Introduction to the Kinematics of Rigid Bodies

François Faure

Grenoble Université

Motivation

- Given the desired displacement of a point
- how to compute the necessary joint motions?

A moving frame

- Frame \mathcal{R}_{1} is moving wrt. reference frame \mathcal{R}_{0}
- Vector $\mathbf{u}=O_{1} P$ is fixed in \mathcal{R}_{1}
- We write ${ }^{0} \mathbf{u}$ its coordinates in \mathcal{R}_{0}
- We write ${ }^{0} \dot{\mathbf{u}}$ the derivative of ${ }^{0} \mathbf{u}$
- Let $\mathbf{R}(\mathrm{dt})$ the rotation of \mathcal{R}_{1} from time t to $t+d t$.

$$
\begin{aligned}
\mathbf{u}(t+d t) & =\mathbf{R}(d t) \mathbf{u}(t) \\
\mathbf{u}(t+d t)-\mathbf{u}(t) & =(\mathbf{R}(d t)-\mathbf{I}) \mathbf{u}(t)
\end{aligned}
$$

where \mathbf{I} is the identity matrix.

Angular velocity vector

- Let $\mathbf{n}=\left[\begin{array}{l}n_{x} \\ n_{y} \\ n_{z}\end{array}\right]$ and $d \theta=\dot{\theta} d t$ be the axis and angle of rotation of $\mathbf{R}(\mathrm{dt})$
- $\mathbf{R}(\mathrm{dt})-\mathrm{I}$ is close to

$$
\left[\begin{array}{ccc}
0 & -n_{z} \dot{\theta} d t & n_{y} \dot{\theta} d t \\
n_{z} \dot{\theta} d t & 0 & -n_{x} \dot{\theta} d t \\
-n_{y} \dot{\theta} d t & n_{x} \dot{\theta} d t & 0
\end{array}\right]=\dot{\theta} d t[n \times]
$$

where matrix $[n \times]=\left[\begin{array}{ccc}0 & -n_{z} & n_{y} \\ n_{z} & 0 & -n_{x} \\ -n_{y} & n_{x} & 0\end{array}\right]$
is the cross product matrix: $[n \times] \mathbf{u}=\mathbf{n} \times \mathbf{u}$

- We call $\Omega_{1 / 0}=\dot{\theta} \mathbf{n}$ the angular velocity vector of frame \mathcal{R}_{1} wrt. frame \mathcal{R}_{0}

Derivative of a constant vector in a moving frame

- For $\mathbf{u}=\mathbf{0}_{1} \mathbf{P}$ constant in frame \mathcal{R}_{1} :

$$
\begin{aligned}
{ }^{0} \dot{\mathbf{u}} & =\dot{\mathbf{R}} \mathbf{u} \\
& =\left[\Omega_{1 / 0} \times\right] \mathbf{u} \\
& =\Omega_{1 / 0} \times \mathbf{u}
\end{aligned}
$$

- ${ }^{0} \dot{\mathbf{u}}$ can be expressed in any reference frame
- the translation of \mathcal{R}_{1} wrt. \mathcal{R}_{0} has no influence on \mathbf{u}

Velocity of a point attached to a moving frame

$$
\begin{aligned}
\overrightarrow{O P} & =\left(\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
0 & 1
\end{array}\right)\binom{\overrightarrow{O_{1} P}}{1} \\
\dot{\overrightarrow{O P}} & =\left(\begin{array}{cc}
\Omega \times] & \mathbf{t} \\
0 & 0
\end{array}\right)\binom{\overrightarrow{O_{1} P}}{1} \\
& =\binom{\Omega \times \overrightarrow{O_{1} P}+V_{0_{1}^{1 / 0}}^{1 / 0}}{0} \\
V_{P}^{1 / 0} & =V_{O_{1}^{1 / 0}+\Omega_{1 / 0} \times \overrightarrow{O_{1} P}}^{V_{A}^{1 / 0}}
\end{aligned}
$$

Acceleration of a point attached to a moving frame

- Deriving the velocity equation
- and noticing that $\overrightarrow{O_{1} P}$ is fixed in \mathcal{R}_{1}, we get

$$
\Gamma_{A}^{1 / 0}=\Gamma_{O_{1}}^{1 / 0}+\dot{\Omega}_{1 / 0} \times \overrightarrow{O_{1} A}+\Omega_{1 / 0} \times\left(\Omega_{1 / 0} \times \overrightarrow{O_{1} A}\right)
$$

- $\Gamma_{A}^{1 / 0}$ is the linear acceleration of the origin
- $\dot{\Omega}_{1 / 0} \times \overrightarrow{O_{1} A}$ encodes the angular acceleration
- $\Omega_{1 / 0} \times\left(\Omega_{1 / 0} \times \overrightarrow{O_{1} A}\right)$ is the centripetal acceleration due to the rotation velocity

