
Introduction to the Kinematics of Rigid Bodies

François Faure

Grenoble Université

1 / 35

Motivation

I Given the desired displacement of a
point

I how to compute the necessary joint
motions ?

2 / 35

A moving frame

I Frame R1 is moving wrt.
reference frame R0

I Vector u = O1P is fixed in R1

I We write 0u its coordinates in R0

I We write 0u̇ the derivative of 0u
I Let R(dt) the rotation of R1 from

time t to t + dt .

u(t + dt) = R(dt)u(t)
u(t + dt)− u(t) = (R(dt)− I)u(t)

where I is the identity matrix.

3 / 35

Angular velocity vector

I Let n =

 nx
ny
nz

 and dθ = θ̇dt be the axis and angle of

rotation of R(dt)
I R(dt)-I is close to 0 −nz θ̇dt ny θ̇dt

nz θ̇dt 0 −nx θ̇dt
−ny θ̇dt nx θ̇dt 0

 = θ̇dt [n×]

where matrix [n×] =

 0 −nz ny
nz 0 −nx
−ny nx 0

is the cross product matrix: [n×] u = n× u

I We call Ω1/0 = θ̇n the angular velocity vector of frame R1
wrt. frame R0

4 / 35

Derivative of a constant vector in a moving frame

I For u=01P constant in frame R1:

0u̇ = Ṙu
=

[
Ω1/0×

]
u

= Ω1/0 × u

I 0u̇ can be expressed in any
reference frame

I the translation of R1 wrt. R0 has
no influence on u̇

5 / 35

Velocity of a point attached to a moving frame

−→
OP =

(
R t
0 1

)(−−→
O1P

1

)
−̇→
OP =

(
[Ω×] ṫ

0 0

)(−−→
O1P

1

)

=

(
Ω×
−−→
O1P + V 1/0

01

0

)
V 1/0

P = V 1/0
O1

+ Ω1/0 ×
−−→
O1P

V 1/0
A = V 1/0

B + Ω1/0 ×
−→
BA for any A, B

6 / 35

Acceleration of a point attached to a moving frame

I Deriving the velocity equation

I and noticing that
−−→
O1P is fixed in R1, we get

Γ
1/0
A = Γ

1/0
O1

+ Ω̇1/0 ×
−−→
O1A + Ω1/0 ×

(
Ω1/0 ×

−−→
O1A

)
I Γ

1/0
A is the linear acceleration of the origin

I Ω̇1/0 ×
−−→
O1A encodes the angular acceleration

I Ω1/0 ×
(

Ω1/0 ×
−−→
O1A

)
is the centripetal acceleration due to

the rotation velocity

7 / 35

Derivative of a vector moving in a moving frame

I Let (e1,ee,e3) be a basis of R1

I We thus write

1u =
∑

i

xiei

u̇ =
∑

i

ẋiei +
∑

i

xi ėi

I hence
0u̇ =1 u̇ + Ω1/0 × u

8 / 35

Velocity of a point moving in a moving frame

I Let V /1
A be the velocity of point A wrt. R1

I We add it to the velocity in R0 of a point at the same place
and fixed in R1:

V /0
A = V /1

A + V 1/0
O1

+ Ω1/0 ×
−−→
O1A

9 / 35

Acceleration of a point moving in a moving frame

I By differentiating the velocity, we get:

Γ
/0
A = Γ

/1
A + Ω1/0 × V /1

A︸ ︷︷ ︸
◦

V/1
A

+Γ
/0
O1

+

Ω̇1/0 ×O1A + Ω1/0 × V /1
A + Ω1/0 × (Ω1/0 ×

−−→
O1A)︸ ︷︷ ︸

◦

Ω1/0×
−−→
O1A

10 / 35

Acceleration of a point moving in a moving frame
(continued)

I and then:

Γ
/0
A = Γ

/1
A + Γ

/0
O1

+ Ω1/0 × (Ω1/0 ×
−−→
O1A) + 2Ω1/0 × V /1

A

I with
I Γ

/1
A =

∑
i ẍiei relative acceleration

I Γ
/0
O1

linear acceleration of the moving frame
I Ω1/0 × (Ω1/0 ×

−−→
O1A) centripetal acceleration

I 2Ω1/0 × V /1
A Coriolis acceleration

11 / 35

Velocity of articulated bodies
I The recursive use of the velocity equation gives:

V 2/0
A = V 2/1

A + V 1/0
O1

+ Ω1/0 ×
−−→
O1A

= V 2/1
A + V 1/0

A

I and more generally

V n/0
A =

n∑
i=1

V i/i−1
A

12 / 35

Joints

I Defined by the allowed relative motions

13 / 35

More Joints

14 / 35

Joint transforms

I Generally, the transform between two articulated bodies
can be written as a product of three transforms

i−1
i C = (i−1

i Cp)(i−1
i Cl)(i−1

i Cc)

15 / 35

The Denavit-Hartenberg model
I One axis per joint, with one translation and one rotation

i
i+1C = Txi ,ai Rxi ,αi Tzi+1,di+1(t)Rzi+1,θi+1(t)

