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Abstract

Real time animation of human figures in virtual environments is an
important problem in the context of computer games and virtual en-
vironments. Recently, the use of large collections of captured mo-
tion data has increased realism in character animation. However,
assuming that the virtual environment is large and complex, the ef-
fort of capturing motion data in a physical environment and adapt-
ing them to an extended virtual environment is the bottleneck for
achieving interactive character animation and control. We present
a new technique for allowing our animated characters to navigate
through a large virtual environment, which is constructed using a
set of building blocks. The building blocks, called motion patches,
can be arbitrarily assembled to create novel environments. Each
patch is annotated with motion data, which informs what actions
are available for animated characters within the block. The versa-
tility and flexibility of our approach are demonstrated through ex-
amples in which multiple characters are animated and controlled at
interactive rates in large, complex virtual environments.
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Animation—Virtual reality
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1 Introduction
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The real time animation and control of human figures in complex
virtual environments have been an important problem in computer
graphics. A number of techniques have been developed for animat-
ing human figures: the motion of the figures may be keyframed,
simulated, procedurally defined, or live captured. We are particu-
larly interested in the last technique using a database of recorded
motion. This data-driven approach can create a rich variety of nat-
ural human behavior from a large set of human motion data. How-
ever, applying data-driven approaches to animated characters in a
complex environment is still challenging because a large motion
set must be searched in real time in order to select motions appro-
priate to given situations, and the selected motion must be adapted
to match the environment.

The virtual environments we intend to design are often too big to
be physically realized and accommodated in a motion capture stu-
dio. Motion capture in such a large environment is certainly diffi-
cult, if not impossible. One appealing approach is to divide a large
environment into small pieces, then record motion interacting with
each piece separately, and finally combine motion data into a single,
large piece of data covering the entire environment. In this way, the
character’s motion in a large environment can be collected. How-
ever, this approach requires a rich amount of motion data at every
portion of the environment, and thus the motion capture process
can be quite laborious and painful. A significant amount of redun-
dancy exists in the motion set because it includes the same motion
performed in different parts of the environment. This redundancy
can be avoided by reusing motion data captured at one location to
animate characters at other locations.

We present a new technique for allowing our animated characters
to navigate through and interact with a large virtual environment in
real time. In order to reuse motion data collected from one envi-
ronment to another, the key idea of our approach is to identify a set
of building blocks from the source environment, embed recorded
motion data in these blocks, and fit them to the target environment
so that the embedded motion data can be transferred to the target
environment. These building blocks annotated with the availability
of motions are called motion patches. The set of motion data em-
bedded in a motion patch informs what actions are available for an-
imated characters within the patch. The overview of our approach
is as follows:



• Data collection and processing. We first build a physical
environment in the motion capture studio and collect motion
data viable in the environment. The recorded motion data is
preprocessed such that the poses in the motion data sets are
sorted into groups. The clustering allows us to construct and
stitch motion patches efficiently.

• Patch construction. A set of motion patches is identified by
analyzing the geometric regularities of the environment and
the recorded motion data. The motion data embedded in each
patch form a directed graph to achieve flexibility in the char-
acter’s motion within the patch.

• Fitting to the target environment. Once the target environ-
ment is created, the set of motion patches can be fitted in the
target environment such that the environment is covered by
the patches. By establishing the connections between patches,
the target environment can be automatically annotated with a
rich, connected set of motion data, which allows characters to
navigate through the environment. We implemented two types
of motion patches: tilable and non-tilable patches. Non-tilable
patches are connected to each other by finding intersections at
overlapping regions, while tilable patches can be seamlessly
tiled in a regular pattern.

• Animation and control. Our system allows the user to
change the environment dynamically at runtime and control
animated characters in the environment interactively. The mo-
tion patches make it possible to achieve real time performance
in finding collision-free paths through complex virtual envi-
ronments and animating multiple characters while avoiding
collisions between them.

2 Background

Animation and control of human figures in synthetic environments
have been studied in computer graphics for the last decade [Bandi
and Thalmann 1997; Bindiganavale et al. 1994; Jung et al. 1994;
Noser et al. 1995; Thorne et al. 2004]. This problem is very difficult
because human motion is high-dimensional, and many degrees of
freedom need to be choreographed in a coordinated, collision-free,
human-like manner.

