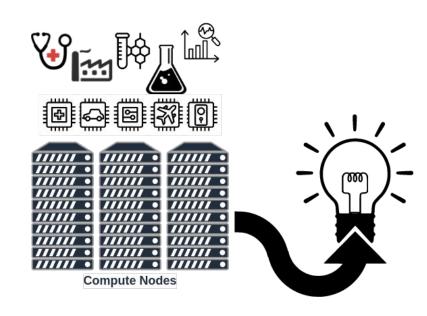
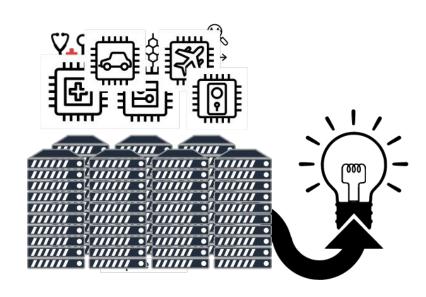
Uncovering I/O Usage in HPC Platforms

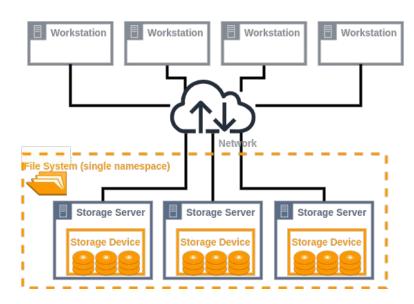
André Ramos Carneiro

Advisor: Prof. Dr. Philippe O. A. Navaux Co-advisor: Prof. Dr. Carla Osthoff


Instituto de Informática, UFRGS, Brasil

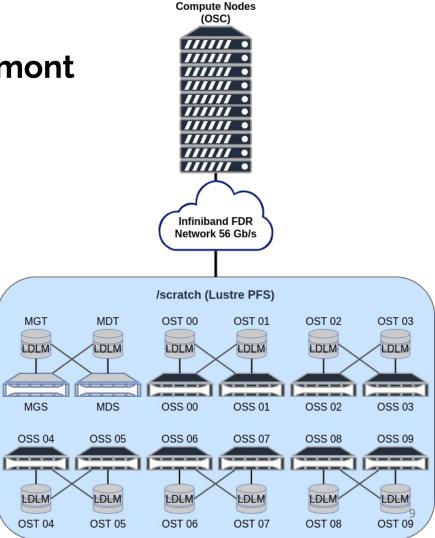

Agenda

- Introduction
- The Lustre Deployment on SDumont
- Related Work
- Analysis and Visualization Methodology
- Results Glancing at the Lustre Filesystem
- Conclusion and Future Work


- Supercomputers **dominate** the High-Performance
 Computing (**HPC**) environments.
- Used to solve the most diverse problems in various fields: biology, chemistry, physics, and health sciences.
- Each science domain use a multitude of scientific software.
- Supercomputers have to handle mixed workloads.

- As the supercomputers increase in size (CPU and Mem.), so does the size of the dataset used.
- Data storage is one of the main bottlenecks
 - Performance gap between CPU and I/O
 - Rising concurrency and interference
 - Metadata operations
- Different scientific applications are **impacted** in diverse ways by storage system
- Performance limiting factors
 - Access patterns
 - Load imbalance between storage servers
 - Resource contention

- Parallel File Systems (PFS) are the de-facto file system type for HPC systems.
- Decentralized Networked File System
- Provide
 - High-performance data access
 - Division of files in data blocks (striping)
 - Single namespace
 - Fault-Tolerant
 - Locking
 - Cache coherency
- **Lustre** is one of the most adopted PFS (≈ 30% of the file systems used on IO500 [SC21]).
 - Open-source
 - Client-server
 - Object-based



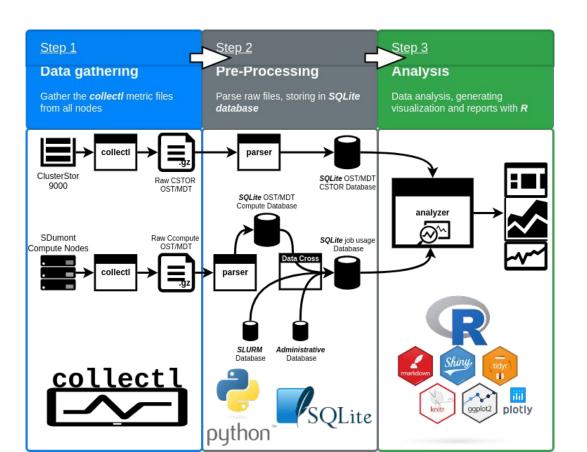
- Our research aims to understand the impact and uncover data storage needs in a supercomputer by evaluating the Lustre's performance concerning the varied workloads from different domains.
- We provide a methodology to visualize performance factors, such as small request sizes,
 load imbalance, resource contention, and metadata utilization.
- We use the Santos Dumont Supercomputer (SDumont) as a case study.
- Three months of operational data (March to May) from two years (2020 and 2021).
- The study of the Lustre file system on SDumont was divided into two parts:
 - Analysis of the whole three months period
 - Focus on a **specific period** of interest

