The Prose Storyboard Language
A Tool for Annotating and Directing Movies

Rémi Ronfard
Séminaire Image Numérique, ENS, 11 février 2016
Parcours

- Thèse en 1991
- Dassault Systèmes
- Institut National de l’Audiovisuel
- IBM Watson Research Center
- INRIA en 2002
- Xtranormal Technologies
- HDR en 2009

Vision par ordinateur

Informatique graphique
Analyse automatique de films, des images aux actions (1999-2009)

- Modèle structurel des acteurs: parties du corps et relations spatiales
 [ECCV 2002, CVPR 2013]

- Modèle structurel des actions: poses et relations temporelles
 [CVPR 2006, ICCV 2007]
 [CVIU 2006, CVIU 2011]
Mettre en scène les mondes virtuels, des actions aux images (2012-2016)

- Mettre la création de films narratifs à la portée de tous — en animation 3D.

Du scénario au storyboard

Du storyboard à la scène

De la scène à l’écran
EPI IMAGINE: Création de formes, mouvements et histoires

- Interaction fructueuse entre création de contenus 3D et mise en scène
 - Acteurs virtuels
 - Storyboards interactifs
 - Figurines augmentées
Overview

• INTRODUCTION
• SIMPLE, COMPLEX AND COMPOSITE SHOTS
• FRAME COMPOSITION
• PARSING MOVIES INTO PSL
• GENERATING MOVIES FROM PSL
• CONCLUSION
Introduction

• Motivation
 – Learning cinematography from examples
 – Scoring cinematography, like music
• Cinematography is « writing with motion »
 – Prose storyboard is a short-hand notation
 – Shots are sentences, not words
 – Frame compositions and actions are words
State of the art

- Much work in virtual cinematography deals with one-shots and two-shots
- Little work on three-shots and more
- Little agreement between researchers on how to describe complex shots
 - In time and in space
How to describe this?
Requirements

• PSL should be intuitive
 – Human readable, pseudo natural language

• PSL should be compact and expressive
 – Simple cases are simply described
 – Can be used to notate all movies

• PSL should be a notation
 – machine-readable, can be compiled and executed
Proposed solution: prose storyboard
References

• Proferes, Film directing fundamentals, See your film before shooting it, Focal Press 2008.
Simple shots

• Camera does not move or rotate or zoom
• Frame composition changes only when actors move in frame
• Prose storyboard notation: frame composition + actor movement
Complex shots

• Camera does not move
• Frame composition changes
 – Due to camera pan, tilt and zoom
 – Due to actor movement
 – Or both
• Prose storyboard notation: frame composition + actor movement + camera rotation
Composite shots

• Camera and actors move freely
• Frame composition changes
 – Due to actors in the frame
 – Due to camera motion
 – Or both
• Prose storyboard notation: frame composition + actor movement + camera movement
Frame composition in PSL

- From left to right, back to front

```
<Composition> ::= [<angle>] {<FlatComposition>}+

<FlatComposition> ::= <size> on <Subject>[ <profile>][ <screen>]
    { and <Subject>[ <profile>][ <screen>][in (back|foreground)]}* 
```

```
<angle> ::= (high|low)angle
<size>  ::= ECU|BCU|CU|MCU|MS|MLS|FS|LS|ELS
/profile> ::= 34leftback|left|34 left|front|34 right|right|34 leftback|back
/screen> ::= screen(center|left|right)
```
Frame composition : Size

Elements of composition: Profile angle

- back
- backright
- backleft
- right
- left
- front
- 3/4 right
- 3/4 left
- 3/4 backright
- 3/4 backleft
Elements of composition : Screen position
Cinematographic staging
BCU Girl 34left (screen center)
MCU Marianne (front screen center) and BCU Cissors in foreground
MS Girl 34back right screen left and Ferdinand (front screen right)
FS Cyd right (screen left) left and Fred left (screen right)
MLS Father screen left and ELS Kane in background and MS Man and Mother in foreground screen right
Shot in PSL