Derivative of a vector moving in a moving frame

- Let $\left(\mathbf{e}_{1}, \mathbf{e}_{e}, \mathbf{e}_{3}\right)$ be a basis of \mathcal{R}_{1}
- We thus write

$$
\begin{aligned}
{ }^{1} \mathbf{u} & =\sum_{i} x_{i} \mathbf{e}_{i} \\
\dot{\mathbf{u}} & =\sum_{i} \dot{x}_{i} \mathbf{e}_{i}+\sum_{i} x_{i} \dot{\mathbf{e}}_{i}
\end{aligned}
$$

- hence

$$
{ }^{0} \dot{\mathbf{u}}={ }^{1} \dot{\mathbf{u}}+\Omega_{1 / 0} \times \mathbf{u}
$$

Velocity of a point moving in a moving frame

- Let $V_{A}^{/ 1}$ be the velocity of point A wrt. \mathcal{R}_{1}
- We add it to the velocity in \mathcal{R}_{0} of a point at the same place and fixed in \mathcal{R}_{1} :

$$
V_{A}^{/ 0}=V_{A}^{/ 1}+V_{O_{1}}^{1 / 0}+\Omega_{1 / 0} \times \overrightarrow{O_{1} A}
$$

Acceleration of a point moving in a moving frame

- By differentiating the velocity, we get:

$$
\begin{aligned}
\Gamma_{A}^{/ 0}= & \underbrace{\Gamma_{A}^{/ 1}+\Omega_{1 / 0} \times V_{A}^{/ 1}}_{V_{A}^{/ 1}}+\Gamma_{O_{1}}^{/ 0}+ \\
& \underbrace{\dot{\Omega}_{1 / 0} \times \mathbf{O}_{1} A+\Omega_{1 / 0} \times V_{A}^{/ 1}+\Omega_{1 / 0} \times\left(\Omega_{1 / 0} \times \overrightarrow{O_{1} A}\right)}_{\Omega_{1 / 0} \times \overrightarrow{O_{1} A}}
\end{aligned}
$$

Acceleration of a point moving in a moving frame (continued)

- and then:

$$
\Gamma_{A}^{/ 0}=\Gamma_{A}^{/ 1}+\Gamma_{O_{1}}^{/ 0}+\Omega_{1 / 0} \times\left(\Omega_{1 / 0} \times \overrightarrow{O_{1} A}\right)+2 \Omega_{1 / 0} \times V_{A}^{/ 1}
$$

- with
- $\Gamma_{A}^{/ 1}=\sum_{i} \ddot{x}_{i} \mathbf{e}_{i}$ relative acceleration
- $\Gamma_{O_{1}}^{/ 0}$ linear acceleration of the moving frame
- $\Omega_{1 / 0} \times\left(\Omega_{1 / 0} \times \overrightarrow{O_{1} A}\right)$ centripetal acceleration
- $2 \Omega_{1 / 0} \times V_{A}^{/ 1}$ Coriolis acceleration

Velocity of articulated bodies

- The recursive use of the velocity equation gives:

$$
\begin{aligned}
V_{A}^{2 / 0} & =V_{A}^{2 / 1}+V_{O_{1}}^{1 / 0}+\Omega_{1 / 0} \times \overrightarrow{O_{1} A} \\
& =V_{A}^{2 / 1}+V_{A}^{1 / 0}
\end{aligned}
$$

- and more generally

$$
V_{A}^{n / 0}=\sum_{i=1}^{n} V_{A}^{i / i-1}
$$

Joints

- Defined by the allowed relative motions

More Joints

Joint transforms

- Generally, the transform between two articulated bodies can be written as a product of three transforms

$$
{ }_{i}^{i-1} \mathbf{C}=\left({ }_{i}^{i-1} \mathbf{C}_{\mathbf{p}}\right)\left({ }_{i}^{i-1} \mathbf{C}_{\mathbf{I}}\right)\left({ }_{i}^{i-1} \mathbf{C}_{\mathbf{C}}\right)
$$

The Denavit-Hartenberg model

- One axis per joint, with one translation and one rotation

$$
\begin{aligned}
{ }_{i+1}^{i} \mathbf{C} & =\mathbf{T}_{x_{i}, a_{i}} \mathbf{R}_{x_{i}, \alpha_{i}} \mathbf{T}_{z_{i+1}, d_{i+1}(t)} \mathbf{R}_{z_{i+1}, \theta_{i+1}(t)} \\
& =\left({ }_{i+1}^{i} \mathbf{C}_{\mathbf{p}}\right)\left({ }_{i+1}^{i} \mathbf{C}_{\mathbf{l}}(t)\right)
\end{aligned}
$$