Captured motion data have frequently been used in character ani-
mation for reproducing the naturalness of human movements. Re-
cently, a number of researchers have explored the method of rep-
resenting a significant amount of motion data as a directed graph
and using it to animate and control human figures [Arikan and
Forsyth 2002; Kovar et al. 2002; Lee et al. 2002; Pullen and Bre-
gler 2002]. This method has further been explored for better con-
trollability [Arikan et al. 2003; Hsu et al. 2004; Stone et al. 2004],
efficient search [Lee and Lee 2004], parameterizing and blending
motions [Kovar and Gleicher 2004; Park et al. 2004], synchroniz-
ing with sound [Kim et al. 2003], parameter tuning [Wang and
Bodenheimer 2004], classification [Kwon and Shin 2005], simu-
lating group behavior [Lai et al. 2005], responsiveness to external
forces [Arikan et al. 2005], and evaluating the effectiveness of a
motion graph in a specific environment [Reitsma and Pollard 2004].

Lee and his colleagues [2002] showed the capability of the graph-
based motion representation to reuse motion data collected from a
“poles and holes” terrain environment to an extended terrain envi-
ronment. Their character control algorithm is based on state space
search techniques and barely achieves its interactive performance
(approximately 5 to 10 frames per second) with a single character.

Figure 1: The physical environments we built in our motion cap-
ture studio for collecting human motion data and their polyhedral
models. The playground construction kit was used for building the
desk, the steps, and the playground. We removed the back of the
chair in order to avoid the occlusion of reflective markers from mo-
tion capture cameras.

We address the same problem with much flexibility in selecting tar-
get environments and aiming to achieve real time performance with
multiple characters. To do so, we annotate the target environment
with a repertoire of character motions available at each location.
This annotation makes path planning and state space search in the
environment very efficient and straightforward. Our work is related
to animation techniques that annotate environment objects with the
availability of motions [Abaci et al. 2005; Shao and Terzopoulos
2005; Sung et al. 2004]

Our problem is also related to the path planning of articulated fig-
ures in the presence of obstacles, which is a classical problem in
a wide range of disciplines. There is a vast amount of literature
on path planning [Latombe 1991]; however, only a few works ad-
dressed human motion planning, which yields a high-dimensional
(typically, 20 to 100) configuration space. With such a high-
dimensional configuration space, most optimal path planning algo-
rithms are either computation-intensive for searching through con-
figuration spaces exhaustively or memory-intensive for maintain-
ing discretized configuration spaces. Many researchers used a low-
dimensional configuration space (e.g., body and footprint locations)
and randomized sampling techniques for producing character ani-
mation of locomotion, crawling, and climbing [Choi et al. 2003;
Kalisiak and van de Panne 2001; Kuffner et al. 2001; Lau and
Kuffner 2005; Pettre et al. 2003; Sung et al. 2005], and grasping
and manipulating an object [Koga et al. 1994; Yamane et al. 2004].
Our motion patches can be thought of as a way to create discrete
configuration spaces memory-efficient without losing the diversity
and subtle details of captured motion data.

Reitsma and Pollard [2004] embedded human motion data in a
square tile and allowed a character to navigate a large environment
covered with a grid of square tiles. Chenney [2004] also discussed
the use of square tiles for animating characters. We extend their
work to deal with several challenges, which include embedding
motion data into arbitrarily-shaped objects other than square tiles,
allowing animated characters to navigate around and interact with
these objects in a collision-free manner, and allowing locomotion
and the other types of human motion to be handled in a uniform
way.

