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Introduction

e Supercomputers dominate the High-Performance
Computing (HPC) environments. Y"jr %

e Used to solve the most diverse problems in
various fields: biology, chemistry, physics, and :,,‘3} BEIFIRSE L
health sciences.

e Each science domain use a multitude of
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Introduction

e Asthe supercomputers increase in size (CPU and
Mem.), so does the size of the dataset used.

e Data storage is one of the main bottlenecks
o Performance gap between CPU and I/O
o  Rising concurrency and interference
o Metadata operations

e Different scientific applications are impacted in
diverse ways by storage system
e Performance limiting factors
o  Access patterns
o Load imbalance between storage servers
o Resource contention
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Introduction

e Parallel File Systems (PFS) are the de-facto file
system type for HPC systems.
e Decentralized Networked File System

e Provide
o High-performance data access
Division of files in data blocks (striping)
Single namespace
Fault-Tolerant
Locking
o  Cache coherency
e Lustreis one of the most adopted PFS (* 30% of

the file systems used on 10500 [SC21]).
o Open-source
o Client-server
o  Object-based

O O O O

IFile S%stein (single namespace)
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Introduction

e Ourresearch aims to understand the impact and uncover data storage needs in a
supercomputer by evaluating the Lustre’s performance concerning the varied workloads
from different domains.

e We provide a methodology to visualize performance factors, such as small request sizes,
load imbalance, resource contention, and metadata utilization.

e We use the Santos Dumont Supercomputer (SDumont) as a case study.

Three months of operational data (March to May) from two years (2020 and 2021).

e The study of the Lustre file system on SDumont was divided into two parts:
o  Analysis of the whole three months period
o Focus on a specific period of interest
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Compute Nodes

(0SC)
The Lustre Deployment on SDumont

e A Supercomputer located at the National
Laboratory for Scientific Computing (LNCC)
e Chemistry (21.3%), Physics (17.1%), Engineering

Infiniband FDR

(12.6%), Biological Sciences (10,1%), and Network 56 Gbls
Computer Science (9.1%).
e 758 nodes (18,424 CPU cores) - 1.1 petaflops / Iscratch (Lustre PFS)
e Lustre PFS ClusterStor 9000 v3.3 JEL = OSTW  oSTOl  osT@z  osTos
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Related Works

> Luuetal. (2015) analyzed Darshan's logs from more than one million jobs on three leading
HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at NERSC.
o Drawbacks: Only use Darshan, lack of server side information
e Lockwood et al. (2018) used TOKIO, benchmarks, and active probing on the PFS of two

leadership-class HPC centers (NERSC and ALCF).
o  Drawbacks: Use Darshan, LMT (not supported), and active probing (may cause interference).

e Patel etal. (2019) developed a tool to analyze the log data of LMT from the Lustre PFS at
NERSC HPC data center, shared by Edison and Cori supercomputers.
o Drawbacks: Only use LMT (server side information), need a DBMS (not supported or allowed)
e Sivalingam et al. (2019) used LASSi to analyze application usage and contention caused by
the use of shared resources on the Lustre PFS deployed at ARCHER supercomputer
o  Drawbacks: MySQL (not supported or allowed)
e Betke and Kunkel (2019) identify anomalies or high workloads from jobs' telemetric data
through a workflow based on Machine Learning.
o  Drawbacks: Not mature yet (needs manual adjustment) n
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Related Works

We propose:

(@)

(@)

©)

(@)

Broader methodology to provide a bigger picture of the whole system's |/O utilization.
Continuous analysis from the Storage Devices to the Compute Nodes.

Characterize data and metadata usage.

Tracking inefficient behavior.

Adopted the use of open-source software that does not require administrative
privileges.

