Introduction to the Kinematics of Rigid Bodies

François Faure

Grenoble Université

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

- Given the desired displacement of a point
- how to compute the necessary joint motions ?

A moving frame

- ► Frame R₁ is moving wrt. reference frame R₀
- Vector $\mathbf{u} = O_1 P$ is fixed in \mathcal{R}_1
- We write ${}^{0}\mathbf{u}$ its coordinates in \mathcal{R}_{0}
- We write ⁰ u the derivative of ⁰u
- Let **R**(dt) the rotation of \mathcal{R}_1 from time *t* to t + dt.

$$\mathbf{u}(t + dt) = \mathbf{R}(dt)\mathbf{u}(t)$$

$$\mathbf{u}(t + dt) - \mathbf{u}(t) = (\mathbf{R}(dt) - \mathbf{I})\mathbf{u}(t)$$

where I is the identity matrix.

	\leq	X	Р /	
Ć		01	Ŷ	~
	0			·
-	· • · · · ·	▶ ▲ ≧ ▶	<.≣> ≣	୬ ୦ 3/:

Angular velocity vector

• Let
$$\mathbf{n} = \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix}$$
 and $d\theta = \dot{\theta} dt$ be the axis and angle of rotation of $\mathbf{R}(dt)$

R(dt)-I is close to

$$\begin{bmatrix} 0 & -n_z \dot{\theta} dt & n_y \dot{\theta} dt \\ n_z \dot{\theta} dt & 0 & -n_x \dot{\theta} dt \\ -n_y \dot{\theta} dt & n_x \dot{\theta} dt & 0 \end{bmatrix} = \dot{\theta} dt [n \times]$$

where matrix $[n \times] = \begin{bmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{bmatrix}$ is the cross product matrix: $[n \times] \mathbf{u} = \mathbf{n} \times \mathbf{u}$

We call Ω_{1/0} = θn the angular velocity vector of frame R₁ wrt. frame R₀

Derivative of a constant vector in a moving frame

► For **u=0**₁**P** constant in frame *R*₁:

$$\hat{\boldsymbol{\mathsf{U}}} = \hat{\boldsymbol{\mathsf{R}}} \boldsymbol{\mathsf{u}}$$

= $[\Omega_{1/0} \times] \boldsymbol{\mathsf{u}}$
= $\Omega_{1/0} \times \boldsymbol{\mathsf{u}}$

- ⁰ u can be expressed in any reference frame
- ► the translation of R₁ wrt. R₀ has no influence on u

Velocity of a point attached to a moving frame

Acceleration of a point attached to a moving frame

- Deriving the velocity equation
- and noticing that $\overrightarrow{O_1P}$ is fixed in \mathcal{R}_1 , we get

$$\Gamma_{\mathcal{A}}^{1/0} = \Gamma_{\mathcal{O}_{1}}^{1/0} + \dot{\Omega}_{1/0} \times \overrightarrow{\mathcal{O}_{1}\mathcal{A}} + \Omega_{1/0} \times \left(\Omega_{1/0} \times \overrightarrow{\mathcal{O}_{1}\mathcal{A}}\right)$$

- $\Gamma_A^{1/0}$ is the linear acceleration of the origin
- $\dot{\Omega}_{1/0} \times \overrightarrow{O_1 A}$ encodes the angular acceleration
- $\Omega_{1/0} \times \left(\Omega_{1/0} \times \overrightarrow{O_1 A} \right)$ is the centripetal acceleration due to the rotation velocity

Derivative of a vector moving in a moving frame

• Let
$$(\mathbf{e}_1, \mathbf{e}_e, \mathbf{e}_3)$$
 be a basis of \mathcal{R}_1

We thus write

$${}^{1}\mathbf{u} = \sum_{i} x_{i}\mathbf{e}_{i}$$
$$\dot{\mathbf{u}} = \sum_{i} \dot{x}_{i}\mathbf{e}_{i} + \sum_{i} x_{i}\dot{\mathbf{e}}_{i}$$

hence

$${}^{0}\dot{\boldsymbol{u}}={}^{1}\dot{\boldsymbol{u}}+\boldsymbol{\Omega}_{1/0}\times\boldsymbol{u}$$

Velocity of a point moving in a moving frame

- Let $V_A^{/1}$ be the velocity of point A wrt. \mathcal{R}_1
- We add it to the velocity in R₀ of a point at the same place and fixed in R₁:

$$V_A^{/0} = V_A^{/1} + V_{O_1}^{1/0} + \Omega_{1/0} \times \overrightarrow{O_1 A}$$

Acceleration of a point moving in a moving frame

By differentiating the velocity, we get:

$$\Gamma_{A}^{/0} = \underbrace{\Gamma_{A}^{/1} + \Omega_{1/0} \times V_{A}^{/1}}_{\dot{V}_{A}^{/1}} + \Gamma_{O_{1}}^{/0} + \underbrace{\dot{\Omega}_{1/0} \times \mathbf{O}_{1}A + \Omega_{1/0} \times V_{A}^{/1} + \Omega_{1/0} \times (\Omega_{1/0} \times \overrightarrow{O_{1}A})}_{\Omega_{1/0} \times \overrightarrow{O_{1}A}}$$