3 Data Acquisition and Processing

All of the motion data used in our experiments were captured from
a Vicon optical system with sixteen cameras at the rate of 120
frames/second and then down-sampled to 30 frames/second for real



Motion sets Environments # of Time
source target frames (sec)

walk/climb/slide playground(S) playground(L) 51169 1706
idle empty office 3685 123
chat empty office 3653 122

dispute empty office 3213 107
presentation empty office 3179 106

sit down/stand up desk/chair office 11778 393
work at the desk desk/chair office 5122 171
chat at the desk desk/chair office 10171 339
walk up/down stairs office 19421 324

walk-stop-walk empty office 4385 146
walk empty both 23911 797

Table 1: The motion sets collected for our experiments. Each data
set was captured in the source environment and used for animating
characters in the target environment.

time display. Our motion capture studio allows an effective capture
region of 4 by 4 by 2.5 meters. Motion capture data contains tra-
jectories for the position and orientation of the root node (pelvis) as
well as relative joint angles for each body part.

We built several physical environments, each of which can be ac-
commodated in our motion capture studio (see Figure 1). Each en-
vironment was designed to include some geometric features of the
target (possibly much larger) environment we intend to create. All
of the geometric features distributed in the physical environments
can be rearranged and assembled to reconstruct the target environ-
ment. We also prepared polygonal models that match the physical
environments.

In motion capture sessions, we collected a variety of human mo-
tions that are viable in a given environment. Our motion database
contains about 70 minutes of data (see Table 1). To create the
database, our subject walked, climbed, and slid in the playground
and walked up and down the stairs. In the office environment, our
subject approached the chair, sat down, stood up, and left repeat-
edly. We also captured our subject walking, stopping, idling, chat-
ting, and making a presentation in an empty environment. Motion
data were recorded in long clips so that seamless, natural transitions
between motions could be captured. Our subjects were instructed
to repeat each action several times to capture variations in each ac-
tion. We denote the set of recorded motion data in the database as
{pi|i = 1, · · · ,n}, where each frame pi is the joint angle representa-
tion of a specific pose of the character.

Contact. The motion data is automatically preprocessed to anno-
tate body-environment contact information at each frame. A body
segment and an environment object are considered to be in contact
if any joint adjacent to the segment is sufficiently close to the object
and its velocity is below some threshold.

Clustering. The construction and stitching of motion patches in-
volve searching pairs of similar frames that allow smooth transition
from one patch to another. At a preprocessing phase, we sort mo-
tion frames into groups to accelerate this similarity search. The
agglomerative hierarchical k-means algorithm [Duda et al. 2000] is
employed to guarantee that the distance between any frames in a
group is below a user-specified threshold. The threshold is deter-
mined through experimentation such that transitions within a group
can generate smoothly blended motions. Here, in order to measure
the distance between motion frames, we consider six features of
the frames. All of the features were selected such that the distance
became invariant under horizonal translation and rotation about the
vertical (up direction) axis. Given two frames pi and p j, the fea-
tures are:

• Joint angles: The differences in all of the joint angles
are considered. In our system, joint angles are described
with unit quaternions and the difference between two unit
quaternions qi and q j is measured by their geodesic distance

min(‖ log(q−1
j qi)‖,‖ log(q−1

j (−qi))‖).

• Root height: The difference (yi − y j) in the height of the root
nodes from the reference ground plane is considered. The
horizontal coordinates of the root nodes are disregarded.

• Root orientation: The orientations of the root nodes are also
described with unit quaternions. Grochow et al. [2004] dis-
cussed body orientation features that are invariant under rota-
tion about the vertical axis. The difference between their body
orientation features yields a metric that is nonlinearly propor-
tional to the geodesic distance between body orientations. We
present a new metric that measures the constrained geodesic
distance and thus is linearly proportional to percieved differ-
ence. To effectively ignore the rotation about the vertical axis
in the difference between two orientations qi and q j, we first
rotate qi about the vertical axis so that it can be brought as
close to q j as possible. The optimal rotation about the verti-
cal axis ŷ is denoted as exp(θ ŷ), where θ is the rotation angle
about the vertical axis. Then, the geodesic distance between
q′i = exp(θ ŷ)qi and q j is invariant under rotation about the
vertical axis. θ is computed as the solution of finding the
closest point on the geodesic curve G(θ) = exp(θ ŷ) from the

unit quaternion q = q jq
−1
i = (w,v), where w ∈ R and v ∈ R

3.