The Lustre Deployment on SDumont

The Lustre Deployment on SDumont

- A Supercomputer located at the National Laboratory for Scientific Computing (LNCC)
- Chemistry (21.3%), Physics (17.1%), Engineering (12.6%), Biological Sciences (10,1%), and Computer Science (9.1%).
- 758 nodes (18,424 CPU cores) 1.1 petaflops
- Lustre PFS ClusterStor 9000 v3.3
 - 1 x MDS & 1 MDT + 10 OSS & 10 OST
 - Max Perf: 45 GiB/s (2,700 GiB/m)
 - o stripe_count = 1
 stripe size = 1 MiB

- Luu et al. (2015) analyzed **Darshan's** logs from more than one million jobs on three leading HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at NERSC.
 - o Drawbacks: Only use Darshan, lack of server side information
- Lockwood et al. (2018) used **TOKIO**, benchmarks, and active probing on the PFS of two leadership-class HPC centers (NERSC and ALCF).
 - o Drawbacks: Use Darshan, <u>LMT (not supported)</u>, and <u>active probing (may cause interference)</u>.
- Patel et al. (2019) developed a tool to analyze the log data of **LMT** from the Lustre PFS at NERSC HPC data center, shared by Edison and Cori supercomputers.
 - o Drawbacks: Only use <u>LMT (server side information)</u>, need a <u>DBMS (not supported or allowed)</u>
- Sivalingam et al. (2019) used **LASSi** to analyze application usage and contention caused by the use of shared resources on the Lustre PFS deployed at ARCHER supercomputer
 - Drawbacks: <u>MySQL (not supported or allowed)</u>
- Betke and Kunkel (2019) identify anomalies or high workloads from jobs' telemetric data through a workflow based on **Machine Learning**.
 - Drawbacks: <u>Not mature yet (needs manual adjustment)</u>

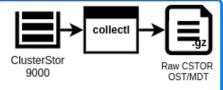

- Luu et al. (2015) analyzed **Darshan's** logs from more than one million jobs on three leading HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at NERSC.
 - o Drawbacks: Only use Darshan, lack of server side information
- Lockwood et al. (2018) used **TOKIO**, benchmarks, and active probing on the PFS of two leadership-class HPC centers (NERSC and ALCF).
 - o Drawbacks: <u>Use Darshan</u>, <u>LMT (not supported)</u>, and <u>active probing (may cause interference)</u>.
- Patel et al. (2019) developed a tool to analyze the log data of **LMT** from the Lustre PFS at NERSC HPC data center, shared by Edison and Cori supercomputers.
 - Drawbacks: Only use <u>LMT (server side information)</u>, need a <u>DBMS (not supported or allowed)</u>
- Sivalingam et al. (2019) used **LASSi** to analyze application usage and contention caused by the use of shared resources on the Lustre PFS deployed at ARCHER supercomputer
 - Drawbacks: <u>MySQL (not supported or allowed)</u>
- Betke and Kunkel (2019) identify anomalies or high workloads from jobs' telemetric data through a workflow based on **Machine Learning**.
 - Drawbacks: <u>Not mature yet (needs manual adjustment)</u>

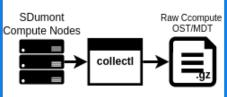
- Luu et al. (2015) analyzed **Darshan's** logs from more than one million jobs on three leading HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at NERSC.
 - o Drawbacks: Only use Darshan, lack of server side information
- Lockwood et al. (2018) used **TOKIO**, benchmarks, and active probing on the PFS of two leadership-class HPC centers (NERSC and ALCF).
 - o Drawbacks: Use Darshan, LMT (not supported), and active probing (may cause interference).
- ➤ **Patel et al.** (2019) developed a tool to analyze the log data of **LMT** from the Lustre PFS at NERSC HPC data center, shared by Edison and Cori supercomputers.
 - o Drawbacks: Only use <u>LMT (server side information)</u>, need a <u>DBMS (not supported or allowed)</u>
- Sivalingam et al. (2019) used **LASSi** to analyze application usage and contention caused by the use of shared resources on the Lustre PFS deployed at ARCHER supercomputer
 - Drawbacks: <u>MySQL (not supported or allowed)</u>
- Betke and Kunkel (2019) identify anomalies or high workloads from jobs' telemetric data through a workflow based on **Machine Learning**.
 - Drawbacks: <u>Not mature yet (needs manual adjustment)</u>

