Introduction to Physically Based Animation

François Faure
University of Grenoble

Motivation

- Realistic motion
- Interaction

A physical particle

- Position x in m
- Velocity $v=\frac{d x}{d t}=\dot{x}$ in m / s
- Mass min kg

Newton's first law

- An isolated system has a constant velocity

Newton's second law

$$
f=m a
$$

- Acceleration $a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=\ddot{x}$
- Force in $\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}$
- A force is "something" able to modify the trajectory or the shape of an object

Newton's third law

$$
f_{1 \rightarrow 2}=-f_{2 \rightarrow 1}
$$

- The net force applied to an isolated system is null, even if internal forces are applied
- Its center of mass has a linear trajectory

Generalization: Lagrangian dynamics

$$
\frac{d}{d t}\left(\frac{\partial(T-P)}{\partial \dot{q}}\right)-\frac{\partial(T-P)}{\partial q}=Q(q, \dot{q}, t)
$$

- q denote the mechanically independent parameters (here o, $R, p, \theta)$
- P is the potential energy
- T is the kinetic energy
- Q is the non-conservative forces

Example of Lagrangian dynamics

- $q=(x, y, z)$

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}}\right)+\frac{\partial P}{\partial q}=Q(q, \dot{q}, t)
$$

- $P=-m g q$ with gravity vector g
- $T=\frac{1}{2} m \dot{q}^{2}$
- $Q=$ viscous force $-\nu \dot{\mathbf{q}}$

$$
m \ddot{q}=m g-\nu \dot{\mathbf{q}}
$$

Basic time integration

Explicit Euler integration over a time set $d t$:

- compute acceleration \mathbf{q}
- update time, positions and velocities:

$$
\begin{array}{rll}
t & += & d t \\
\mathbf{q} & += & \dot{\mathbf{q}} * d t \\
\dot{\mathbf{q}} & += & \ddot{\mathbf{q}} * d t
\end{array}
$$

- precision depends on $d t$ because update follows the tangent

Structure of a physically based animation program

A classical structure:

- init
- display
- repeat:
- input (data, user action)
- compute forces
- update state
- repeat:
- apply constraints
- display

There are many variants!

Mass-spring systems

- 1D, 2D or 3D mesh

- vertices $=$ particles, edges $=$ springs
- simple, but parameters are difficult to tune

The spring model

- Viscoelastic force

- In one dimension: $f_{1}=k \frac{x_{2}-x_{1}-l_{0}}{l_{0}}+\nu\left(\dot{x}_{2}-\dot{x}_{1}\right)$
- In 2D or 3D:

$$
f_{1}=\left(k \frac{\left\|\mathbf{q}_{2}-\mathbf{q}_{1}\right\|-I_{0}}{I_{0}}+\nu\left(\dot{\mathbf{q}}_{2}-\dot{\mathbf{q}}_{1}\right) \cdot \mathbf{n}_{12}\right) \mathbf{n}_{12}
$$

with $\mathbf{n}_{12}=\frac{\mathbf{q}_{2}-\mathbf{q}_{1}}{\left\|\mathbf{q}_{2}-\mathbf{q}_{1}\right\|}$

Acceleration of mass-spring particles

for each particle i :
$\mathbf{F}_{i}=\mathbf{f}_{i}\left(\mathbf{q}_{i}, \dot{\mathbf{q}}_{i}, t\right) / /$ unary forces
for each spring i, j :
$\mathbf{F}=\mathbf{f}_{i j}\left(\mathbf{q}_{i}, \dot{\mathbf{q}}_{i}, \mathbf{q}_{j}, \dot{\mathbf{q}}_{j}, t\right) / /$ interaction forces
$\mathbf{F}_{i}+=\mathbf{F}$
$\mathbf{F}_{j}=\mathbf{F}$
for each particle i:
$\mathbf{A}_{i}=\mathbf{F}_{i} / m_{i} / /$ accelerations
for each fixed particle i:
$\mathbf{A}_{i}=\mathbf{0} / /$ fixed points do not accelerate

The problem of stiffness

For a given time step $d t$

- With low stiffness, smooth oscillations are obtained

- With high stiffness, instabilities make the simulation "explode"

- reducing the time step is more expensive

Higher-order explicit integration

Midpoint method (second-order Runge-Kutta)

- perform a fictitious dt/2 Euler step
- compute the derivative there
- use this derivative for a full Euler step

- error is proportional to $d t^{2}$ instead of $d t$
- even more sophisticated methods exist
- better, but instability remains

Symplectic methods

Symplectic Euler:

- compute acceleration $\ddot{\mathbf{q}}$
- Use updated velocity to update position:

$$
\begin{array}{rll}
t & += & d t \\
\dot{\mathbf{q}} & += & \ddot{\mathbf{q}} * d t \\
\mathbf{q} & += & \dot{\mathbf{q}} * d t
\end{array}
$$

- much better energy conservation
- but instability still occurs
- variants: leap-frog, Stoermer-Verlet