θ =

{

−α + π

2 , if q ·G(−α + π

2 ) > q ·G(−α − π

2 ),

−α − π

2 , if q ·G(−α + π

2 ) < q ·G(−α − π

2 ),

(1)

where tanα = w/(v · ŷ).

• The velocities of joints, root translation, and root rotation:
The joint velocity at a joint is computed as a difference be-
tween angles at the next and the previous frames, that is,

vi = log(q−1
i−1qi+1)/2. The linear and angular velocities of the

root node can also be given by differencing the next and the
previous frames. We represent the linear and angular veloci-
ties of the root node with respect to a local, moving coordinate
system attached to the root node. This allows the velocities to
be rotation-invariant.

The above six features are weighted, squared, and summed to com-
pute the squared distance between motion frames. For effective
clustering of motion frames, contact with the environments is an
important perceptual feature of motion, which is not reflected in the
distance between motion frames. Given a motion frame, we con-
sider the contact states at three successive frames including the pre-
vious and next frames for evaluating the similarity between motion
frames. In the process of agglomerative clustering, motion frames
are considered to be dissimilar if their contact states or the contact
states of their neighboring frames are different.

4 Motion Patch Construction

We intend to create virtual environments that consist of a reason-
ably small number of unit objects. A unit object is defined by its
geometric shape, which cannot be modified or changed, and the
bounding box. The virtual environment may contain multiple in-
stances of each individual object and the location of each instance
in the environment is described by a rigid transform. We denote the
environment as {(u1,T1),(u2,T2), · · · ,(um,Tm)}, where ui is a unit
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Figure 2: Identifying motion patches from motion data. The envi-
ronment consists of three types of unit objects: the ground panel,
the straight slide, and the curved slide. A short segment of motion
capture data is used for uncluttered illustration. The root trajectory
is depicted as a series of dots. The motion frames at the bottom
are partitioned depending on in which unit objects the frames are
included. The frames colored in lime green are included in two ob-
jects simultaneously and correspond to the character’s motion tran-
sitioning from one object to another. Our algorithm identified four
building blocks: {U1,U2},{U2,U3},{U3,U4},{U4,U5}. Note that
{U4,U5} and {U5,U6} are geometrically equivalent. Therefore,
patch {U5,U6} is not created and motions occurred on {U5,U6}
are embedded in patch {U4,U5}.

object and Ti is a rigid transform with respect to the world coordi-
nate system.

A motion patch consists of either one or more unit objects.
The single-object patch maintains the character’s motions oc-
curred within a single object. The multiple-object patch main-
tains motions that interact with multiple objects simultaneously
and that make transitions from one object to another. A patch
{(û1, T̂1), · · · ,(ûk, T̂k)} can be fitted in the environment if there

exists a rigid transform T such that every object (ûi,T ◦ T̂i), i =
1, · · · ,k, in the patch can be transformed to match a part of the en-
vironment geometrically.

A pose in the motion data is included in a unit object if the pose
intersects the bounding box of the object. The pose can be included
in more than one objects simultaneously. A segment of successive
motion frames in the database is included in a motion patch if every
frame in the segment is included in one of its objects.

Given an environment and the set of motion data captured in that
environment, the algorithm for identifying a set of motion patches
containing k objects is as follows (see Figure 2). For example, if
k = 2, the following algorithm identifies all motion patches consist-
ing of two objects. We begin with an empty set of patches. The mo-
tion data set is scanned to find a segment of successive frames that
is included in any k objects. If a patch containing the same k objects
already exists, we simply register the segment of frames to the ex-
isting patch. Otherwise, we create a new patch and register the seg-
ment to the new one. When we decide if two patches are geomet-
rically equivalent, the relative locations and rotational symmetry of
objects are considered to match the shapes of the patches. How-
ever, the absolute locations of objects with respect to a global, fixed
coordinate system are disregarded. In this way, motions recorded in

different, yet geometrically similar parts of the source environment
can be collected and embedded in a motion patch.