- Luu et al. (2015) analyzed **Darshan's** logs from more than one million jobs on three leading HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at NERSC.
 - o Drawbacks: Only use Darshan, lack of server side information
- Lockwood et al. (2018) used **TOKIO**, benchmarks, and active probing on the PFS of two leadership-class HPC centers (NERSC and ALCF).
 - o Drawbacks: Use Darshan, <u>LMT (not supported)</u>, and <u>active probing (may cause interference)</u>.
- Patel et al. (2019) developed a tool to analyze the log data of **LMT** from the Lustre PFS at NERSC HPC data center, shared by Edison and Cori supercomputers.
 - o Drawbacks: Only use <u>LMT (server side information)</u>, need a <u>DBMS (not supported or allowed)</u>
- > **Sivalingam et al.** (2019) used **LASSi** to analyze application usage and contention caused by the use of shared resources on the Lustre PFS deployed at ARCHER supercomputer
 - Drawbacks: <u>MySQL (not supported or allowed)</u>
- Betke and Kunkel (2019) identify anomalies or high workloads from jobs' telemetric data through a workflow based on **Machine Learning**.
 - Drawbacks: <u>Not mature yet (needs manual adjustment)</u>

- Luu et al. (2015) analyzed **Darshan's** logs from more than one million jobs on three leading HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at NERSC.
 - o Drawbacks: Only use Darshan, lack of server side information
- Lockwood et al. (2018) used **TOKIO**, benchmarks, and active probing on the PFS of two leadership-class HPC centers (NERSC and ALCF).
 - o Drawbacks: Use Darshan, <u>LMT (not supported)</u>, and <u>active probing (may cause interference)</u>.
- Patel et al. (2019) developed a tool to analyze the log data of **LMT** from the Lustre PFS at NERSC HPC data center, shared by Edison and Cori supercomputers.
 - o Drawbacks: Only use <u>LMT (server side information)</u>, need a <u>DBMS (not supported or allowed)</u>
- Sivalingam et al. (2019) used **LASSi** to analyze application usage and contention caused by the use of shared resources on the Lustre PFS deployed at ARCHER supercomputer
 - Drawbacks: <u>MySQL (not supported or allowed)</u>
- ➤ **Betke and Kunkel** (2019) identify anomalies or high workloads from jobs' telemetric data through a workflow based on **Machine Learning**.
 - Drawbacks: <u>Not mature yet (needs manual adjustment)</u>

- We propose:
 - o **Broader** methodology to provide a **bigger picture** of the whole system's I/O utilization.
 - Continuous analysis from the Storage Devices to the Compute Nodes.
 - Characterize **data** and **metadata** usage.
 - Tracking inefficient behavior.
 - Adopted the use of open-source software that does not require administrative privileges.
 - Easily implemented and reproduced.

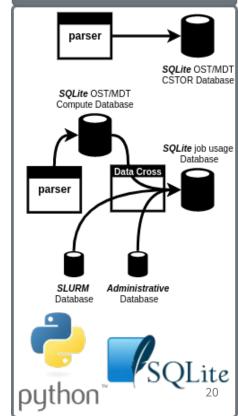



- collectl, an open-source system performance monitoring tool
- Special plugin for Lustre PFS
- Installed on MDS and OSS servers of ClusterStor
- Installed on 758 SDumont Compute Nodes
- **15 sec**. collection interval, stored on local / tmp
- Neglectable overhead (0.1% of CPU).

Step 1

Data gathering

Gather the *collectl* metric files from all nodes

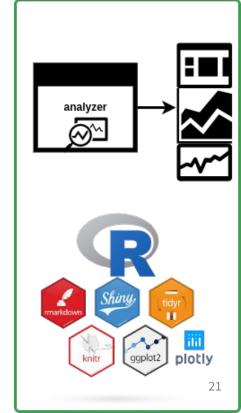


- Conversion of the daily raw collectl file to an easy to use and transport
 SQLite dataset
- Two datasets: ClusterStor and Compute Nodes
- "Data Cross" process to cross information from:
 - Compute Nodes dataset (utilization metrics) +
 - Slurm Database (job's name, nodes, start and end) +
 - Administrative Database (Science Domain)
 - = Job Usage dataset: "who, how and why"

Step 2

Pre-Processing

Parse raw files, storing in **SQLite** database



- Visualization and analysis tool developed with R+Shiny
- Reproduce the process with dataset from different periods
- WebApp: https://arcarneiro.shinyapps.io/sdumont-lustre

Step 3

Analysis

Data analysis, generating visualization and reports with **R**

Analysis and Visualization Methodology I/O Metrics

Metric	Description	Default collectl metrics
reads	Number of read operations	Delauti Collecti metrics
read _{kb}	KiB data read	Obtained at Step 1
writes	Number of write operations	
write _{kb}	KiB data written	
read _{size}	Block size of read operation (read _{kb} /reads)	
write _{size}	Block size of write operation (write kb / writes)	
read _{qo}	Q uality of read o peration ((reads * 1024)/read _{kb})	
write _{qo}	Q uality of write o peration ((writes * 1024)/write _{kb})	
CF _{bw}	Bandwidth Coverage Factor of a job	
LI	Load Imbalance	
SMA _{3HR}	Simple Moving Averages of three hours	