Implicit time integration

- Use $\ddot{\mathbf{q}}(\mathrm{t}+\mathrm{dt})$ to update velocity
- Implicit Euler:

$$
\begin{aligned}
& \dot{\mathbf{q}} \quad+=\quad \ddot{\mathbf{q}}(t+d t) * d t \\
& \mathbf{q} \quad+=\dot{\mathbf{q}} * d t
\end{aligned}
$$

- inconditionally stable
- but an equation system must be solved

Linearized implicit Euler

- Solve

$$
\begin{aligned}
\left(\mathbf{M}-\mathbf{D} d t-\mathbf{K} d t^{2}\right) \Delta \dot{\mathbf{q}} & =(\mathbf{f}+\mathbf{K} \dot{\mathbf{q}} d t) d t \\
\text { with } \mathbf{M} & =\text { diagonal mass matrix } \\
\mathbf{K} & =\frac{\partial \mathbf{f}}{\partial \mathbf{q}} \text { stiffness matrix } \\
\mathbf{D} & =\frac{\partial \mathbf{f}}{\partial \dot{\mathbf{q}}} \text { damping matrix }
\end{aligned}
$$

- then

$$
\begin{aligned}
& \dot{\mathbf{q}} \\
& \mathbf{q}=\Delta \dot{\mathbf{q}} \\
& \mathbf{q} \\
& +=\quad \dot{\mathbf{q}} * d t
\end{aligned}
$$

- popular assumption: Rayleigh damping $\mathbf{D}=\alpha \mathbf{M}+\beta \mathbf{K}$

Implicit Euler in practice

- We have to solve a linear equation system $\mathbf{A x}=\mathbf{b}$
- A is PSD, we use the conjugate gradient solution:
- only implement the product of \mathbf{A} with a vector
- iterative solution
- To apply simple constraints:
- Solve $\mathbf{C A x}=\mathbf{C b}$
- C is a diagonal matrix with null diagonal values for constrained directions (a trivial filter)
- Spring stiffness:

$$
\begin{aligned}
\mathbf{K}_{12} & =\mathbf{K}_{21}=\frac{\partial \mathbf{f}_{1}}{\partial \mathbf{q}_{2}} \\
& =\left(k-\frac{f}{l}\right)\left[\mathbf{n}_{12} \mathbf{n}_{12}^{T}\right]+\frac{f}{l} \mathbf{I}_{3} \\
\mathbf{K}_{11} & =\mathbf{K}_{22}=-\mathbf{K}_{12}
\end{aligned}
$$

\mathbf{I}_{3} being the 3×3 identity matrix,
$f=\left\|\mathbf{f}_{1}\right\|$ and $I=\left\|\mathbf{q}_{2}-\mathbf{q}_{1}\right\|$

The Provot approach

- Apply simple time integration, then prevent springs to extend or compress too much
- Algorithm:
apply symplectic Euler
repeat:
for each spring i, j :
if extension or compression $>10 \%$ move the particles to 10% of extension or compression until no spring is too much extended or compressed

Distance correction

- compute desired relative displacement

$$
\begin{aligned}
\boldsymbol{\Delta} \mathbf{q} & =\boldsymbol{\Delta} \mathbf{q}_{2}-\boldsymbol{\Delta} \mathbf{q}_{1} \\
& =-(\text { desired length-current length }) \mathbf{n}_{12}
\end{aligned}
$$

- move the particles without moving their mass center

$$
\begin{aligned}
\boldsymbol{\Delta} \mathbf{q}_{1} & =\frac{m_{2}}{m_{1}+m_{2}} \boldsymbol{\Delta} \mathbf{q} \\
\boldsymbol{\Delta} \mathbf{q}_{2} & =-\frac{m_{1}}{m_{1}+m_{2}} \boldsymbol{\Delta} \mathbf{q}
\end{aligned}
$$

- update the velocities

$$
\begin{aligned}
\dot{\mathbf{q}}_{1} & +=\boldsymbol{\Delta} \mathbf{q}_{1} / d t \\
\dot{\mathbf{q}}_{2} & +=\boldsymbol{\Delta} \mathbf{q}_{2} / d t
\end{aligned}
$$

A more general formulation

- Fixed points are considered as points with infinite masses
- Use inverse mass $w=1 / m$
- $w=0$ for a fixed point
- move the particles

$$
\begin{aligned}
\boldsymbol{\Delta} \mathbf{q}_{1} & =\frac{w_{1}}{w_{1}+w_{2}} \boldsymbol{\Delta} \mathbf{q} \\
\boldsymbol{\Delta} \mathbf{q}_{2} & =-\frac{w_{2}}{w_{1}+w_{2}} \boldsymbol{\Delta} \mathbf{q}
\end{aligned}
$$

Generalization: position-based dynamics

Complex constraints: aligned points, are or volume conservation, etc.