Easily implemented and reproduced.
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Analysis and Visualization Methodology
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Analysis and Visualization Methodology

Step 1

Data gathering

Gather the collect! metric files

from all nodes

Step 2
Pre-Processing

Parse raw files, storing in SQLite
database

Compute Nodes

] _.
— collectl —
I —2
ClusterStor Raw CSTOR
9000 OSTMDT
SDumont Raw Ccompute

OSTIMDT

SQLite OSTMDT
CSTOR Database

SQLite OSTMDT
Compute Database

SQLite job usage
Database

SLURM  Administrative
Database Database

P WSQLite

a1

Step 3
Analysis

Data analysis, generating
visualization and reports with R

analyzer

python’

18



Step 1

Data gathering

Analysis and Visualization Methodology

Gather the collectl metric files
from all nodes

ClusterStor Raw CSTOR

e collectl, an open-source system performance monitoring tool
e Special plugin for Lustre PFS

e Installed on MDS and OSS servers of ClusterStor 9000 0STIMDT

e Installed on 758 SDumont Compute Nodes

e 15 sec. collection interval, stored on local /tmp SDumont Raw Ccompute
Compute Nodes OST/IMDT

e Neglectable overhead (0.1% of CPU).




Step 2

Pre-Processing

Analysis and Visualization Methodology

Parse raw files, storing in SQLite
database

e Conversion of the daily raw collectl file to an easy to use and transport F >i
SQLite dataset _
e Two datasets: ClusterStor and Compute Nodes — CSTOR Daabase
e “Data Cross” process to cross information from: Ry
o Compute Nodes dataset (utilization metrics) +
o Slurm Database (job’s name, nodes, start and end) +
o Administrative Database (Science Domain)
o =Job Usage dataset: “who, how and why”

SLURM  Administrative
Database Database

p WSQLiztoe

python’




Step 3

Analysis

Analysis and Visualization Methodology

Data analysis, generating
visualization and reports with R
e Visualization and analysis tool developed with R+Shiny

e Reproduce the process with dataset from different periods
e WebApp: https://arcarneiro.shinyapps.io/sdumont lustre

0So

21



https://arcarneiro.shinyapps.io/sdumont_lustre

Analysis and Visualization Methodology
/0 Metrics

read,, KiB data read

write,, KiB data written

write,,, Block size of write operation
(write,, /writes)

writeqo Quality of write operation

((writes « 1024)/write,,)

Ll Load Imbalance



Analysis and Visualization Methodology
/0 Metrics

read,, KiB data read

write,, KiB data written

write,, Transfer size of write operation
(write,, Mwrites)

Quality of write operation
((writes « 1024)/write )

Ll Load Imbalance
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Analysis and Visualization Methodology

/0 Metrics

Metric

CF,

bw
LI
SMA

3HR

Description

o

=0

Bandwidth Coverage Factor of a job

Load Imbalance
Simple Moving Averages of three hours

Derived metrics
Generated at Step 3

CF,  indicates the
amount of bandwidth
that can be attributed

to a job.

LI measures the load
imbalance among the
OSTs

SMA,, . is calculated for
all other metrics and is
helpful during
visualization

N pyees | jOD )
N pyes| Lustre )

CF,,( job)=

LI=4%

S.N'L—\q{ml:[lf Z m,



Analysis and Visualization Methodology
Metadata Counters

Counter
fopen
fclose
getattr
setattr
fsync
getxattr
setxattr
unlink
link
statfs
mkdir
rmdir
seek

Node

MDS & Client

MDS

Client

Description
File open requests
File close requests

Operation that get file/dir attributes
Operation that set file/dir attributes

Operation that synchronizes data to the file system
Operation that get file/dir extended attributes
Operation that set file/dir extended attributes
File/dir removals

Hard or symbolic link creation

Operation that return statistics about the file system
Directory creation requests

Directory removal requests

Operation that change the file pointer

25



Results - Trimester Analysis
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Results - Trimester Lustre Usage Analysis
/0 - OSS Nodes

e 3 months from the ClusterStor dataset, spanning from March to May, 2020 and 2021.
e Whole file system (sum of all OSTs)

2020 2021

Jobs 36,884 145,793 4x 1
Total Read 1.8 PiB 7.95 PiB 4.7x 1
Total Write 29PiB 4.1 PiB 1.5% 1
Read Ops 64.154 B 39.102B 1.6% |
Write Ops 1.234 B 5.297 B 4.3% 1
Peak Read Throughput 316 GiB/m (= 11.7% bw) 1,077 GiB/m (= 39.89% bw) 3.4x 1
Avg. Read Throughput 15.825 GiB/m 66.953 GiB/m 4.2x 1
Peak Write Throughput 1,127 GiB/m (= 41.74% bw) 1,145 GiB/m (= 42.41% bw -

Avg. Write Throughput 25.336 GiB/m 34.452 GiB/m 1.3x 1



Results - Trimester Lustre Usage Analysis

|/0 - OSS Nodes

Table 5.1 — Transfer Size (KiB) and Quality of Operations.