Recursive transform computation in the Denavit-Hartenberg model

$$
\begin{aligned}
& { }_{0}^{0} \mathbf{C}=\mathbf{I 4} \\
& \text { for i in } 1 . . \mathrm{n} \\
& \quad{ }_{i-1}^{i-1} \mathbf{C}=\mathbf{T}_{\mathbf{x}, \mathbf{a}_{\mathbf{i}-1}} \mathbf{R}_{\mathbf{x}, \alpha_{\mathbf{i}-1}} \mathbf{T}_{\mathbf{z}, \mathbf{d}_{\mathbf{i}}} \mathbf{R}_{\mathbf{z}, \theta_{\mathbf{i}}} \\
& { }_{i}^{0} \mathbf{C}={ }_{i-1}^{0} \mathbf{C}_{i}^{i-1} \mathbf{C}
\end{aligned}
$$

Recursive velocity computation in the Denavit-Hartenberg model

$$
\begin{aligned}
& \overrightarrow{O A}=n \overrightarrow{O_{n} A} \\
& \vec{V}=\overrightarrow{0} \\
& \Omega=\overrightarrow{0}
\end{aligned}
$$

$$
\text { for } \mathrm{i} \text { in } \mathrm{n} . .1
$$

$$
{ }_{i}^{i-1} \mathbf{C}=\mathbf{T}_{\mathbf{x}, \mathbf{a}_{\mathbf{i}-1}} \mathbf{R}_{\mathbf{x}, \alpha_{\mathbf{i}-1}} \mathbf{T}_{\mathbf{z}, \mathbf{d}_{\mathbf{i}}} \mathbf{R}_{\mathbf{z}, \theta_{\mathbf{i}}}
$$

$$
\Omega={ }_{i}^{i-1} \mathbf{B}\left(\Omega+\dot{\theta}_{i} \mathbf{z}\right)
$$

$$
\vec{V}={ }_{i}^{i-1} \mathbf{B}\left(\xrightarrow{\vec{V}}+\dot{d}_{i} \mathbf{z}+\dot{\theta}_{i} \mathbf{z} \times \overrightarrow{O A}\right)
$$

$$
\overrightarrow{O A}={ }_{i}^{i-1} \mathbf{C} \overrightarrow{O A}
$$

Inverse kinematics

- Given the desired displacement of a point
- how to compute the necessary joint motions?

Linear equations

- Translational joints
- Point and target

- matrix equation:

$$
\left(\begin{array}{ll}
a_{1 x} & a_{2 x} \\
a_{1 y} & a_{2 y}
\end{array}\right)\binom{\Delta q_{1}}{\Delta q_{2}}=\binom{c_{x}}{c_{y}}
$$

A single scalar constraint

- Reach the line

A single scalar constraint (continued)

- matrix equation:

$$
\begin{aligned}
\Delta P \cdot \mathbf{n} & =\overrightarrow{P P^{\prime}} \cdot \mathbf{n} \\
\left(\mathbf{a}_{\mathbf{1}}\right. & \left.\mathbf{a}_{\mathbf{2}}\right) \Delta \boldsymbol{q}
\end{aligned}=\overrightarrow{P P^{\prime}} \cdot \mathbf{n} .
$$

- each constraint can seen as a set of scalar equations

Singular systems

- Example: coplanar translation axes
- In-plane constraint: infinity of solutions
- Out of the plane: no solution

Nonlinear equations

- Rotational joints
- Several solutions, or no solution at all

$P^{\prime \prime}$

Linearization - the Jacobian matrix

- Starting from the velocity equation, and noticing that $\frac{d P}{d t}=\frac{d P}{d \mathbf{q}} \frac{d \mathbf{q}}{d t}$

$$
\begin{aligned}
& \frac{\delta P}{\delta q_{i}}=\mathbf{a}_{\mathbf{i}} \quad \text { (translational dof) } \\
& \frac{\delta P}{\delta q_{i}}=\mathbf{a}_{\mathbf{i}} \times \overrightarrow{O_{i} P} \quad \text { (rotational dof) }
\end{aligned}
$$

- with n dof:

$$
\begin{aligned}
\mathbf{J}_{p} & =\frac{d P}{d \mathbf{q}}=\left(\begin{array}{lll}
\frac{\delta P}{\delta q_{1}} & \cdots & \frac{\delta P}{\delta q_{n}}
\end{array}\right) \\
\Delta P & \simeq \mathbf{J}_{p} \Delta \mathbf{q}
\end{aligned}
$$

