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Motivation

I Given the desired displacement of a
point

I how to compute the necessary joint
motions ?
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A moving frame

I Frame R1 is moving wrt.
reference frame R0

I Vector u = O1P is fixed in R1

I We write 0u its coordinates in R0

I We write 0u̇ the derivative of 0u
I Let R(dt) the rotation of R1 from

time t to t + dt .

u(t + dt) = R(dt)u(t)
u(t + dt)− u(t) = (R(dt)− I)u(t)

where I is the identity matrix.
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Angular velocity vector

I Let n =

 nx
ny
nz

 and dθ = θ̇dt be the axis and angle of

rotation of R(dt)
I R(dt)-I is close to 0 −nz θ̇dt ny θ̇dt

nz θ̇dt 0 −nx θ̇dt
−ny θ̇dt nx θ̇dt 0

 = θ̇dt [n×]

where matrix [n×] =

 0 −nz ny
nz 0 −nx
−ny nx 0


is the cross product matrix: [n×] u = n× u

I We call Ω1/0 = θ̇n the angular velocity vector of frame R1
wrt. frame R0
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Derivative of a constant vector in a moving frame

I For u=01P constant in frame R1:

0u̇ = Ṙu
=

[
Ω1/0×

]
u

= Ω1/0 × u

I 0u̇ can be expressed in any
reference frame

I the translation of R1 wrt. R0 has
no influence on u̇
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Velocity of a point attached to a moving frame

−→
OP =

(
R t
0 1

)( −−→
O1P

1

)
−̇→
OP =

(
[Ω×] ṫ

0 0

)( −−→
O1P

1

)

=

(
Ω×
−−→
O1P + V 1/0

01

0

)
V 1/0

P = V 1/0
O1

+ Ω1/0 ×
−−→
O1P

V 1/0
A = V 1/0

B + Ω1/0 ×
−→
BA for any A, B
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Acceleration of a point attached to a moving frame

I Deriving the velocity equation

I and noticing that
−−→
O1P is fixed in R1, we get

Γ
1/0
A = Γ

1/0
O1

+ Ω̇1/0 ×
−−→
O1A + Ω1/0 ×

(
Ω1/0 ×

−−→
O1A

)
I Γ

1/0
A is the linear acceleration of the origin

I Ω̇1/0 ×
−−→
O1A encodes the angular acceleration

I Ω1/0 ×
(

Ω1/0 ×
−−→
O1A

)
is the centripetal acceleration due to

the rotation velocity
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Derivative of a vector moving in a moving frame

I Let (e1,ee,e3) be a basis of R1

I We thus write

1u =
∑

i

xiei

u̇ =
∑

i

ẋiei +
∑

i

xi ėi

I hence
0u̇ =1 u̇ + Ω1/0 × u
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Velocity of a point moving in a moving frame

I Let V /1
A be the velocity of point A wrt. R1

I We add it to the velocity in R0 of a point at the same place
and fixed in R1:

V /0
A = V /1

A + V 1/0
O1

+ Ω1/0 ×
−−→
O1A
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Acceleration of a point moving in a moving frame

I By differentiating the velocity, we get:

Γ
/0
A = Γ

/1
A + Ω1/0 × V /1

A︸ ︷︷ ︸
◦

V/1
A

+Γ
/0
O1

+

Ω̇1/0 ×O1A + Ω1/0 × V /1
A + Ω1/0 × (Ω1/0 ×

−−→
O1A)︸ ︷︷ ︸

◦

Ω1/0×
−−→
O1A
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Acceleration of a point moving in a moving frame
(continued)

I and then:

Γ
/0
A = Γ

/1
A + Γ

/0
O1

+ Ω1/0 × (Ω1/0 ×
−−→
O1A) + 2Ω1/0 × V /1

A

I with
I Γ

/1
A =

∑
i ẍiei relative acceleration

I Γ
/0
O1

linear acceleration of the moving frame
I Ω1/0 × (Ω1/0 ×

−−→
O1A) centripetal acceleration

I 2Ω1/0 × V /1
A Coriolis acceleration
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Velocity of articulated bodies
I The recursive use of the velocity equation gives:

V 2/0
A = V 2/1

A + V 1/0
O1

+ Ω1/0 ×
−−→
O1A

= V 2/1
A + V 1/0

A

I and more generally

V n/0
A =

n∑
i=1

V i/i−1
A
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Joints

I Defined by the allowed relative motions
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More Joints
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Joint transforms

I Generally, the transform between two articulated bodies
can be written as a product of three transforms

i−1
i C = (i−1

i Cp)(i−1
i Cl)(i−1

i Cc)
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The Denavit-Hartenberg model
I One axis per joint, with one translation and one rotation

i
i+1C = Txi ,ai Rxi ,αi Tzi+1,di+1(t)Rzi+1,θi+1(t)

