulated
using modes computed by solving Equation 2. In Figure 3(c)
we have precomputed the modes of a rectangular solid with
approximately the same moments as the object to be ani-
mated. These precomputed deformation modes were then
used in place of the object’s true modes in making the an-
imation. Despite use of precomputed modes it can be seen
that the collisions are visually very similar.

A more accurate variation on this theme is to use 20 nodal
points (i.e., a simple 3-D parabolic element) to approximate
the shape of the object to be animated. Equation 2 can
218

be solved relatively quickly for this number of nodal points,
and the resulting modes will produce a reasonably accurate
simulation. Such shortcuts to finding an object’s modes can
produce an important savings in interactive simulation sys-
tems such as Thingworld, where the user frequently changes
each object’s static geometry.

4 COMBINING DYNAMICS AND
ANALYTIC GEOMETRY

One problem with standard non-rigid dynamical techniques
is that they are based on use of a point-wise representation
of geometry, thus forcing the representation of geometry and
dynamics to be identical. As a consequence one cannot, for
instance, specify details of geometry without incurring large
costs in calculating dynamic behavior, nor can one directly
animate objects defined by, for example, large spline patches
or constructive solid geometry. The fact that the same repre-
sentation must be used for both geometry and dynamics thus
has a large impact upon the efficiency and accuracy of multi-
body simulations, where detailed specification of geometry
is required to obtain accurate detection and characterization
of collisions.

We have been able to combine separate representations of
dynamic behavior and geometric form in order to avoid these
problems. We have accomplished this by describing each
mode by an appropriate polynomial function, and then us-
ing global deformation techniques [3] to establish the corre-
spondence between dynamic state and geometric state. The
result is an efficient scheme for simulating non-rigid dynam-
ics that can be applied in a unified manner to objects whose
geometry is defined using a wide range of techniques.

To accomplish this, we must first realize that modes may
be classified by the complexity of the associated deformation,
e.g., as 0" order (rigid body) modes, 1% order (linear defor-
mation) modes, 2™¢ order (quadratic deformation) modes,
and so forth, as was illustrated by Figure 1. Thus we can
describe the deformation associated with each mode by use
of polynomial deformation mappings of the appropriate de-
gree. This is accomplished by performing a linear regression
of a polynomial with m terms in appropriate powers of z,
y, and z, against the n triples of z, y and z coefficients that
compose ¢;, a 3n x 1 vector containing the elements of the
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it" row of ¢:

a=(8"8) 874, (5)
where a is an m x 1 matrix of the coeflicients of the
desired deformation polynomial, # is an 3n x m ma-
trix whose first column contains the elements of u =
(1,91, 1, T2, Y2, 22, ...), and whose remaining columns con-
sist of the modified versions of u where the z, y, and/or 2
components have been raised to the various powers, e.g.,

Ty 12? i z

2
1 n nnon
Z1 21 zZ1 21
2
_ z z
p=| 2 2 2 : (6)
Y2 Y2 Y2 Y2
22 22 z2 2

The question of which polynomial powers are the appro-
priate for a particular column of ¢ can be decided either
by inspection (noting that the order of the deformation is
related to the associated eigenvalue), or automatically by
including all combinations of powers of z, y, and z (up to
some limit), performing the regression, and then discarding
coefficients with negligible magnitude.

The result is a polynomial model of the unit amplitude
deformation associated with mode i. By simply scaling this
polynomial deformation according to the mode’s amplitude
we can accurately copy the effects of this mode on the ob-
ject’s shape. By superimposing these deformations we ob-
tain an accurate accounting of the object’s non-rigid defor-
mation.

4.1 Fast Collision Characterization

In complex, multi-body simulations the ability to efficiently
detect and characterize collisions is extremely important.
Unfortunately, the point-wise representations used by the
standard FEM are quite poor at this task. When using
a polygon representation, for instance, the computational
complexity of collision detection is O(nm) operations, where
n is the number of polygons and m is the number of points
to be considered after pruning via bounding box calculations
[9])-

In contrast, one can perform collision detection relatively
efficiently when employing volumetric representations (e.g.,
superquadrics [2,6,10]) by making use of their inside-outside
function. In our system the basic volumetric primitive is a
superquadric, which is mapped from its canonical reference
frame! to its three-space position by an affine transforma-
tion T. The normalized inside-outside function D(z,y, z) for
superquadrics is:

D(z,y,2) = [((z/a1)*/** + (y/a2)/ 1)/ + (2/aa)/ 2]

(M)
where the position (z,y, 2) is relative to the object’s canon-
ical reference frame. The basic operation for collision detec-
tion, then, is to take points (z,y, z) sampled from the tested

object’s surface, apply T~! to convert them to the canonical

!The canonical reference frame is when the object has
zero rotation, and is centered at (0,0, 0)

reference frame, and then substitute them into the inside-
outside function. When the result is less than one the point
is inside the surface, if greater then one the point is outside.
Thus, the computational complexity is only O(m), rather
than 0(nm), where n and m are as before. As with otler
representations [9], to find the exact point in space-time at
which contact between the two bodies occurred requires use
of numerical minimization techniques, where both point po-
sition, T and Equation 7 are expressed as functions of time.
In the Thingworld system we have found that the ability to
perform fast collision detection using volumetric representa-
tions yields large computational savings.