Analysis and Visualization Methodology I/O Metrics

Metric	Description	Derived metrics
reads	Number of read operations	Derived metrics
read _{kb}	KiB data read	Generated at Step 2
writes	Number of write operations	
write _{kb}	KiB data written	* The average transfer
read _{size}	Transfer size of read operation (read _{kt} /reads)	size
write _{size}	Transfer size of write operation (write kb /writes)	* Q uality of O peration (QO), based on the
read _{qo}	Q uality of read o peration ((reads * 1024)/read _{kb})	default striping policy of SDumont (1MiB).
write _{qo}	Quality of write operation ((writes * 1024)/write _{kb})	1 50 100
CF _{bw}	Bandwidth Coverage Factor of a job	Efficient -> Inefficient
LI	Load Imbalance	
SMA _{3HR}	Simple Moving Averages of three hours	

Analysis and Visualization Methodology I/O Metrics

Metric	Description	Derived metrics
reads	Number of read operations	Derived metrics
read _{kb}	KiB data read	Generated at Step 3
writes	Number of write operations	
write _{kb}	KiB data written	CF _{bw} indicates the
read _{size}	Block size of read operation (read _{kb} /reads)	amount of bandwidth that can be attributed
write _{size}	Block size of write operation (write kb /writes)	to a job.
read _{qo}	Q uality of read o peration ((reads * 1024)/read _{kb})	<i>LI</i> measures the load
write _{qo}	Quality of write operation ((writes * 1024)/write _{kb})	imbalance among the OSTs
CF _{bw}	Bandwidth Coverage Factor of a job	SMA is calculated for
LI	Load Imbalance	SMA _{3HR} is calculated for all other metrics and is
SMA _{3HR}	Simple Moving Averages of three hours	helpful during visualization

 $CF_{bw}(job) = \frac{N_{bytes}(job)}{N_{bytes}(Lustre)}$

$$LI = \frac{\sigma}{\mu}$$

$$SMA_{tf}(m) = \frac{1}{tf} \sum_{i=t-tf}^{t} m_i$$

Analysis and Visualization Methodology Metadata Counters

Counter	Node	Description	
fopen		File open requests	
fclose		File close requests	
getattr	MDS & Client	Operation that get file/dir attributes	
setattr		Operation that set file/dir attributes	
fsync		Operation that synchronizes data to the file system	
getxattr		Operation that get file/dir extended attributes	
setxattr		Operation that set file/dir extended attributes	
unlink		File/dir removals	
link	MDS	Hard or symbolic link creation	
statfs		Operation that return statistics about the file system	
mkdir		Directory creation requests	
rmdir		Directory removal requests	
seek	Client	Operation that change the file pointer	

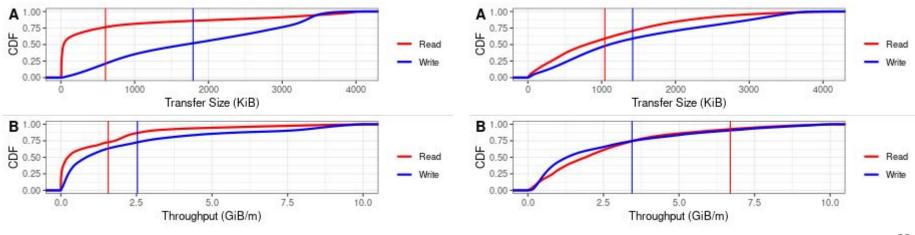
Results - <u>Trimester</u> Analysis

- 3 months from the *ClusterStor* dataset, spanning from March to May, 2020 and 2021.
- Whole file system (**sum of all OSTs**)

	2020	2021		
Jobs	36,884	145,793	4×↑	
Total Read	1.8 PiB	7.95 PiB	<u>4.7×</u> ↑	
Total Write	2.9 PiB	4.1 PiB	1.5× ↑	
Read Ops	64.154 B	39.102 B	<u>1.6×</u> ↓	
Write Ops	1.234 B	5.297 B	4.3× ↑	
Peak Read Throughput	316 GiB/m <u>(≈ 11.7% bw)</u>	1,077 GiB/m <u>(≈ 39.89% bw)</u>	3.4x ↑	
Avg. Read Throughput	15.825 GiB/m	66.953 GiB/m	4.2× ↑	
Peak Write Throughput	1,127 GiB/m <u>(≈ 41.74% bw)</u>	1,145 GiB/m <u>(≈ 42.41% bw)</u>	-	
Avg. Write Throughput	25.336 GiB/m	34.452 GiB/m	1.3× ↑	27

Table 5.1 – Transfer Size (KiB) and Quality of Operations.