The embedding of motion data in each individual patch forms a di-
rected graph. All poses in the database have been sorted into groups
at a preprocessing phase. We approximate each patch using a regu-
lar grid of cells. Each cell is indexed by two-dimensional location
(x,y), yaw orientation θ , and the index p of groups of the charac-
ter’s poses. A frame of the motion data belongs to a cell if the root
of the body is located within the cell and the pose belongs to the
p-th group. The cells become the nodes of the directed graph. The
connecting transitions between cells are created if any motion seg-
ment embedded in the patch allows transition from one cell to the
other. More specifically, the connecting transitions between cells
are formed as follows. For every motion segment in the database,
we check all of its O(n2) sub-sequences by double looping over
the frames. For every sub-sequence longer than 20 frames (0.66
second), we insert a connecting transition between the cells where
the sub-sequence originates and terminates. The minimum length
constraint is required to avoid too frequent transitions in animation.
We repeat this procedure for every motion segment embedded in
the patch.

Once the graph is constructed, the character can navigate through
the patch traversing the graph. Since a path traversing the graph
corresponds to a series of motion segments, the animation of char-
acters along the graph path involves the concatenation of motion
segments. Transition from one motion segment to another is made
smooth by warping both segments at the boundary and enforcing
foothold constraints, as done in [Lee et al. 2002].

Patch size. We do not have a simple rule to determine the ge-
ometric size of motion patches. Through experiments, we have
found several heuristic rules. The size of patches should be deter-
mined by the content of capture motion data. Each individual patch
should be large enough to accommodate a single recognizable ac-
tion in the data set. With walking motion data, for example, we
select the square ground panel as a unit object, of which width and
height are about the same as the distance travelled by two cycles
of walking. There exists a trade-off, however, for different patch
sizes. Large patches allow rich connections through the embed-
ding, while smaller patches provide flexibility in designing virtual
environments.

Practical implementation. The current implementation of our sys-
tem allows motion patches to contain either one or two objects. Our
algorithm can construct patches containing more than two objects.
However, we found that those patches were not particularly useful
in our experiments because our motion data could be effectively
managed in one- and two-object patches. For the convenience in
shape matching, the rotation of motion patches has sometimes been
limited to 0, 90, 180, and 270 degrees. In the playground exam-
ple, two-object patches can be stitched only when they share a unit
object in common. These limitations make the shape matching pro-
cedure (finding a rigid transform T ) simple and practical.

5 Stitching Motion Patches

The user is provided with a user interface system that allows the
user to design a target environment using a set of unit objects. Once
the target environment is created, our system fits a set of motion
patches automatically into the target environment such that the tar-
get environment is covered by the patches (see Figure 3). Tran-
sitions between motion patches are established where the patches
overlap. Given two overlapping patches, the transition from cell
(x1,y1,θ1, p1) of one patch to cell (x2,y2,θ2, p2) of another patch



Figure 3: (Top left) The motion patches covering the target envi-
ronment are depicted as the root trajectories rendered in different
colors. (Bottom) The patches are overlapped to each other and the
transitions from one patch to another can be found in the overlap-
ping region. (Top right) The motion patches are stitched and then
pruned to leave a single strongly connected component.

is formed if the pose indexes are identical and the distance between
the cell centers and the angle between the yaw orientations are be-
low certain thresholds. In our experiments, the thresholds are the
same as the size of the cells. The position threshold ranges from 5
to 10cm and the orientation threshold ranges from 5 to 10 degrees.

Once the connections among motion patches are established, we
obtain a large, connected graph covering the target environment.
Some connecting transitions between cells should be disabled to
avoid collision and dead ends. For each motion patch, we first dis-
able transitions that cause the collision between the animated char-
acter and the environment. Then, we run a strongly connected com-
ponent algorithm [Tarjan 1972] on the graph and prune connecting
transitions that are not contained in the largest strongly connected
component.

Memory efficiency. In the worst case, the memory requirement
of motion patches would scale in proportion to the square of the
number of frames in the database, because the directed graph in the
patches could have O(n2) connecting transitions for n nodes. In
practice, the memory requirement is much less than the worst case
for several reasons. At first, each motion patch is constructed using
a small subset of the database. Therefore, the memory requirement
is not proportional to the size of the entire data sets, but related to
the size of the largest motion patch. Secondly, since the database
contains many unrelated motions, the directed graph is actually
sparse in practice. The storage cost of the graph is also mitigated
by the clustering of motion frames. The cluster-to-cluster transi-
tion graph is significantly smaller than the frame-to-frame transi-
tion graph. Finally, the storage cost for creating multiple instances
of a motion patch is modest, because each instance does not need
to include motion data and their graph structure. In each instance,
we maintain only an array of bits that mark cells and transitions
disabled by either obstruction or insufficient connections.