= (i
i+1Cp)(i

i+1Cl(t))

16 / 35

Recursive transform computation in the
Denavit-Hartenberg model

0
0C = I4
for i in 1..n

i−1
i C = Tx,ai−1Rx,αi−1Tz,diRz,θi
0
i C = 0

i−1Ci−1
i C

17 / 35

Recursive velocity computation in the
Denavit-Hartenberg model

−→
OA= n−−→OnA
−→
V =
−→
0

Ω=
−→
0

for i in n..1
i−1
i C = Tx,ai−1Rx,αi−1Tz,diRz,θi

Ω= i−1
i B(Ω + θ̇iz)

−→
V = i−1

i B(
−→
V + ḋiz + θ̇iz×

−→
OA)

−→
OA= i−1

i C
−→
OA

18 / 35

Inverse kinematics

I Given the desired displacement of a
point

I how to compute the necessary joint
motions ?

19 / 35

Linear equations
I Translational joints
I Point and target

I matrix equation:(
a1x a2x
a1y a2y

)(
∆q1
∆q2

)
=

(
cx
cy

)
20 / 35

A single scalar constraint

I Reach the line

21 / 35

A single scalar constraint (continued)

I matrix equation:

∆P.n =
−−→
PP ′.n(

a1 a2
)

∆q =
−−→
PP ′.n(

a1x a2x
a1y a2y

)(
∆q1
∆q2

)
.n =

−−→
PP ′.n

(a1x ∆q1 + a2x ∆q2)nx + (a1y ∆q1 + a2y ∆q2)ny =
−−→
PP ′.n

(a1xnx + a1yny)∆q1 + (a2xnx + a2yny)∆q2 =
−−→
PP ′.n(

a1.n a2.n
)(∆q1

∆q2

)
=
−−→
PP ′.n

I each constraint can seen as a set of scalar equations

22 / 35

Singular systems

I Example: coplanar translation axes
I In-plane constraint: infinity of solutions
I Out of the plane: no solution

23 / 35

Nonlinear equations

I Rotational joints
I Several solutions, or no solution at all

24 / 35

Linearization - the Jacobian matrix

I Starting from the velocity equation, and noticing that
dP
dt = dP

dq
dq
dt

δP
δqi

= ai (translational dof)

δP
δqi

= ai ×
−−→
OiP (rotational dof)

I with n dof:

Jp =
dP
dq

=
(

δP
δq1

. . . δP
δqn

)
∆P ' Jp∆q

25 / 35

Small displacements

I ∆P ' Jp∆q

I scalar equation ∆P.n = b:(
δP
δq1
.n . . . δP

δqn
.n
)

∆q = b

26 / 35

Orientation constraints

I Express the rotation from the current orientation to its
target and compute the associated axis and angle:
0
nR′ = Rn,θ

0
nR

I express a rotation vector as: ∆r = θn
I the jacobian matrix is composed of:

δr
δqi

= 0 (translational dof)

δr
δqi

= ai (rotational dof)

I then solve: J∆q = ∆r
I works for small rotations only

27 / 35

Aligning a vector with another

(
δr
δq1
.n . . . δr

δqn
.n

δr
δq1
.v . . . δr

δqv
.v

)
=

(
θ
0

)

28 / 35

Putting all the constraints together

I Concatenate the equation systems J0
...

Jn

∆q =

 c0
...

cn

29 / 35

Solve the linear equation system

I square, full-rank matrix: use LU factoring
I more unknowns than equations:

δq = J+c
with J+ = JT (JJT)−1

gives the smallest solution
I more equations than unknowns:

δq = (JT J)−1JT c

gives the closest solution
I when everything has failed, use Singular Value

Decomposition (SVD) (chapter 2.6 of Numerical Recipes)

30 / 35

http://apps.nrbook.com/empanel/index.html

Iterative solution of nonlinear equations

I Newton’s algorithm solves a series of linear equation
systems:
compute constraint vector c
while ‖c‖ > ε

compute J
solve J δq = c
q← q + δq
compute c

31 / 35

Handling limit values

I Most real-world joints have limit values
I When beyong the limit, project to the limit value and

remove the dof from the list:
compute constraint vector c
while ‖c‖ > ε

compute J
solve J δq = c
q← q + δq
for each dof i

if qi > qimax then
qi ← qimax
remove i from the list of dof

compute c

32 / 35

Exploiting the free space
I When a space of solutions are available (free space), we

have room for optimizing quality criteria: equilibrium,
comfort, etc.

I Optimize a cost function e inside the free space
I project search directions to the free space:

∀z J(J+J− I)z = J(JT (JJT)−1J− I)z
= (JJT (JJT)−1J− J)z
= (J− J)z
= 0

I optimization algorithm:
repeat

solve the constraint
do a step toward −(J+J− I)

−−→
grad e

33 / 35

I

34 / 35

35 / 35

	Basic kinematics
	Articulated body kinematics
	Inverse kinematics