Year	Operation	Metric	Min.	1st Q.	Median	3rd Q.	Max.
2020	Read	Size	4.00	6.60	23.80	577.00	4096.00
		QO	0.25	1.77	43.00	155.00	256.00
	Write	Size	0.01	530.00	1458.00	2947.00	4096.00
		QO	0.25	0.35	0.70	1.93	525131.00
2021	Read	Size	4.00	271.00	816.00	1786.00	4096.00
		QO	0.25	0.57	1.25	3.78	256.00
	Write	Size	0.01	420.00	970.00	2149.00	4096.00
		QO	0.25	0.48	1.10	2.44	104865.00

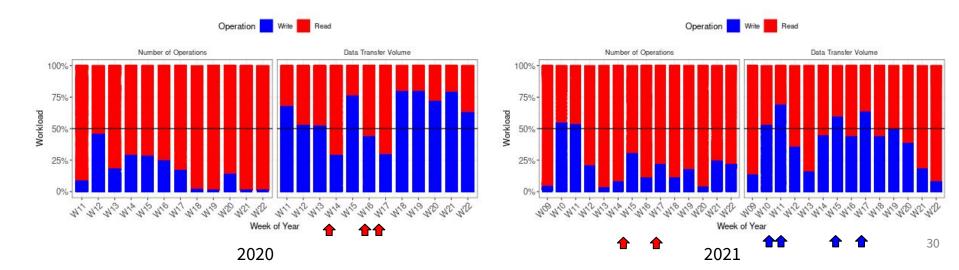

Source: Author

2020

CDF of the Operation Size (A) and Throughput (B) for the Read (Red) and Write (Blue) operations among OSTs.

2020 avg: **652 KiB** Read and **1729 KiB** Write for Size (**~3x**), and **1.5 GiB/m** Read and **2.2 GiB/m** Write for Throughput (**~1.6x**).

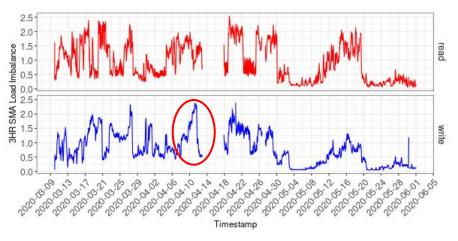
2021 avg: **1043 KiB** Read and **1420 KiB** Write for Size, and **6.7 GiB/m** Read and **3.4 GiB/m** Write for Throughput (**2x**).

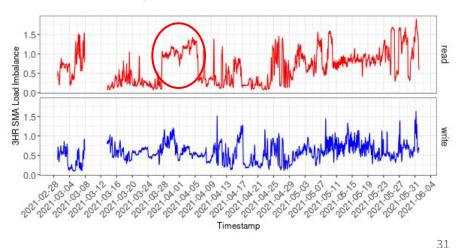


29

2021

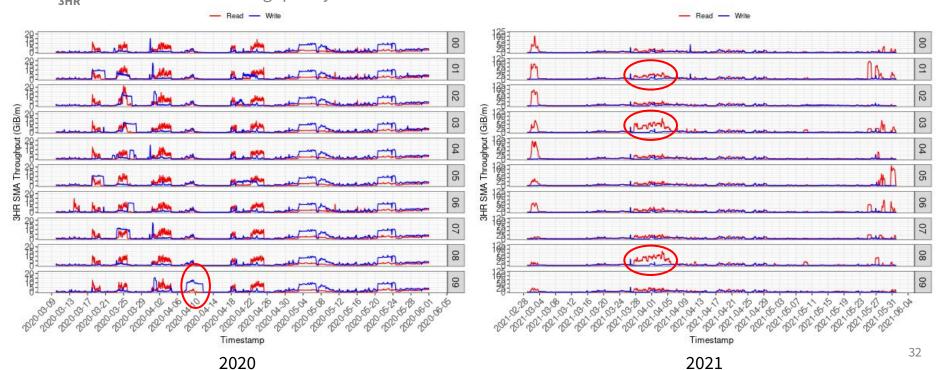
Workload distribution by week.

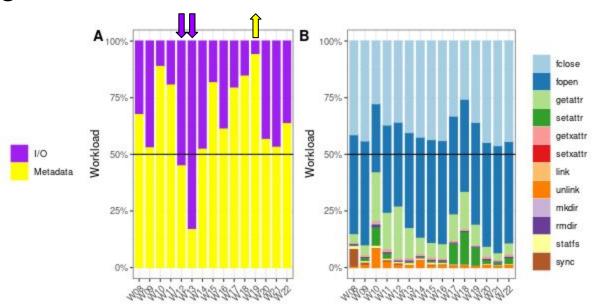

- 2020: Write dominated data movement (61%), Read dominated number of operations (98%)
 - =1.6× write-to-read volume / =52× read-to-write requests
- 2021: Read dominated both data movement (66%) and number of operations (88%)
 - "2" read-to-write volume / "7" read-to-write requests



SMA_{3HR} of **LI** for the read (Red) and write (Blue) load. Values below **0.5** can be considered as **low** imbalance, values around **1** are considered as **moderate** imbalance, and values **above** are considered **severe** imbalance.