Acceleration of a point moving in a moving frame (continued)

and then:

$$\Gamma_{A}^{/0} = \Gamma_{A}^{/1} + \Gamma_{O_{1}}^{/0} + \Omega_{1/0} \times (\Omega_{1/0} \times \overrightarrow{O_{1}A}) + 2\Omega_{1/0} \times V_{A}^{/1}$$

- with
 - $\Gamma_A^{/1} = \sum_i \ddot{x}_i \mathbf{e}_i$ relative acceleration
 - $\Gamma_{O_1}^{/0}$ linear acceleration of the moving frame
 - $\Omega_{1/0} \times (\Omega_{1/0} \times \overrightarrow{O_1 A})$ centripetal acceleration
 - $2\Omega_{1/0} \times V_A^{/1}$ Coriolis acceleration

Velocity of articulated bodies

The recursive use of the velocity equation gives:

$$V_{A}^{2/0} = V_{A}^{2/1} + V_{O_{1}}^{1/0} + \Omega_{1/0} \times \overrightarrow{O_{1}A}$$
$$= V_{A}^{2/1} + V_{A}^{1/0}$$

and more generally

$$V_A^{n/0} = \sum_{i=1}^n V_A^{i/i-1}$$

Joints

Defined by the allowed relative motions

More Joints

14/35

Joint transforms

 Generally, the transform between two articulated bodies can be written as a product of three transforms

$${}^{i-1}_{i}\mathbf{C} = ({}^{i-1}_{i}\mathbf{C}_{\mathbf{p}})({}^{i-1}_{i}\mathbf{C}_{\mathbf{l}})({}^{i-1}_{i}\mathbf{C}_{\mathbf{c}})$$

The Denavit-Hartenberg model

One axis per joint, with one translation and one rotation

Recursive transform computation in the Denavit-Hartenberg model

Recursive velocity computation in the Denavit-Hartenberg model

 $\overrightarrow{OA} = {}^{n}\overrightarrow{O_{n}A}$ $\overrightarrow{V} = \overrightarrow{0}$ $\Omega = \overrightarrow{0}$ for i in n..1 ${}^{i-1}_{i}\mathbf{C} = \mathbf{T}_{\mathbf{x},\mathbf{a}_{i-1}}\mathbf{R}_{\mathbf{x},\alpha_{i-1}}\mathbf{T}_{\mathbf{z},\mathbf{d}_{i}}\mathbf{R}_{\mathbf{z},\theta_{i}}$ $\Omega = {}^{i-1}_{i}\mathbf{B}(\Omega + \dot{\theta}_{i}\mathbf{z})$ $\overrightarrow{V} = {}^{i-1}_{i}\mathbf{B}(\overrightarrow{V} + \dot{d}_{i}\mathbf{z} + \dot{\theta}_{i}\mathbf{z} \times \overrightarrow{OA})$ $\overrightarrow{OA} = {}^{i-1}_{i}\mathbf{C}\overrightarrow{OA}$

Inverse kinematics

- Given the desired displacement of a point
- how to compute the necessary joint motions ?

Linear equations

- Translational joints
- Point and target

matrix equation:

$$\begin{pmatrix} a_{1x} & a_{2x} \\ a_{1y} & a_{2y} \end{pmatrix} \begin{pmatrix} \Delta q_1 \\ \Delta q_2 \end{pmatrix} = \begin{pmatrix} c_x \\ c_y \end{pmatrix}$$

A single scalar constraint

Reach the line

A single scalar constraint (continued)

matrix equation:

$$\Delta P.\mathbf{n} = \overrightarrow{PP'}.\mathbf{n}$$

$$\begin{pmatrix} \mathbf{a_1} & \mathbf{a_2} \end{pmatrix} \Delta q = \overrightarrow{PP'}.\mathbf{n}$$

$$\begin{pmatrix} a_{1x} & a_{2x} \\ a_{1y} & a_{2y} \end{pmatrix} \begin{pmatrix} \Delta q_1 \\ \Delta q_2 \end{pmatrix} .\mathbf{n} = \overrightarrow{PP'}.\mathbf{n}$$

$$(a_{1x}\Delta q_1 + a_{2x}\Delta q_2)n_x + (a_{1y}\Delta q_1 + a_{2y}\Delta q_2)n_y = \overrightarrow{PP'}.\mathbf{n}$$

$$(a_{1x}n_x + a_{1y}n_y)\Delta q_1 + (a_{2x}n_x + a_{2y}n_y)\Delta q_2 = \overrightarrow{PP'}.\mathbf{n}$$

$$(\mathbf{a_1}.\mathbf{n} \quad \mathbf{a_2}.\mathbf{n}) \begin{pmatrix} \Delta q_1 \\ \Delta q_2 \end{pmatrix} = \overrightarrow{PP'}.\mathbf{n}$$

each constraint can seen as a set of scalar equations

Singular systems

- Example: coplanar translation axes
- In-plane constraint: infinity of solutions
- Out of the plane: no solution