Year Operation Metric Min.

1st Q. Median

3rd Q. Max.

Read Size 400 6.60 2380 577.00 4096.00

2020 QO 0.25 1.77 43.00 155.00 256.00
Write Size 0.01 530.00 1458.00 2947.00  4096.00

QO 0.25 0.3 0.70 1.93: 3251351.00

Read Size 4.00 271.00 816.00 1786.00  4096.00

2021 QO 0.25 057 123 D18 256.00
Write Size 0.01 420.00 970.00 2149.00  4096.00

QO 0.25 048 1.10 2.44 104865.00

Source: Author
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Results - Trimester Lustre Usage Analysis
/0 - OSS Nodes

CDF of the Operation Size (A) and Throughput (B) for the Read (Red) and Write (Blue) operations among OSTs.

2020 avg: 652 KiB Read and 1729 KiB Write for Size (23x), and 1.5 GiB/m Read and 2.2 GiB/m Write for
Throughput (=1.6x).

2021 avg: 1043 KiB Read and 1420 KiB Write for Size, and 6.7 GiB/m Read and 3.4 GiB/m Write for Throughput

(=2x).
A 1.004 | A 1.001
0.75 0.751 %/—7——_
w L
8 0.50 4 = Read 8 0.50 = Read
0.25- — Write 0.25- — Wirite
0.00 - i : : : ] 0.00 : : : :
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Transfer Size (KiB) Transfer Size (KiB)
B 1.004 e — B 1.004 _—
—
, 0757 ;.————— 0757 e
0 0.504 = Read 0 0.50 == Read
(] (&]
0.254 - Wit 0.254 — Wit
0.00 ] 3 : 0.00 : ] : -
2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
Throughput (GiB/m) Throughput (GiB/m)
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Workload

Results - Trimester Lustre Usage Analysis
/0 - OSS Nodes

Workload distribution by week.

2020: Write dominated data movement (61%), Read dominated number of operations (98%)
o =1.6x write-to-read volume / =52x read-to-write requests

2021: Read dominated both data movement (66%) and number of operations (88%)
o =2xread-to-write volume [ =7x read-to-write requests

Operation . Write . Read Operation - Write . Read

Number of Operations Data Transier Volume Number of Operations Data Transier Volume

Workload
(%4
QL

| 0%+
. v T v

SILLEELASEL PP I S EL I L LL I L PP

..............

D N N o oo » D (AN (A B oo A 8 D
S R R N R T PP B S N B B
Week of Year ' "_ Week of Year
* 2 e * 30
2020

2021



Results - Trimester Lustre Usage Analysis
/0 - OSS Nodes

SMA, . of LI for the read (Red) and write (Blue) load. Values below 0.5 can be considered as low imbalance,
values around 1 are considered as moderate imbalance, and values above are considered severe imbalance.

2020: 50% below 0.6 / 25% above 1. Avg for reading was 0.92 while for writing was 0.80.

2021:50% below 0.6 / 25% above 1. Avg for reading was 0.68 while for writing was 0.58.
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3HR SMA Throughput (GiB/m)

Results - Trimester Lustre Usage Analysis
/0 - OSS Nodes

SMA, . of read and write throughput by OST.
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Results - Trimester Lustre Usage Analysis
Metadata - MDS Node

e 3 months of data, spanning Ao II I III B 1o o
from March to May, 2021. | -
e Avg8,920 ops/s i | I 0 s
Max 205,016 ops/s. 3 E getatt
e Metadata 60% operations . e E = E . & .
(67BMDx44B1/0) l::
e +fopen, fclose, getattr, - i q o
setattr 0% m.:-i=l===i==lllzs! )] ::5
* “Low”unlink operations AT SR
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Results - Period of Interest
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Results - Detailed View of a Region of Interest
/0 - Compute Nodes