2020: 50% below 0.6 / 25% above 1. Avg for reading was **0.92** while for writing was **0.80**.


2021: 50% below 0.6 / 25% above 1. Avg for reading was **0.68** while for writing was **0.58**.


2020 2021

SMA_{3HR} of read and write throughput by OST.

Results - Trimester Lustre Usage Analysis Metadata - MDS Node

- 3 months of data, spanning from March to May, **2021**.
- Avg 8,920 ops/s
 Max 205,016 ops/s.
- Metadata 60% operations (67 B MD x 44 B I/O)
- + fopen, fclose, getattr, setattr
- "Low" unlink operations

Results - Period of Interest

Results - Detailed View of a Region of Interest I/O - Compute Nodes

- In-depth analysis with *Job Usage* dataset
- 2020 <u>Detailed on the dissertation</u>
 - March 24th and March 28th
 - Read **peak throughput** of 2020
- 2021
 - March 28th and April 1st
 - Expressive **increase** in **read** activity, resulting in **load imbalance**
 - o 845 jobs
- With the <u>SLURM</u>'s information, we were able to identify eleven different applications:
 - DockThor (36.21%), unknown (17.75%), QUANTUM ESPRESSO (10.06%), LHCB DIRAC (8.88%),
 AMBER (7.57%), GROMACS (6.98%), OpenMPI mpiexec (4.62%), VASP (4.62%), Bash Script (1.3%),
 LAMMPS (0.71%), ORCA (0.47%), SIESTA (0.47%), Python (0.24%), and BIE (0.12%).
- The system was used by twelve different Science Domains:
 - Astronomy, Biodiversity, Biological Sciences, Chemistry, Computer Science, Engineering,
 Geosciences, Health Sciences, Materials Science, Mathematics, Physics, Weather and Climate

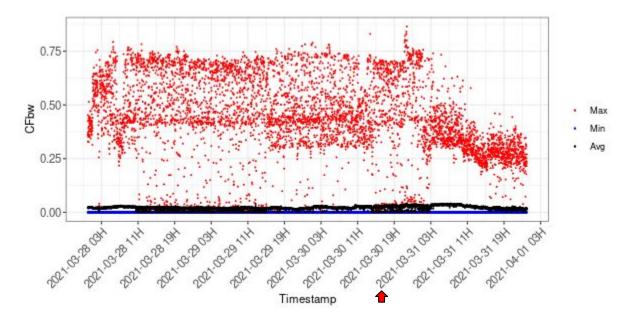
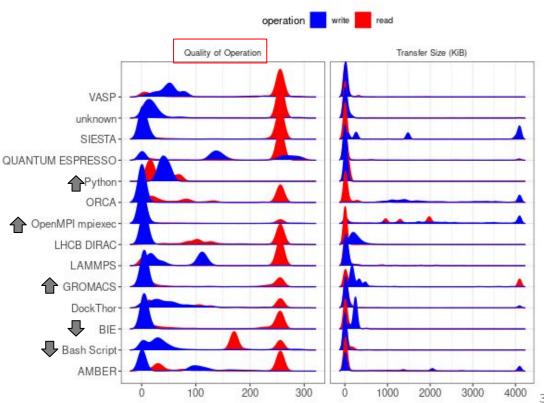
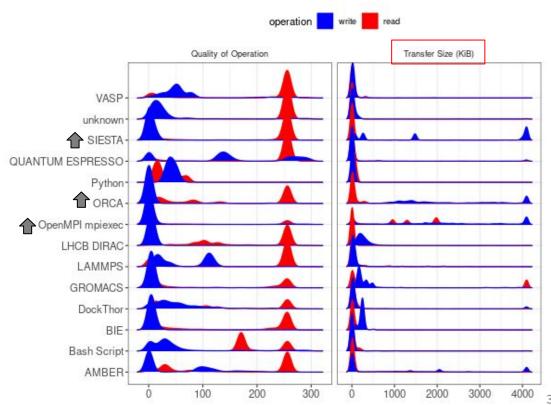

