Introduction to the Kinematics of Rigid Bodies

Francgois Faure

Grenoble Université

1/35

Motivation

» Given the desired displacement of a
point

» how to compute the necessary joint
motions ?

Lowrist

1 kand_remier

O e ot
Far ke

A moving frame

P
» Frame R4 is moving wrt.
reference frame Rg
» Vector u = O;P is fixed in R4
» We write %u its coordinates in Rg
» We write %u the derivative of %u e

» Let R(dt) the rotation of R4 from
time t to t + dt.

u(t+df) = R(du(d)
u(t+df) —u(t) = (R(dt)—u()

where | is the identity matrix. /O—>

Angular velocity vector

Nx
» Letn= | n, | and df = Odt be the axis and angle of
nz
rotation of R(dt)
» R(dt)-lis close to

0 —ndt ny0dt
{ n,0dt 0 nxédt] = fdt[nx]
—n,0dt nyddt 0
0 -n; ny
where matrix [nx]=| n, 0 —ny
[”y ne 0]

is the cross product matrix: [nx]Ju=n x u

» We call Q4,9 = fn the angular velocity vector of frame R4
wrt. frame Rq

Derivative of a constant vector in a moving frame

P
u
» For u=04P constant in frame R:
U = Ru
= [91/0 X] u
= Q1/0 xu O Q

» %0 can be expressed in any
reference frame

» the translation of R4 wrt. Ry has
no influence on u

O

Velocity of a point attached to a moving frame

» - (2)(F)

o? <[QOX]:>)(> O
(et

Vi = v +Q1/oxﬁ

v — VB/ + Q4,0 x BA forany A, B
0

D —

Acceleration of a point attached to a moving frame

v

Deriving the velocity equation
and noticing that O 3 is fixed in R{, we get

v

qu/o 1/O+Q1/OXO1A—|—Q1/0X <Q1/OXO1)

Fl\/o is the linear acceleration of the origin

v

v

. — .
Q4,0 x O1A encodes the angular acceleration

v

- . .
Q40 X <Q1/0 x Oq A) is the centripetal acceleration due to
the rotation velocity

Derivative of a vector moving in a moving frame

» Let (e, eq, €3) be a basis of R4
» We thus write

1U = ZX,‘E,’
i

u = Z)’(,-e,-Jer,-é,-
i i

» hence
OL'|:1 l]~|—§21/0><u

Velocity of a point moving in a moving frame

> Let VA(1 be the velocity of point A wrt. R4
» We add it to the velocity in Rq of a point at the same place
and fixed in R4:

OiA

V% = V' + V% + Q0 x 014

Acceleration of a point moving in a moving frame

» By differentiating the velocity, we get:

rﬁ\o = FQ + Q40 ¥ V//\1 +rg: +

1
Va

. ——
Q1/0 X O1A+Q1/O X V//\1 —|—Q1/0 X (91/0 X O1A)

-

Q1/0X5;Z

10/35

Acceleration of a point moving in a moving frame
(continued)

» and then:

—
M) = T4 + o + Qo x (0 x O1A) + 200 x V'

> with
> I' =37, %e; relative acceleration
> Fé? linear acceleration of the moving frame
> Q40 X (24,0 x 517\) centripetal acceleration
> 2040 X V4" Coriolis acceleration

11/35

Velocity of articulated bodies
» The recursive use of the velocity equation gives:

—
Vi = VI VP Q0 x OA
= Vil v)°

» and more generally

n
V,Z/O _ Z V;‘/I_1
i=1

12/35

Joints

» Defined by the allowed relative motions

2 SPHERES -2 PLANS

Solide (S2)

Solide (S1)
REPRESENTATION NORMALISEE PLANE

2 82
81
81

REPRESENTATION NORMALISEE SPATIALE
s2

2 SPHERES - CYLINDRE

Solide (S2)

Solide (52) Solide (81)

Solide (S1)

1 TRANSLATION POSSIBLE : Tx

Solide (52) Solide (1) Solide (1)

13/35

More Joints

1 DOF 2DOF 3IDOF

Pin-Gelenk

Gleit-Gelenk Zylinder-Gelenk Wiirfel auf Fbene

4 DOF 3 DOF 6 DOF

14/35

Joint transforms

» Generally, the transform between two articulated bodies
can be written as a product of three transforms

'C=("Cp)((Ci)(;"Ce)