4.2 Accuracy of Collision Characterization

A more subtle but perhaps equally important advantage of
being able to use analytic representations in dynamic simula-
tions is the ability to characterize the collision surface more
quickly and precisely. For instance, one difficult problem
that arises when using any discrete time technique is that
colliding bodies often interpenetrate during a time step. The
depth, area and shape of this penetration determines the re-
pulsive force generated.

With point-wise (polygon) representations it is difficult to
determine the interpenetration region, so that most systems
ignore the contact area’s shape and simply find the single
point (normally a polygon vertex) that first contacted the
surface. As a consequence the calculated force is often seri-
ously in error. When using analytic representations of geom-
etry, however, both surface normal and principal curvatures
are readily available so that good closed form approxima-
tions to the depth, area and shape of the interpenetration
region can be easily computed.

5 The Right Control Knobs

One of the most important aspects of any simulation or ani-
mation system is the ability to control the behavior of objects
in a natural, intuitive, and convenient manner: in short, the
system must have the right control knobs. In simulation sys-
tems such as Thingworld, one often needs to be able to solve
simple inverse dynamics problems: For instance, to make
something jump from here to there and land softly. In ani-
mation systems the same requirements arise, but in addition
one needs to be able to produce pleasing but non-physically-
realistic effects. In traditional animation some of the most
important of these effects are called squash-and-stretch, an-
ticipation, and exaggeration [8].

The control knobs for these sorts of things simply don’t
exist with standard approaches to dynamic simulation. Even
simple inverse dynamics problems, for instance, require solv-
ing huge numerical minimization problems because all of dy-
namical equations are closely coupled together. Similarly,
traditional animation effects such as squash-and-stretch can
only be obtained by carefully jiggering material properties
and external forces as a function of object position, velocity,
and so forth.

The situation is quite different when using modal analysis,
because closed-form solutions exist for each mode’s behav-
jor as a function of time, and because the various modal
behaviors are independent of each other so that they may
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Figure 4: Damped vibration as a function of time.

be treated separately. Further, the low-order modes of an
object seem to closely mimic many of the effects used in
traditional animation.

5.1 Inverse Dynamics

The time behavior of each mode in response to an impinging
force is given by Equation 4. The generic solution to this
equation is

@; = Ae™' + Be™

for D? —4K,M; >0, r,r2<0

— (D;/2M;)t

i = (A + Bt)e N (8)
for D —4K;M; =0,

4 = e(D‘/zﬂf)'(Acos gt + Bsin pt),
for p=(4KiM; - D)2 /2M; >0

for the overdamped, critically damped, and underdamped
cases, where

-D; + \/D? — 4K M;

o, (9)

and A and B depend on the initial conditions [1]. The third
case, underdamped motion, occurs most commonly in me-
chanical systems and is referred to as “damped vibration.”
To see this we let A = Rcosé§ and B = Rsin § in Equation
8 to obtain

T1,T2 =

a; = Re~(Kil?MDt cog(yt — 6) (10)

which is graphed in Figure 4.

Thus, once we know the amplitude and derivative of a
mode at time zero, we can predict its behavior for all future
times — or at least until an external force adds or subtracts
energy from the mode. In particular, given initial conditions
#i(0) = x, 2:{0) = X, and underdamped free oscillation, then

%, Dix o\ mipem
wa(t)= (> + (2 +=2)? eKitI2Mi ot — 6) (11

10 (x &+ 325 (ut~6) (11
where § = tan~'[(x/x + Dix/2uM;)/x]. Using this relation
we can achieve a desired object shape at some time t; by
adjusting initial modal amplitude and velocity at time ?o.
Similarly, we can specify the desired object shape at times #o
and t;, and then solve for the force required to achieve those
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(A)

(B)

Figure 5: A time lapse illustration of a cylinder jumping and
landing (a) with a hard thump, (b) softly. Time proceeds
from left to right.

constraints. Thus, Equation 11 can provide us with closed-
form solutions to many common inverse dynamics problems.
For closed-form solutions under other initial conditions see
reference [1].

5.1.1 Some Examples

Imagine that we want a cylindrical solid to jump from
point A to point B, landing either softly or with a hard
“thump”. Further, imagine that we wish to control the
cylinder by changing only the characteristics of it’s “mus-
cles,” i.e., by controlling the displacement and spring con-
stant associated with each deformation mode. The inverse
dynamics problem, then, is to make sure that the cylinder
has the correct amount of extension or compression at the
point of landing so that it can achieve the desired type of
landing.