6 Tilable Patches

We also implemented a special type of patches that can be tiled in
a regular pattern, such as square ground panels and stairs. In this
section, we will explain the construction of square ground patches

Figure 4: The construction of square ground patches. (Left) We
collected the motion of our subject walking around for about ten
minutes. The motion data are depicted as the root trajectories that
are projected on to the ground. (Right) The square patch has entries
and exits sampled evenly on the boundary. The connections be-
tween the entries and the exits are formed by selecting appropriate
motion segments from the walking motion data.

that allow the character to enter and leave the patch in any of four
directions. The other types of tilable patches can be constructed in
a similar way.

Tilable patches differ from non-tilable patches in two aspects: One
is the boundary conditions of tilable patches and the other is the
method of creating transitions between nodes. Tilable patches have
nodes (x,y,θ , p) sampled on the boundary (see Figure 4). Each
node is either an entry or exit depending on the direction of motion.
Any entry on a boundary edge should have its corresponding exit
on the opposite edge and vice versa. This boundary condition al-
lows patches to be aligned and tiled without much effort. Entries
and exits are connected by motion segments chosen from input mo-
tion data. Whereas the location and direction of motion data in non-
tilable patches are fixed with respect to the coordinate system of the
patch, tilable patches allow flexibility in translation and rotation of
motion data. A motion segment in the motion database can be used
to link an entry-exit pair if the motion segment can be translated, ro-
tated about the vertical axis, and then edited within a user-specified
threshold to match the entry-exit pair at both ends. We use a simple
linear model of Reitsma and Pollard [2004] to determine the extent
to which the motion segment can be edited.

Pruning. A tilable motion patch is safe if two conditions are satis-
fied. The first condition is that every entry must have at least one
out-going motion for each of the four directions. Even with a large
collection of motion data, we may not be able to find enough con-
necting motions for some entries if the entries are heading toward
a corner of the patch. We remove those entries and their corre-
sponding exits on the opposite edges to avoid dead ends and ensure
flexibility in steering animated characters. The second condition
requires that motion patches should produce a strongly connected
graph when they are tiled on a surface. This condition ensures that
the entire motion sets can be fully utilized in animating characters.
We employ the torus idea of Reitsma and Pollard [2004]. A torus
is constructed from the square patch by gluing both pairs of oppo-
site edges. On the torus, the embedding of motion data creates a
boundary-less directed graph. We run Tarjan’s algorithm [Tarjan
1972] on the boundary-less graph to identify the largest strongly
connected component. To ensure both conditions simultaneously,
we enforce two safety conditions repeatedly and alternatingly until
no connection is pruned.

Connection between patches. Tiled patches can be connected to
other patches overlaid on the tiled surface (see Figure 5). Though
we create nodes only on the boundary, we still need to partition the
internal region of tilable patches into 4D cells (x,y,θ , p) in order
to accelerate patch stitching. Each cell maintains a list of motion



Figure 5: The desk and chair on the tiled surface. (Left) The blue
cells in the ground panel are concealed by the desk and chair and
thus disabled. (Center) The red motion segments are disabled be-
cause they are obstructed by the obstacles. The blue motion seg-
ments are disabled because they have all following motions dis-
abled. (Right) The red motion segments embedded in the ground
panel and the blue motion segments embedded in the desk and chair
have coincident frames, at which characters are allowed to make a
transition between the patches.

segments passing through the cell. This cell partitioning allows us
to find the coincident poses efficiently from the overlapped patches.