= (i
i+1Cp)(i

i+1Cl(t))
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Recursive transform computation in the
Denavit-Hartenberg model

0
0C = I4
for i in 1..n

i−1
i C = Tx,ai−1Rx,αi−1Tz,diRz,θi
0
i C = 0

i−1Ci−1
i C
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Recursive velocity computation in the
Denavit-Hartenberg model

−→
OA= n−−→OnA
−→
V =
−→
0

Ω=
−→
0

for i in n..1
i−1
i C = Tx,ai−1Rx,αi−1Tz,diRz,θi

Ω= i−1
i B(Ω + θ̇iz)

−→
V = i−1

i B(
−→
V + ḋiz + θ̇iz×

−→
OA)

−→
OA= i−1

i C
−→
OA
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Inverse kinematics

I Given the desired displacement of a
point

I how to compute the necessary joint
motions ?
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Linear equations
I Translational joints
I Point and target

I matrix equation:(
a1x a2x
a1y a2y

)(
∆q1
∆q2

)
=

(
cx
cy

)
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A single scalar constraint

I Reach the line

21 / 35



A single scalar constraint (continued)

I matrix equation:

∆P.n =
−−→
PP ′.n(

a1 a2
)

∆q =
−−→
PP ′.n(

a1x a2x
a1y a2y

)(
∆q1
∆q2

)
.n =

−−→
PP ′.n

(a1x ∆q1 + a2x ∆q2)nx + (a1y ∆q1 + a2y ∆q2)ny =
−−→
PP ′.n

(a1xnx + a1yny )∆q1 + (a2xnx + a2yny )∆q2 =
−−→
PP ′.n(

a1.n a2.n
)( ∆q1

∆q2

)
=
−−→
PP ′.n

I each constraint can seen as a set of scalar equations
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Singular systems

I Example: coplanar translation axes
I In-plane constraint: infinity of solutions
I Out of the plane: no solution
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Nonlinear equations

I Rotational joints
I Several solutions, or no solution at all
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Linearization - the Jacobian matrix

I Starting from the velocity equation, and noticing that
dP
dt = dP

dq
dq
dt

δP
δqi

= ai (translational dof)

δP
δqi

= ai ×
−−→
OiP (rotational dof)

I with n dof:

Jp =
dP
dq

=
(

δP
δq1

. . . δP
δqn

)
∆P ' Jp∆q
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Small displacements

I ∆P ' Jp∆q

I scalar equation ∆P.n = b:(
δP
δq1
.n . . . δP

δqn
.n
)

∆q = b
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Orientation constraints

I Express the rotation from the current orientation to its
target and compute the associated axis and angle:
0
nR′ = Rn,θ

0
nR

I express a rotation vector as: ∆r = θn
I the jacobian matrix is composed of:

δr
δqi

= 0 (translational dof)

δr
δqi

= ai (rotational dof)

I then solve: J∆q = ∆r
I works for small rotations only
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Aligning a vector with another

(
δr
δq1
.n . . . δr

δqn
.n

δr
δq1
.v . . . δr

δqv
.v

)
=

(
θ
0

)
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Putting all the constraints together

I Concatenate the equation systems J0
...

Jn

∆q =

 c0
...

cn
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Solve the linear equation system

I square, full-rank matrix: use LU factoring
I more unknowns than equations:

δq = J+c
with J+ = JT (JJT )−1

gives the smallest solution
I more equations than unknowns:

δq = (JT J)−1JT c

gives the closest solution
I when everything has failed, use Singular Value

Decomposition (SVD) (chapter 2.6 of Numerical Recipes)
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Iterative solution of nonlinear equations

I Newton’s algorithm solves a series of linear equation
systems:
compute constraint vector c
while ‖c‖ > ε

compute J
solve J δq = c
q← q + δq
compute c
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Handling limit values

I Most real-world joints have limit values
I When beyong the limit, project to the limit value and

remove the dof from the list:
compute constraint vector c
while ‖c‖ > ε

compute J
solve J δq = c
q← q + δq
for each dof i

if qi > qimax then
qi ← qimax
remove i from the list of dof

compute c
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Exploiting the free space
I When a space of solutions are available (free space), we

have room for optimizing quality criteria: equilibrium,
comfort, etc.

I Optimize a cost function e inside the free space
I project search directions to the free space:

∀z J(J+J− I)z = J(JT (JJT )−1J− I)z
= (JJT (JJT )−1J− J)z
= (J− J)z
= 0

I optimization algorithm:
repeat

solve the constraint
do a step toward −(J+J− I)

−−→
grad e
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I
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