Nonlinear equations

Rotational joints

Several solutions, or no solution at all

Linearization - the Jacobian matrix

Starting from the velocity equation, and noticing that $\frac{dP}{dt} = \frac{dP}{d\mathbf{q}} \frac{d\mathbf{q}}{dt}$

$$rac{\delta P}{\delta q_i} = \mathbf{a_i}$$
 (translational dof)
 $rac{\delta P}{\delta q_i} = \mathbf{a_i} imes \overrightarrow{O_i P}$ (rotational dof)

with n dof:

$$\mathbf{J}_{\rho} = \frac{dP}{d\mathbf{q}} = \left(\begin{array}{cc} \frac{\delta P}{\delta q_1} & \dots & \frac{\delta P}{\delta q_n} \end{array}\right)$$

$$\Delta P \simeq \mathbf{J}_{\rho} \Delta \mathbf{q}$$

Small displacements

$$\left(\begin{array}{cc} \frac{\delta P}{\delta q_1}.\mathbf{n} & \dots & \frac{\delta P}{\delta q_n}.\mathbf{n}\end{array}\right)\Delta \mathbf{q} = b$$

Orientation constraints

- Express the rotation from the current orientation to its target and compute the associated axis and angle: ${}_{n}^{0}\mathbf{R}' = \mathbf{R}_{\mathbf{n},\theta_{n}}{}_{n}^{0}\mathbf{R}$
- express a rotation vector as: $\Delta r = \theta \mathbf{n}$
- the jacobian matrix is composed of:

$$rac{\delta r}{\delta q_i} = \mathbf{0}$$
 (translational dof)
 $rac{\delta r}{\delta q_i} = \mathbf{a_i}$ (rotational dof)

- then solve: $\mathbf{J} \Delta q = \Delta r$
- works for small rotations only

Aligning a vector with another

$$\left(\begin{array}{ccc} \frac{\delta r}{\delta q_1}.\mathbf{n} & \dots & \frac{\delta r}{\delta q_n}.\mathbf{n} \\ \frac{\delta r}{\delta q_1}.\mathbf{v} & \dots & \frac{\delta r}{\delta q_v}.\mathbf{v} \end{array}\right) = \left(\begin{array}{c} \theta \\ 0 \end{array}\right)$$

Putting all the constraints together

Concatenate the equation systems

$$\left(egin{array}{c} J_0\ dots\ J_n\end{array}
ight)\Delta q=\left(egin{array}{c} c_0\ dots\ c_n\end{array}
ight)$$

Solve the linear equation system

- square, full-rank matrix: use LU factoring
- more unknowns than equations:

$$\delta \mathbf{q} = \mathbf{J}^+ \mathbf{c}$$

with $\mathbf{J}^+ = \mathbf{J}^T (\mathbf{J} \mathbf{J}^T)^{-1}$

gives the smallest solution

more equations than unknowns:

$$\delta \mathbf{q} = (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{c}$$

gives the closest solution

 when everything has failed, use Singular Value Decomposition (SVD) (chapter 2.6 of Numerical Recipes)

Iterative solution of nonlinear equations

```
Newton's algorithm solves a series of linear equation
systems:
```

```
compute constraint vector c
while \|\mathbf{c}\| > \epsilon
compute J
solve J \delta \mathbf{q} = \mathbf{c}
\mathbf{q} \leftarrow \mathbf{q} + \delta \mathbf{q}
compute c
```

Handling limit values

- Most real-world joints have limit values
- When beyong the limit, project to the limit value and remove the dof from the list: compute constraint vector **c** while $\|\mathbf{c}\| > \epsilon$ compute J solve $\mathbf{J} \, \delta \mathbf{q} = \mathbf{c}$ $\mathbf{q} \leftarrow \mathbf{q} + \delta \mathbf{q}$ for each dof i if $q_i > q_{imax}$ then $q_i \leftarrow q_{imax}$ remove i from the list of dof compute c

Exploiting the free space

- When a space of solutions are available (free space), we have room for optimizing quality criteria: equilibrium, comfort, etc.
- Optimize a cost function *e* inside the free space
- project search directions to the free space:

$$\forall \mathbf{z} \ \mathbf{J}(\mathbf{J}^{+}\mathbf{J} - \mathbf{I})\mathbf{z} = \mathbf{J}(\mathbf{J}^{T}(\mathbf{J}\mathbf{J}^{T})^{-1}\mathbf{J} - \mathbf{I})\mathbf{z}$$

= $(\mathbf{J}\mathbf{J}^{T}(\mathbf{J}\mathbf{J}^{T})^{-1}\mathbf{J} - \mathbf{J})\mathbf{z}$
= $(\mathbf{J} - \mathbf{J})\mathbf{z}$
= $\mathbf{0}$

optimization algorithm:

repeat

solve the constraint

do a step toward $-(\mathbf{J}^+\mathbf{J} - \mathbf{I})\overrightarrow{grad} e$

<ロ> <同> <同> < 回> < 三> < 三> 三 三

< □ > < 団 > < 臣 > < 臣 > 王 のへで 34/35