In-depth analysis with Job Usage dataset

2020 - Detailed on the dissertation

o March 24th and March 28th

o Read peak throughput of 2020

2021

o March 28th and April 1st

o Expressive increase in read activity, resulting in load imbalance

o 845jobs

With the SLURM’s information, we were able to identify eleven different applications:

o  DockThor (36.21%), unknown (17.75%), QUANTUM ESPRESSO (10.06%), LHCB DIRAC (8.88%),
AMBER (7.57%), GROMACS (6.98%), OpenMPI mpiexec (4.62%), VASP (4.62%), Bash Script (1.3%),
LAMMPS (0.71%), ORCA (0.47%), SIESTA (0.47%), Python (0.24%), and BIE (0.12%).

The system was used by twelve different Science Domains:

o  Astronomy, Biodiversity, Biological Sciences, Chemistry, Computer Science, Engineering,

Geosciences, Health Sciences, Materials Science, Mathematics, Physics, Weather and Climate
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Results - Detailed View of a Region of Interest
/0 - Compute Nodes

Table 5.3 — Individual application’s throughput

Year Application Operation GiB/m (CF,
020 QUANTUM ESPRESSO Read 290

QUANTUM ESPRESSO Write 353 1 0.94
2001 unknown Read 153

QUANTUM ESPRESSO Write 90 ¥ 0.31
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Results - Detailed View of a Region of Interest
/0 - Compute Nodes

CF, , of the jobs. The dots in red, black, and blue represent the Max., Avg. and Min., respectively, of all jobs,
observed on each timestamp.

Few jobs with elevated throughput consume the bandwidth
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Results - Detailed View of a Region of Interest
/0 - Compute Nodes

operation . write . read
2021 Distribution of the Quality of
Operation (left) and Transfer Size (right). S o oo
e Most applications are read inefficient IVASP'
unKnNoOwnN 9
e ‘“Efficient” SIESTA i A
o GROMACS, OpenMPI mpiexec, and QUANTUM ESPRESSO-
Python 4 Python+
e Inefficient ORCA &
o  Bash Script and BIE 4} OpenMPI mpiexec+ ot A
LHCB DIRACH
LAMMPS 4
4 cromacs- -~
DockThor i
& BE-
‘ Bash Script- tLI—
AMBER- = A,
0 100 200 30 0 1000 2000 3000 4000
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Results - Detailed View of a Region of Interest

/0 - Compute Nodes

2021 Distribution of the Quality of
Operation (left) and Transfer Size (right).

e Seldom use sizes larger than 1 MiB.
e <100 KiB for 75% of the time.
e 4 MiBlimit

o  Default maximum bulk I/O RPC

o Upto16 MiB
e OpenMPI biggest sizes

o  Reads (50% above 1 MiB)

Writes (75% above 1 MiB)

e ORCAandSIESTA

o  Write above 1.5 MiB for 50%

Quality of Operation

operation . write - read

Transfer Size (KiB)

VASP 4

unknown

4 siESTA-
QUANTUM ESPRESSO-
Python+

' ORCA A

A' OpenMPI mpiexec
LHCB DIRACH
LAMMPS 4
GROMACS +
DockThor+

BIE+

Bash Script

AMBER-

TR

b&»»

3

200

300

0

1000 2000 3000

4000
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Results - Detailed View of a Region of Interest
/0 - Compute Nodes

2021 applications’ workload distribution. operation [l e [l e

. . . . . Number of Operations
e Most applications are write-intensive —

Data Transfer Volume

o AMBER, GROMACS, LAMMPS,
LHCB DIRAC, QE, SIESTA, VASP
® 4 Read-intensive

o  BIE, OpenMPI mpiexec, Python,

and unknown

Workload

e Others mixed in terms of number of

operations and data transferred
o  Bash: Lots of smaller writes
o  ORCA: Lots of smaller reads