15/35

The Denavit-Hartenberg model
» One axis per joint, with one translation and one rotation

§+1C = TaRxaTz.0.0.4 1Rz 00400
= (i+1Cp)(i+1Ci(1))
1 CIN
Rin
R, dit1
z

@

16/35

Recursive transform computation in the
Denavit-Hartenberg model

oC =

foriin1..n
I 1C Txa,11RXa. 1Tzd,R20
°C ?1C’ C

17/35

Recursive velocity computation in the
Denavit-Hartenberg model

Q="""B(Q + 6;2)
= ;—1 B(‘_}——l_ diz + 0z x OA)
OA=1""C OA

18/35

Inverse kinematics

» Given the desired displacement of a
point

» how to compute the necessary joint
motions ?

Lowrist

1 kand_remier

O e ot
Far ke

19/35

Linear equations

» Translational joints
» Point and target

» matrix equation:

(a1x 32x>(ACI1 >:<Cx>
dyy aoy Ago Cy

20/35

A single scalar constraint

» Reach the line

Yy

.

21/35

A single scalar constraint (continued)

» matrix equation:

APn =
(aqy az)Aq

<a1x 82x><AQ1>n:
ayy aoy Ag)
(a1xAg1 + acxAge)nx + (a1, Aq1 + ayAg2)ny, =

(a1xnx + a1yny)Aq1 + (aZan + 32yny)Aq2 -

Agr \ _
(ai.n azn) < Agy > -

» each constraint can seen as a set of scalar equations

3l 33 333
3 5 S5 3 5 3

22/35

Singular systems

» Example: coplanar translation axes
» In-plane constraint: infinity of solutions
» Out of the plane: no solution

23/35

Nonlinear equations

» Rotational joints
» Several solutions, or no solution at all

24/35

Linearization - the Jacobian matrix

» Starting from the velocity equation, and noticing that

dP _ dPdq
df — dqdt
0P
— = a; (translational dof
oP .
— = ajx O,-B (rotational dof)
dq;
S\‘f/—iﬁp
Oi' ,_/ P
» with n dof:
dP 5P 5P

AP ~ JpAq

25/35

Small displacements

N
\

» scalar equation AP.n = b:

sP
as gz
ff‘ §P
-___‘\\‘.3\ T;g
PN s
dq1
5q) Aq=b

26/35

Orientation constraints

» Express the rotation from the current orientation to its
target and compute the associated axis and angle:
%R’ = Rn4’R

» express a rotation vector as: Ar =6n

» the jacobian matrix is composed of:

) .
oy (translational dof)
e,

or

— = a; (rotational dof
5 i)

» then solve: JAg = Ar
» works for small rotations only

27/35

Aligning a vector with another

\‘:b

28/35

Putting all the constraints together

» Concatenate the equation systems

Jo Co
;| ag=| :
Jn Cn

29/35

Solve the linear equation system

v

square, full-rank matrix: use LU factoring
more unknowns than equations:

v

5q = J'tc
withd* = JT(JJ7)!
gives the smallest solution
» more equations than unknowns:

iq = W) Jc

gives the closest solution

when everything has failed, use Singular Value
Decomposition (SVD) (chapter 2.6 of Numerical Recipes)

v

30/35

http://apps.nrbook.com/empanel/index.html

Iterative solution of nonlinear equations

» Newton’s algorithm solves a series of linear equation
systems:
compute constraint vector ¢
while ||c|| >
compute J
solve J 5q=c¢
q<+—q+9q
compute ¢

31/35

Handling limit values

» Most real-world joints have limit values

» When beyong the limit, project to the limit value and
remove the dof from the list:

compute constraint vector ¢
while ||c|| > e
compute J
solve J 5q =c¢
q<+—q+4q
for each dof i
if Qi > Qimax then
Qi < Qimax
remove i from the list of dof
compute ¢

32/35

Exploiting the free space

» When a space of solutions are available (free space), we
have room for optimizing quality criteria: equilibrium,
comfort, etc.

» Optimize a cost function e inside the free space
» project search directions to the free space:

vz JWHd -z = JU'WIN) T I-D)z
= (WTWIHI-J)z
= J-J)z
=0

» optimization algorithm:

repeat
solve the constraint

do a step toward —(J*J — I)grad e

33/35

Q>
34/35

<a»r <>

i
v
a
it
v

Q>
35/35

	Basic kinematics
	Articulated body kinematics
	Inverse kinematics