Results - Detailed View of a Region of Interest I/O - Compute Nodes

Table 5.3 – Individual application's throughput

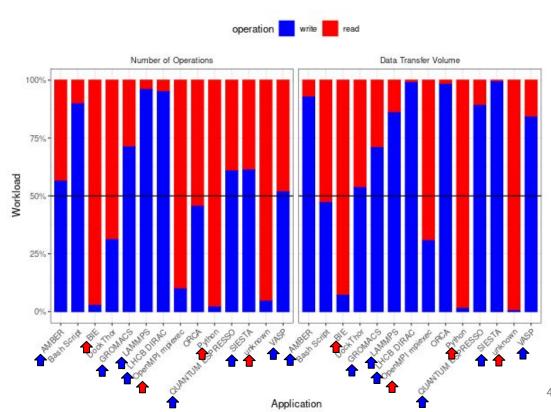
Year	Application	Operation	GiB/m CF_{bw}
2020	QUANTUM ESPRESSO QUANTUM ESPRESSO	Read Write	290 1 0.84 353 1 0.94
2021	unknown QUANTUM ESPRESSO	Read Write	$\begin{array}{c c} 153 & 0.70 \\ 90 & 0.31 \end{array}$


CF_{bw} of the jobs. The dots in **red**, **black**, and **blue** represent the **Max**., **Avg**. and **Min**., respectively, of all jobs, observed on each timestamp.

Few jobs with elevated throughput consume the bandwidth

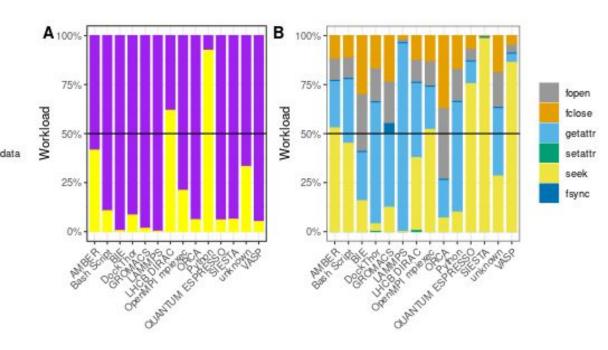

2021 Distribution of the **Quality of Operation (left)** and Transfer Size (right).

- Most applications are <u>read inefficient</u>
- "Efficient"
 - GROMACS, OpenMPI mpiexec, and Python
- Inefficient
 - Bash Script and BIE


2021 Distribution of the Quality of Operation (left) and **Transfer Size (right)**.

- Seldom use sizes larger than **1 MiB**.
- < 100 KiB for 75% of the time.
- 4 MiB limit
 - Default maximum bulk I/O RPC
 - O Up to 16 MiB
- OpenMPI biggest sizes
 - Reads (50% above 1 MiB)
 Writes (75% above 1 MiB)
- ORCA and SIESTA
 - Write above 1.5 MiB for 50%

2021 applications' workload distribution.


- Most applications are write-intensive
 - AMBER, GROMACS, LAMMPS,
 LHCB DIRAC, QE, SIESTA, VASP
- 4 Read-intensive
 - BIE, OpenMPI mpiexec, Python, and unknown
- Others mixed in terms of number of operations and data transferred
 - Bash: Lots of smaller writes
 - ORCA: Lots of smaller reads

1/0

2021 applications' I/O and metadata load distribution

- Metadata intensive
 - LHCB DIRAC and Python
- Heavy metadata use
 - AMBER and unknown
- High *seek*
 - AMBER, Bash, OpenMPI,
 QE, SIESTA, VASP
- High fopen and fclose
 - BIE, ORCA, GROMACS
- High getattr
 - DockThor, LAMMPS,
 Python

Conclusion

Conclusion

- Proposed a methodology to visualize and analyze performance factors on a Lustre PFS.
- The study used **metrics** collected from **storage servers** and **compute nodes**.
- Provided insights into understanding Lustre's usage and the I/O needs.
- Identified:
 - Requirements evolution: How the needs and demands change from one year to another
 - <u>Inefficient read operations:</u> ≈ **52×** read-to-write requests / ≈ **3×** write-to-read size
 - <u>Demand for Low latency:</u> peak throughput not reaching **50%**, but high demand for small random operations
 - Imbalance among resources: some severe and lasting cases where the overload corresponds to 3× the average OSTs' load.
 - High-level libraries: applications seems to not make full use of libraries to aggregate requests
 - Problematic applications: BIE, which exhibits the **worst read** and is **read-intensive**.
 - Demand for metadata operations: 60% of all file system operations.

Conclusion - Suggestions

- Inefficient read operations:
 - Adopt I/O forwarding layer
- Demand for Low latency:
 - Use SSDs (client of servers), Lustre's DoM (Data On Metadata)
- Imbalance among resources:
 - Revise the default striping policy, adopt an automatic load balancer
- High-level libraries and Problematic applications:
 - "Task force" to overhaul the performance, implement a framework to auto-tune the I/O stack
- Demand for metadata operations:
 - Use the Lustre's DNE (Distributed Namespace)

Conclusion - Future work

- Improving the application identification:
 - Bash Scripts, OpenMPI mpiexec, Python, and unknown (=24%)
- Revise some processes to increase the scalability and performance
 - The data cross process is very time consuming
- Integrate the metrics collection with SLURM
 - Reduce space requirements
- Assess the performance implications of implementing new strategies