- Frame compositions, cues and actions

```xml
<Shot> ::= [<transition>] to [<Camera>] <Composition> {<Fragment>}*

<Fragment> ::= < Cue > ( <RenameAction> | <ReframeAction> )

<Cue> ::= At <timeref> | As <Actor> <Action> | then

<RenameAction> ::= (lock|continue) to <Composition>

<ReframeAction> ::= <CameraAction> (to|with) <Composition>

<CameraAction>::= [Speed] pan [left|right|up|down] | dolly [in|out|left|right] | crane [up|down]
```
Example : back to the future
Examples from Hitchcock’s Rope (1948)
First sequence

- MCU on Brandon and Philip
- As they start moving, slow pan left to...
- MS on Brandon, Philip 3/4 leftback
- Then dolly with MS on Brandon, Philip 3/4 leftback
- As Philip crosses left over Brandon, continue to...
- MS on Philip, Brandon 3/4 leftback
- Then dolly in to...
- MCU on Philip and Brandon screencenter right
MCU on Brandon and Philip
As they start moving
slow pan left to ...
MS on Brandon, Philip 3/4 left back
then dolly with MS on Brandon, Philip
3/4 left back
As Philip crosses left over Brandon continue to ...
MS on Philip, Brandon 3/4 left back
then dolly in to ...
MCU on Philip and Brandon screen center in BG
as Brandon starts moving screenright
dolly right to ...
as Philip exits screen left
continue to MCU on Brandon
then dolly out to MS on Brandon
as Philip enters screen left continue to ...
as Philip touche glass
slow dolly in to ...
Second sequence

1. S on Philip left, screen left, and Rupert right, screen right.
2. Janet Kentley, Brandon back screen right.
3. Slow pan left to...
4. L5 on Rupert right, 1/3 screen left, and Philip and Atwater.
5. Then following Rupert pan to...
6. Brandon enters screen left.
7. Brandon moves to Rupert.
8. As Brandon starts moving, Atwater comes.
9. MLS on Rupert right, 1/3 screen left, and Brandon front, screen center, and Atwater screen right.

52
LS on Philip left screenleft
and Atwater 3/4Right
and Janet, Kentley screenright
and Brandon back screenright
slow pan left to ...
LS on Rupert right 1/4 screen left and Philip and Atwater
then following Rupert pan to ...
LS on Philip, Rupert screen left and Atwater and Janet, Kentley, Brandon screen right
As Brandon enters screen left, Brandon moves to Ruppert
As Brandon starts moving dolly in to ...
MLS on Rupert right 1/3 screen left and Brandon front screen center and Atwater screen right
as Rupert starts moving screen right, dolly right to ...
MS on Brandon, Rupert right screenleft and Janet and Kentley left 1/3 screenleft
as Rupert starts moving to Kenneth dolly left to ...
MCU on Rupert, Kenneth facing
Parsing Movies into PSL

• Manual annotation
 – Parse annotation to PSL

• Automatic analysis
 – Actor detection and identification
 • Detecting and Naming Actors in Movies using Generative Appearance Models, CVPR 2013
 – Event recognition – ENTER, EXIT, CROSS, SIT, STAND, etc.
 – Synchronisation with Stochastic Timed Petri Nets
Generating movies from PSL

• Frame composition
 – Actor sizes, screen positions and profile angles from stylesheet produce a sketch storyboard
 – Relative camera and actor positions can be computed using « through the lens » camera control

• Camera and actor movements
 – Trajectories interpolating camera and actor positions
 – Timed Petri Nets for synchronizing camera and actors
Horizontal and vertical editing

Up until now, motion picture editors have thought almost exclusively in the horizontal direction. The question to be answered was simply, What's next?

In the future, that number is going to become even more cosmic because film editors will have to start thinking vertically as well, which is to say: What can I edit within the frame?