Small displacements

- $\Delta P \simeq \mathbf{J}_{p} \Delta \mathbf{q}$

- scalar equation $\Delta P . \mathbf{n}=b$:

$$
\left(\begin{array}{lll}
\frac{\delta P}{\delta q_{1}} \cdot \mathbf{n} & \ldots & \frac{\delta P}{\delta q_{n}} \cdot \mathbf{n}
\end{array}\right) \Delta \mathbf{q}=b
$$

Orientation constraints

- Express the rotation from the current orientation to its target and compute the associated axis and angle: ${ }_{n}^{0} \mathbf{R}^{\prime}=\mathbf{R}_{\mathbf{n}, \theta}{ }_{n}^{0} \mathbf{R}$
- express a rotation vector as: $\Delta r=\theta \mathbf{n}$
- the jacobian matrix is composed of:

$$
\begin{aligned}
& \frac{\delta r}{\delta q_{i}}=\mathbf{0} \quad \text { (translational dof) } \\
& \frac{\delta r}{\delta q_{i}}=\mathbf{a}_{\mathbf{i}} \quad \text { (rotational dof) }
\end{aligned}
$$

- then solve: $\mathbf{J} \Delta q=\Delta r$
- works for small rotations only

Aligning a vector with another

$$
\left(\begin{array}{ccc}
\frac{\delta r}{\delta q_{1}} \cdot \mathbf{n} & \ldots & \frac{\delta r}{\delta q_{r}} \cdot \mathbf{n} \\
\frac{\delta r}{\delta q_{1}} \cdot \mathbf{v} & \ldots & \frac{\delta r}{\delta q_{v}} \cdot \mathbf{v}
\end{array}\right)=\binom{\theta}{0}
$$

Putting all the constraints together

- Concatenate the equation systems

$$
\left(\begin{array}{c}
J_{0} \\
\vdots \\
J_{n}
\end{array}\right) \Delta q=\left(\begin{array}{c}
c_{0} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Solve the linear equation system

- square, full-rank matrix: use LU factoring
- more unknowns than equations:

$$
\begin{aligned}
\delta \mathbf{q} & =\mathbf{J}^{+} \mathbf{c} \\
\text { with } \mathbf{J}^{+} & =\mathbf{J}^{T}\left(\mathbf{J} \mathbf{J}^{T}\right)^{-1}
\end{aligned}
$$

gives the smallest solution

- more equations than unknowns:

$$
\delta \mathbf{q}=\left(\mathbf{J}^{T} \mathbf{J}\right)^{-1} \mathbf{J}^{T} \mathbf{c}
$$

gives the closest solution

- when everything has failed, use Singular Value Decomposition (SVD) (chapter 2.6 of Numerical Recipes)

Iterative solution of nonlinear equations

- Newton's algorithm solves a series of linear equation systems:
compute constraint vector c while $\|\mathbf{c}\|>\epsilon$
compute J
solve $\mathbf{J} \delta \mathbf{q}=\mathbf{c}$
$\mathbf{q} \leftarrow \mathbf{q}+\delta \mathbf{q}$
compute c

Handling limit values

- Most real-world joints have limit values
- When beyong the limit, project to the limit value and remove the dof from the list: compute constraint vector \mathbf{c} while $\|\mathbf{c}\|>\epsilon$
compute J
solve $\mathbf{J} \delta \mathbf{q}=\mathbf{c}$
$\mathbf{q} \leftarrow \mathbf{q}+\delta \mathbf{q}$
for each dof i
if $q_{i}>q_{\text {imax }}$ then
$q_{i} \leftarrow q_{\text {imax }}$
remove i from the list of dof
compute c

Exploiting the free space

- When a space of solutions are available (free space), we have room for optimizing quality criteria: equilibrium, comfort, etc.
- Optimize a cost function e inside the free space
- project search directions to the free space:

$$
\begin{aligned}
\forall \mathbf{z} \mathbf{J}\left(\mathbf{J}^{+} \mathbf{J}-\mathbf{I}\right) \mathbf{z} & =\mathbf{J}\left(\mathbf{J}^{T}\left(\mathbf{J} \mathbf{J}^{T}\right)^{-1} \mathbf{J}-\mathbf{I}\right) \mathbf{z} \\
& =\left(\mathbf{J} \mathbf{J}^{T}\left(\mathbf{J} \mathbf{J}^{T}\right)^{-1} \mathbf{J}-\mathbf{J}\right) \mathbf{z} \\
& =(\mathbf{J}-\mathbf{J}) \mathbf{z} \\
& =\mathbf{0}
\end{aligned}
$$

- optimization algorithm:
repeat
solve the constraint
do a step toward $-\left(\mathbf{J}^{+} \mathbf{J}-\mathbf{I}\right) \overrightarrow{\text { grad }} e$

三 \quad 오