The mathematics for calculating a trajectory that will
take the cylinder from point A at time t = to to point B
is well known. That calculation will also give us the time
t = t; at which landing will occur, and the force vector
finitiat needed to achieve the jump. If we idealize the ge-
ometry and time course of how the cylinder pushes against
point A, then we can use standard kinematics to determine
how much the cylinder must “crouch” and tense it’s “mus-
cles” (i.e., what initial modal displacements @,(to) and spring
constants K;(to) are required) in order to produce the de-
sired force vector.

Producing a jump by use of the spring energies stored in
the various modes will leave each of the modes in some state
@i(to + €) = xi, @ito + €) = xi as the cylinder leaves the
surface. The inverse dynamics problem is then to set the
spring constants [K;(t) (for to < t < t1) of the cylinder’s
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Figure 6: (a) Physical squash-and-stretch in a collision.

“muscles” so that the natural oscillation of the cylinder ex-
erts the desired motion-canceling force ffinar on point B at
the appointed instant in time.

To obtain ffina at t = t; we first determine what combi-
nation of modal amplitudes will exert the desired final force
by computing

wi(t) = fi/Ki(t)) (12)

where f = ¢Tff.-m,1, and the K;(t,) correspond to “tensing”
the muscles for landing. We then solve Equation 11 with the
given values of t = t1, My, Dy, @i(to) = xi, and @;i(to) = x:
in order to find a stiffness Ki(t), to < t < t1, such that @;(t1)
has the desired value. 2 Thus Equation 11 provides a closed-
form solution to such simple inverse dynamics problems —
at least when we can idealize contact geometry, friction, etc.
Examples of jumps computed in this manner are shown in
Figure 5.

In most situations of interest, unfortunately, the partic-
ulars of geometry and friction are sufficiently complex and
non-linear that there is no closed-form solution, so that one
must still employ the sort of constrained minimization de-
scribed in [17] to obtain a solution. However, as these ex-
amples illustrate, by using Equation 11 it appears that the
problem can be reduced from several thousand free param-
eters to only a few dozen free parameters.

5.2 Control of Animation

The deformations caused by an object’s low-order vibration
modes correspond closely to the types of exaggeration and
emphasis used in traditional animation. Thus, the amplitude
of these low-order modes provides the control knobs needed
for such animation.

A simple version of squash-and-stretch in collisions is
well modeled by straightforward application of non-rigid dy-
namic simulation: things do squash and stretch during col-
lisions, a shown in Figure 6. However, as applied in tradi-
tional animation, this notion goes well beyond simply ob-
taining physically-realistic deformations during a collision.
It also occurs as a response to motion, to acceleration,
and even in response to emotional states. By providing a
“stretch /squash” control knob we can wire squashing-type

2The Ki(t1) must of course be large enough that the
modal displacements at ¢ = ¢; (which are no larger than
the displacements at t = to) generate sufficient energy.
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Figure 7: Stretching/squashing tied to velocity
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Figure 8: Stretching/squashing tied to speed minus acceler-
ation; time proceeds from top to bottom.

deformations directly to other parameters, both physical and
non-physical, in order to obtain interesting visual effects.

Examples of this are shown in Figures 7, 8 and 9, where
we have wired the “stretch/squash” knob to various physi-
cal properties. Figure 7 shows three objects moving at dif-
ferent speeds. In this figure the amplitude of the stretch-
ing/squashing deformation is set equal the speed, so that
as the object moves faster it becomes stretched out in the
direction of motion.

Figure 8 shows a time series where the stretch/squash
deformation is equal to the speed minus the acceleration,
so that an accelerating object “piles up” in anticipation as
the motion begins, and stretches out as the motion reaches
steady state.

Finally, Figure 9 shows three mushrooms with both bend-
ing and stretching/squashing deformations tied to image z
position: as a consequence the mushrooms “wilt” from left
to right. The same deformations could be tied to emotional
stute, for instance, thus providing physical illustration of a
character’s state of depression or elation.
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Figure 9: Stretching/squashing to express emotional state.

6 SUMMARY

The idea of using computers to provide interactive simula-
tion of non-rigid object dynamics has long been frustrated by
the inability to efficiently calculate dynamic interactions, to
solve inverse dynamics problems, to use geometry defined by
splines or constructive solid geometry, and to avoid tempo-
ral aliasing problems. We have been able to minimize each
of these problems by developing new, hybrid methods for
representing and calculating object dynamics in which *he
object’s geometry and dynamics are described by sepz ate
but yoked representations. The result is a system which is
efficient at performing dynamic simulations, can be applied
to a wide range of geometric models, and which is useful
for implementing many of the techniques used in traditional
animation.
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