- model a constraint as a value to cancel $c=C(\mathbf{q}, \dot{\mathbf{q}})$
- Solve:

$$
\frac{\partial c}{\partial \mathbf{q}} \Delta \mathbf{q}=-c
$$

without moving the mass center

Collision of a particle with a surface

- criterion: pq.n <0
- backtrack to collision time t_{c}
- compute velocity increment for an inelastic collision
$\Delta \dot{\mathbf{q}}=-(\dot{\mathbf{q}} . \mathbf{n}) \mathbf{n}$
- apply a bouncing coefficient ϵ : $\dot{\mathbf{q}}+=(1+\epsilon) \Delta \dot{\mathbf{q}}$
- continue simulation
- problem: with several particles, several backtracks and restarts
 may be necessary

Synchronized collisions

Similar, but:

- do not backtrack to collision time
- compute position increment to project the particle to the surface $\Delta \mathbf{q}=-(\mathbf{p q . n}) \mathbf{n}$
- apply a bouncing to position also:
$\mathbf{q}+=(1+\epsilon) \Delta \mathbf{q}$
- advantage: all collisions are handled at the same time

A bad case

Rattling

Collision of two spheres

- criterion: $\left\|\mathbf{q}_{1} \mathbf{q}_{2}\right\|<r_{1}+r_{2}$
- compute position increments for an inelastic collision

$$
\Delta \mathbf{q}=\left(r_{1}+r_{2}-\left\|\mathbf{q}_{1} \mathbf{q}_{2}\right\|\right) \mathbf{n}_{12}
$$

- use the inverse masses to maintain the center of mass

$$
\begin{aligned}
\boldsymbol{\Delta} \mathbf{q}_{1} & =\frac{w_{1}}{w_{1}+w_{2}} \boldsymbol{\Delta} \mathbf{q} \\
\boldsymbol{\Delta} \mathbf{q}_{2} & =-\frac{w_{2}}{w_{1}+w_{2}} \boldsymbol{\Delta} \mathbf{q}
\end{aligned}
$$

- apply a bouncing coefficient ϵ :

$$
\begin{array}{lll}
\mathbf{q}_{1} & += & (1+\epsilon) \Delta \mathbf{q}_{1} \\
\mathbf{q}_{2} & += & (1+\epsilon) \Delta \mathbf{q}_{2}
\end{array}
$$

Collision of two spheres (continued)

- compute velocity increments for an inelastic collision
$\Delta \dot{\mathbf{q}}=\left(\left(\dot{\mathbf{q}}_{2}-\dot{\mathbf{q}}_{1}\right) \cdot \mathbf{n}_{12}\right) \mathbf{n}_{12}$
- use the inverse masses to maintain the center of mass

$$
\begin{aligned}
\boldsymbol{\Delta} \dot{\mathbf{q}}_{1} & =\frac{w_{1}}{w_{1}+w_{2}} \boldsymbol{\Delta} \dot{\mathbf{q}} \\
\boldsymbol{\Delta} \dot{\mathbf{q}}_{2} & =-\frac{w_{2}}{w_{1}+w_{2}} \boldsymbol{\Delta} \dot{\mathbf{q}}
\end{aligned}
$$

- apply a bouncing coefficient ϵ :

$$
\begin{array}{lll}
\dot{\mathbf{q}}_{1} & += & (1+\epsilon) \Delta \dot{\mathbf{q}}_{1} \\
\dot{\mathbf{q}}_{2} & += & (1+\epsilon) \Delta \dot{\mathbf{q}}_{2}
\end{array}
$$

- or compute $\Delta \dot{\mathbf{q}}_{i}=\Delta \mathbf{q}_{i} / d t$

Limitations of discrete-time collision detection

- Thin objects can be traversed
- The history is sometimes necessary

Continuous-time collision detection

- Search four coplanar point (solve cubic equation in time)
- Point-triangle intesection:

$$
\mathbf{a}(t) \mathbf{b}(t) \cdot(\mathbf{b}(t) \mathbf{c}(t) \wedge \mathbf{b}(t) \mathbf{d}(t))=0
$$

- Then for the smallest $0<t<d t$ compute point positions

Continuous-time collision detection

- Search four coplanar point (solve cubic equation in time)
- Edge-edge intesection:

$$
\mathbf{a}(t) \mathbf{c}(t) \cdot(\mathbf{a}(t) \mathbf{b}(t) \wedge \mathbf{c}(t) \mathbf{d}(t))=0
$$

- Then for the smallest $0<t<d t$ compute point positions

Acceleration of collision detection using bounding volumes

- If the BVs don not intersect then the objects do not intersect

AABB

sphere

DOP

OBB

spherical shell

convex hull

prism

cylinder

intersection of other BVs

Hierarchies of bounding volumes

- Accelerate even more
- Hierarchy update is expensive for deformable objects

Stochastic methods

- Pick sample pairs
- Refine where proximities are found

Distance fields

- function returning the closest surface point
- project particles to the surface

Distance fields (continued)

- Distance offsets are necessary to prevent edge collisions

An image-space technique

- Compute AABB intersection
- If intersection, compute Layerd Depth Images of both objects
- Test ecah vertex of one body agains the LDI of the other

Simplified geometries

- Embed a complex geometry in a coarser one
- Apply dynanmics and collisions to the coarse geometry
- render the fine geometry

Other topics

- rigid bodies
- fluids
- hair
- ...