Avoiding obstacles. In the presence of obstacles on the tiled sur-
face, motion segments obstructed by the obstacles need to be dis-
abled. This can be done simply by marking the cells concealed
by the obstacles and then disabling all motion segments passing
through the marked cells. After disabling some motion segments,
we have to check if their adjacent motion segments have at least one
out-going transition. Otherwise, those adjacent segments would
cause dead ends and should be disabled. This procedure is repeated
until no more motion segments are disabled. In practice, this pro-
cedure can be finished in one or two iterations.

7 Animation and Control

We built a simple interactive editing system for designing various
virtual environments. Our system allows the user to create, remove,
or drag motion patches interactively to change the environment.
Accordingly, motion patches are created, connected to each other,
or detached from each other in order to dynamically update the con-
nected structure of motion patches. The user can also control each
character by specifying either a goal location to move to or a spe-
cific behavior such as idling, chatting, and roaming around.

The environment is annotated with a graph of motions covering the
whole area of the environment. The animation and control of char-
acters along the graph is computationally very efficient. At every
node of the graph, characters are provided with a set of motions
immediately available at that moment and can proceed with any
choice among available motions. Assuming that the decision is
made based on local information, the computation time for anima-
tion and control is often negligible, and the total computation time
is dominated by rendering the scenes on the computer screen.

The capability of global path planning is an important feature of our
system for controlling characters in complex environments. Opti-
mal path planning algorithms, such as Dijkstra’s shortest path al-
gorithm, require an explicit representation of the entire connected
graph, which is often implausible for large environments. The stor-
age efficiency of our approach is largely due to the distributed rep-
resentation of the motion graph annotated in the environment. We
actually do not maintain an explicit representation of the graph, but
the graph is implicitly maintained in the connections among motion
patches. We address this problem in a hierarchical manner. In our

Figure 6: Two-layer path planning.

Figure 7: (Left) One thousand of animated characters on the SIG-
GRAPH logo. (Right) A close-up view.

system, the motion data are organized in a two-layer structure. The
higher layer is a directed graph of which nodes are motion patches.
The higher layer maintains the connectivity among motion patches.
The lower layer is a directed graph of motion segments embedded
in patches. Our two-layer path planning algorithm first finds a path
to the goal at the resolution of patches in the higher layer and then
refines the path by running a shortest path algorithm through the
lower layer (see Figure 6). In this way, we can run path planning
algorithms time-efficiently within limited storage space.

8 Experimental Results

The timing data provided in this section was measured on a 2.8GHz
Intel Pentium 4 computer with 2Gbyte main memory and an nVidia
Quadro FX1100 graphics accelerator.

Performance. To evaluate the performance of our system, we cre-
ated one thousand of animated characters on a grid of walk patches
(see Figure 7). A 13-minute sequence of motion was captured and
used to construct the tilable walk patch. Collisions between char-
acters are avoided approximately at the resolution of walk patches.
At any instance, each character occupies two patches (the one it be-
longs and the other one on which it will move to shortly) and avoids
the collision with the other characters by preventing them from en-
tering the occupied patches. Our system required about 66 seconds
to create 300 frames (10 seconds) of video images. Actually, ren-
dering dominated the computation time. Our system required only
2.8 seconds to create the same animation with video disabled. It
means that the motion of one thousand characters is computed and
controlled at a rate of more than 100 frames per second.

Playground. We recorded motions of about 28 minutes duration
(51169 frames) from the playground environment (see Figure 8).
In the recorded data, our subject walked, climbed, and slid repeat-
edly in the playground. The clustering of motion frames produced
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Figure 8: From the source playground environment, we selected five unit objects that include the square ground panel, the curved slide,
and the straight slide divided into three pieces. Our algorithm identified eleven building blocks. Motion data collected from the source
environment were transferred to the target environments using motion patches.

