Visualisation - TP3: Interpolation de "scattered data"

25 Octobre 2013

Introduction

Dans beaucoup de domaines techniques ou des sciences naturelles, on rencontre le problème d'interpolation ou d'approximation d'un très grand ensemble de données non-structurées (dispersées, irrégulières).

Durant ce TP, vous allez programmer une méthode permettant d'interpoler un ensemble de données discrètes. Un exemple de données vous est proposé à l'adresse https://team.inria.fr/imagine/camille-schreck. Vous pouvez également créer vos propres exemples pour tester votre programme.

Interpolation de données discrètes

- Implémentez une fonction qui prend en entrée un ensemble de données et calcule une fonction continue qui interpole ces données en utilisant la méthode de Shepard.
- Représentez la fonction obtenue sous forme de surface. Vous pouvez utiliser par exemple Gnuplot ou Mathlab.
- Observez l'influence des puissances μ_i sur la fonction d'interpolation.

Rappel: la méthode de Shepard

Soit un ensemble de données $\{(X_i, f_i)\}_{i=0...N}$ où X_i représente un point du plan et f_i la valeur scalaire mesurée en ce point.

La méthode de Shepard permet de construire une fonction continue $F:\mathbb{R}^2\to\mathbb{R}$ telle que pour tout $i=0\dots N$:

$$F(X_i) = f_i$$

Cette fonction est une moyenne pondérée des f_i dont les poids dépendent des distances entre le point X où est calculé la fonction et chacun des X_i :

$$F(X) = \sum_{i=0}^{N} \omega_i(X) \ f_i$$

où $\omega_i: \mathbb{R}^2 \to \mathbb{R}$ sont les fonctions de pondération :

$$\omega_i(X) = \frac{\frac{1}{(d_i(X))^{\mu_i}}}{\sum_{j=0}^{N} \frac{1}{(d_j(X))^{\mu_i}}}$$

avec
$$d_i(X) = \operatorname{distance}(X, X_i) = ||X - X_i||_2$$
 et $\mu_i \ge 1$.

Pour l'implémentation, on préfèrera utiliser l'expression équivalente :

$$\omega_i(X) = \frac{\prod_{j \neq i} (d_j(X))^{\mu_j}}{\sum_{k=0}^{N} \prod_{j \neq k} (d_j(X))^{\mu_j}}$$

Ainsi on a:

$$\omega_i(X_j) = \begin{cases} 1 & \text{si } j = i \\ 0 & \text{si } j \neq i \end{cases}$$

Ce qui nous donne bien : $F(X_i) = f_i, \forall i = 0 \dots N$.