Application to theatre performance
Content-Aware Keyframe Interpolation for Vertical Video Editing

Submission id:
Conclusion

• PSL is a « pseudo-natural » language for cinematography and editing
 – Transcribe movies
 – Control virtual cameras and edit movies
 – Auto-annotate virtual movies
 – Share and compare movies

• Future work will add sets, lighting and audio
Part 2
Continuity Editing for 3D Animation

Quentin Galvane
Rémi Ronfard
Christophe Lino
Marc Christie
Grand Challenge: Automated film-making

(Mark Riedl AAAI – WICED 2014)

Specialized agents with cinematographic knowledge

- Director, actor, cameraman, film-editor

With applications to games
- Read actions and dialogues from script
- Generate 3D animation
- Place cameras and lights, generate rushes
- Edit the rushes into a movie
Continuity errors

left-to-right ordering Jump Cut screen position gaze direction

Non-motivated shots and cuts

Our solution
Related work

Idiom-based solutions

Virtual cinematographer [Christianson et al. 1996]

Scenario
Virtual cinematographer [Christianson et al. 1996]
Related Work

Idiom based solutions

Virtual cinematographer

[Christianson et al. 1996]
Related work

Idiom-based solutions

Virtual cinematographer [Christianson et al. 1996]

Scenario

Goldie speaks to George

George speaks to Goldie

Goldie speaks to Marty

Marty speaks to Goldie

...
Related work

Idiom based solutions

Virtual cinematographer [Christianson et al. 1996]
Related work

Idiom based solutions

Virtual cinematographer [Christianson et al. 1996]

Scenario

Goldie speaks to George

Goldie speaks to Goldie

Marty speaks to Goldie
Optimization based approach

Dynamic programming

All cameras evaluated over the entire beat

All transitions evaluated at beat changes

Scenario
Our approach:

Evaluate all possible transitions

Scenario

Goldie speaks to George

George speaks to Goldie

Goldie speaks to George

Marty speaks to Goldie

...
Film editing as an optimization problem

- Semi-Markov chains

Create an editing graph that evaluates 3 aspects:

- Shot quality
- Cut quality
- Pacing
Film editing as optimization

- Search over semi-Markov chains $s = (r_j, d_j)$ given actions $a(t)$
- Minimize cost function:

$$C(s, a) = \sum_j \sum_{t_j \leq t \leq t_j + d_j} C^A(r_j, t) + \sum_{1 \leq j} C^T(r_{j-1}, r_j, t_j) + \sum_j C^R(d_j)$$

- Action cost (Shot quality)
- Transition cost (Cut quality)
- Rhythm cost (Pacing Quality)

The final editing is given by the shortest path in the editing graph
Shot quality:

- Hitchcock principle

The size of a character on the screen should be proportional to its narrative importance in the story.

- Narrative importance from script
- Visible area $V = S - O$ for each rush

$$C_H^A(r, t) = \sum_{c \in C} \left[\frac{I(c, t)}{\sum_{c'} I(c',t)} - \frac{V(c, r, t)}{\sum_{c'} V(c', r, t)} \right]$$
Actors and actions
High action visibility
Low action visibility
High action proximity
Low action proximity
Look room
Head room
Screen continuity
Screen continuity
Screen discontinuity
Screen discontinuity
Motion continuity
Motion continuity
Motion discontinuity
Motion discontinuity
Gaze continuity
Gaze continuity
Gaze discontinuity
Gaze discontinuity
Left-to-right continuity
Left-to-right continuity
Left-to-right discontinuity
Left-to-right discontinuity
Jump cuts
Jump cut
Not a jump cut
Not a jump cut
Results

Computed Editing

Camera: 1
Last shot cost: 13.56s
Value: 0.43

Last cut from 16 to 6 at 7.54s
Value: 0.03

Pacing from 7.54s to 16.50s (3.96s)
Value: 0.06
3 different versions edited:

- Original pacing
- Slower pacing
- Faster pacing

User study: confirms that all 3 terms are important

- Shot quality, cut quality and pacing
Limitations & Future work

Limitations

- Cameras must be pre-computed
- Cannot handle book-ending
 - Context free grammar
- Cannot handle ellipsis or flashbacks
Future work

- Optimize over camera positions and movements
- Extend to real live video
- Learn other editing styles from real movies

[Galvane et al., 2014]
[Gandhi et al., 2014]
Computational model for film editing

Incorporates knowledge about shot composition and film grammar

Efficient offline algorithm

Suitable for automatic film making

Dataset and results:

- https://team.inria.fr/imagine/continuity-editing/
Back to the Future
R. Zemeckis (1985)
Thank you!