4928 pose groups. From the source environment, we selected five
unit objects by hand: the ground panel, the curved slide, two outer
parts of the straight slide, and its intervening part. Our system
identified eleven motion patches (see the figure on the front page).
Each patch consists of two unit objects, except for the interven-
ing part of the straight slide, which consists of a single unit. The
intervening part can be duplicated and strung together in order to
generate arbitrarily long slides. In the small jungle gym, 536 in-
stances of motion patches were fitted through shape matching (the
eleven patches were instantiated 132, 181, 21, 75, 62, 3, 3, 36, 5,
13, and 5 times, respectively). These patches produced a strongly
connected component with 43,516 nodes and 346,507 transitions.
Our system required about 4 minutes and 30 seconds to annotate
the small jungle gym. This computation time includes 0.7 second
for shape matching, 257.7 seconds for stitching patches, 10 sec-
onds for generating transitions, and 4 seconds for finding a strongly
connected component. In the large jungle gym, 2063 instances
of motion patches were fitted. Stitching these patches produced a
strongly connected component with 227,583 nodes and 1,474,971
transitions. The target playground environment is equipped with
32 jungle gyms, which are connected to a 30 by 30 grid of walk
patches. 8775 instances of motion patches were required to cover
the whole environment, which is annotated with a motion graph
with 16,745,035 nodes and 15,326,250 transitions. This graph en-
codes about 6847.57 hours of motion.

Office. For the office example, 40 minutes of motion were col-
lected, and the motion data were sorted into 2337 pose groups (see
Figure 9). We constructed eight motion patches for the office ex-
ample, except for the tilable walk patch that is used in all of our
examples. The desk and the chair are considered as a single unit.
Three patches (sit down/stand up, work at the desk, and chat at the
desk) are embedded in the desk-and-chair. Five patches (idle, chat,
dispute, presentation, and walk-to-stop) describe human behaviors
in an empty space and are embedded in the square ground panel.
Our system required less than one second to create, remove, or drag
a desk-and-chair on the grid of walk patches. The location of a be-
havior patch is not fixed with respect to a world coordinate system,
but determined appropriately when the character makes a transition
to the patch such that the transition could be made immediately.

9 Discussion

Motion patches are useful for graphics applications in which mul-
tiple characters are animated and controlled at interactive rates in a
large virtual environment. Motion patches are simple, versatile, and
easy to implement. The primary advantage of our approach is that
it scales well with the size of motion data and the complexity of vir-
tual environments. Computer games can benefit from the versatility
and compactness of motion patches. In many computer games, we
see characters that can move only in four or eight axis-aligned di-
rections. Our motion patches provide diversity in choosing motions
through rich connections within patches even if the patches are tiled
regularly on a grid.

All of the motion patches contain either one or two unit objects
in our experiments. This is because our motion data sets do not
include character poses touching more than two objects simultane-
ously. We have had difficulty building bigger and heavier physical
environments in our motion capture studio because of its limited
space and the occlusion of reflective markers from motion capture
cameras. Commercial studios have larger spaces and more cam-
eras to capture more challenging motions, such as climbing in the
playground, which use both hands and feet to touch several objects
simultaneously. We would need patches containing more than two
objects to accommodate those motions.

In our experiments, it was reasonably easy to select the set of unit
objects and design the source environment by hand. However, with
an enormously large and complex target environment, inspecting
the entire structures and selecting unit objects can be tedious and
laborious. Ideally, we wish that our system would be able to take
target environment data, such as architectural CAD data, as in-
put, analyze the environment data automatically to identify a set
of unit objects, and suggest several source environments that could
be physically realized in the motion capture studio.

Our approach is particularly suitable for artificial environments,
such as architectural structures and urban areas, in which regu-
larities in geometric features are abundant. One limitation of our
approach is that we need too many building blocks for building
natural, irregular environments. This could be alleviated by allow-
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Figure 9: Office. (Top) The connectivity among motion patches.
(Bottom) Multiple characters animated and controlled in the office
environment.

ing free-form deformation of motion patches. We might be able
to fit the target environment approximately with a reasonably small
number of deformable patches. Motion data embedded in the de-
formable patches could be edited accordingly using off-the-shelf
motion editing techniques [Lee and Shin 1999]. Our system cannot
cope with dynamically changing environments as well.

Another limitation of our approach is that physics is simply ignored
in our framework. The characters on very long slides do not acceler-
ate properly because the character’s motion was created by repeat-
ing the ones recorded from a short slide. We arbitrarily accelerated
characters on long slides to make them more realistic. Combining
data-driven techniques with physically based methods will open up
many possible directions for future research.
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