Application



Results - Detailed View of a Region of Interest
Metadata - Compute Nodes

2021 applications’ I/O and
metadata load distribution

e Metadata intensive
o  LHCBDIRAC and Python - 1o
e Heavy metadata use Metadata
o  AMBER and unknown
e High seek
o  AMBER, Bash, OpenMPI,
QE, SIESTA, VASP
e High fopen and fclose
o  BIE, ORCA, GROMACS
e High getattr
o  DockThor, LAMMPS,
Python

A 100

75%1

Workload
&
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B 1o I_ I
75
. fopen
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X 50 getattr
S
= setattr
25% mosk
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Conclusion
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Conclusion

Proposed a methodology to visualize and analyze performance factors on a Lustre PFS.
The study used metrics collected from storage servers and compute nodes.

Provided insights into understanding Lustre’s usage and the 1/O needs.

|dentified:

©)
©)
©)

Requirements evolution: How the needs and demands change from one year to another
Inefficient read operations: * 52x read-to-write requests / = 3% write-to-read size
Demand for Low latency: peak throughput not reaching 50%, but high demand for
small random operations

Imbalance among resources: some severe and lasting cases where the overload
corresponds to 3x the average OSTs’ load.

High-level libraries: applications seems to not make full use of libraries to aggregate
requests

Problematic applications: BIE, which exhibits the worst readcIo and is read-intensive.
Demand for metadata operations: 60% of all file system operations.
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Conclusion - Suggestions

e |nefficient read operations:
o Adopt /O forwarding layer
e Demand for Low latency:
o Use SSDs (client of servers), Lustre’s DoM (Data On Metadata)
e Imbalance amongresources:
o Revise the default striping policy, adopt an automatic load balancer
e High-levellibraries and Problematic applications:
o “Task force” to overhaul the performance, implement a framework to auto-tune the I/O
stack
e Demand for metadata operations:
o Usethe Lustre’s DNE (Distributed Namespace)
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Conclusion - Future work

e Improving the application identification:
o  Bash Scripts, OpenMPI mpiexec, Python, and unknown (224%)
® Revise some processes to increase the scalability and performance
o The data cross process is very time consuming
e Integrate the metrics collection with SLURM
o Reduce space requirements
e Assess the performance implications of implementing new strategies
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Figure 2.1 — Local File System.
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Figure 2.2 — Networked File System.
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Figure 2.3 — Parallel File System.
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Figure 2.4 — Metadata Management Representation.
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Figure 2.5 — Parallel File System.
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ILustre File

Figure 2.6 — Lustre PFS Architecture.
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Figure 3.1 — Serial 1/0.
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Figure 3.2 — Parallel I/O - File-Per-Process.
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Figure 3.3 — Parallel I/O - Shared-File.
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Figure 3.4 — Stripe Access.
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Growth in Max Score per Client
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Table 5.2 — Amount of Metadata Operations

Operation Total Min ops/s Avg. ops/s Max. ops/s
fopen 28,812, 381,450 1 3,859 102,291
fclose 25,369,943, 340 1 3,398 102,132
getattr 6,733,374, 960 1 902 32,698
setattr 3,451,979, 850 1 462 8,406
unlink 593,117,055 1 87 2,357
getxattr 345, 187,575 | 47 7,833
stat fs 280, 998, 450 1 38 62
sync 125,075, 625 1 76 1,618
mkdir 94, 034, 205 | 14 1,228
rmdir 41, 638, 320 1 34 1,041
setxattr 4,354, 485 | 83 1,061
link 1,649, 205 | 139 2,357

Source: Author
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Results - Detailed View of a Region of Interest
/0 - Compute Nodes

Table 5.4 — Average Data Transfer per Job

Application Read (GiB) Write (GiB)
unknown 5, 394 23
BIE 793 60
OpenMPI mpiexec 95 42
AMBER 3 44
QUANTUM ESPRESSO 2 22

Source: Author
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Results - Trimester Lustre Usage Analysis
/0 - OSS Nodes
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Results - Detailed View of a Region of Interest
Metadata - Compute Nodes
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