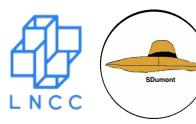
Conclusion - Publications

- **CARNEIRO, A. R.**; BEZ, J. L.; BOITO, F. Z.; FAGUNDES, B. A.; OSTHOFF, C.; NAVAUX, P. O. A. Collective I/O Performance on the Santos Dumont Supercomputer. In: 2018 26th <u>Euromicro International Conference on Parallel</u>, <u>Distributed and Networkbased Processing</u> (PDP), 2018.
- BEZ, J. L.; CARNEIRO, A. R.; PAVAN, P. J.; GIRELLI, V. S.; BOITO, F. Z.; FAGUNDES, B. A.; OSTHOFF, C.; SILVA DIAS, P. L.; MEHAUT, J.-F.; NAVAUX, P. O. A. I/O Performance of the Santos Dumont Supercomputer. In: <u>The International Journal of High Performance Computing Applications</u>, 2019.
- **CARNEIRO, A. R.**; BEZ, J. L.; OSTHOFF, C.; SCHNORR, L. M.; NAVAUX, P. O. A. HPC Data Storage at a Glance: The Santos Dumont Experience. In: 2021 IEEE 33rd <u>International Symposium on Computer Architecture and High Performance Computing</u> (SBAC-PAD), 2021.
- **CARNEIRO, A. R.**; BEZ, J. L.; OSTHOFF, C.; SCHNORR, L. M.; NAVAUX, P. O. A. Uncovering I/O Demands on HPC Platforms: Peeking Under the Hood of Santos Dumont. In: <u>Journal of Parallel and Distributed Computing</u>, 2022 (*Submitted*).
- **CARNEIRO, A. R.**; SERPA, M. S.; NAVAUX, P. O. A. Lightweight Deep Learning Applications on AVX-512. In: <u>2021</u> <u>IEEE Symposium on Computers and Communications</u> (ISCC), 2021.
- HERRERA, S.; RIBEIRO, W.; TEIXEIRA, T.; CARNEIRO, A. R.; CABRAL F.; BORGES, M.; OSTHOFF, C. Avaliação de Desempenho no Supercomputador SDumont de uma Estratégia de Decomposição de Domínio usando as Funcionalidades de Mapeamento Topológico do MPI para um Método Numérico de Escoamento de Fluidos. In: Anais da VI Escola Regional de Alto Desempenho do Rio de Janeiro, 2020.

References

- LUU, H. et al. A multiplatform study of i/o behavior on petascale supercomputers. In: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing. New York, NY, USA: Association for Computing Machinery, 2015. (HPDC '15), p. 33–44. ISBN 9781450335508. Available from Internet: https://doi.org/10.1145/2749246.2749269>.
- LOCKWOOD, G. K. et al. A year in the life of a parallel file system. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. [S.l.: s.n.], 2018. p. 931–943. Available from Internet: https://doi.org/10.1109/SC.2018.00077
- PATEL, T. et al. Revisiting i/o behavior in large-scale storage systems: The expected and the unexpected. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. New York, NY, USA: Association for Computing Machinery, 2019. (SC '19). ISBN 9781450362290. Available from Internet: https://doi.org/10.1145/3295500.3356183>.
- SIVALINGAM, K. et al. Lassi: Metric based i/o analytics for hpc. In: 2019 Spring Simulation Conference (SpringSim). [s.n.], 2019. p. 1–12. Available from Internet: https://doi.org/10.23919/SpringSim.2019.8732903>.
- BETKE, E.; KUNKEL, J. M. Footprinting parallel i/o machine learning to classify application's i/o behavior. In: International Conference on High Performance Computing. [S.l.]: Springer International Publishing, 2019. p. 214–226. Available from Internet: https://doi.org/10.1007/978-3-030-34356-9 18>.

ACKNOWLEDGMENT

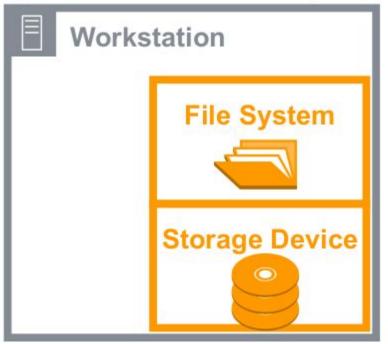

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Finance Code 001.

This work has been partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer, which have contributed to the research results reported within this paper. URL: http://sdumont.lncc.br.

Uncovering I/O Usage in HPC Platforms

André Ramos Carneiro


Advisor: Prof. Dr. Philippe O. A. Navaux Co-advisor: Prof. Dr. Carla Osthoff

Instituto de Informática, UFRGS, Brasil

Figure 2.1 – Local File System.

Source: Author

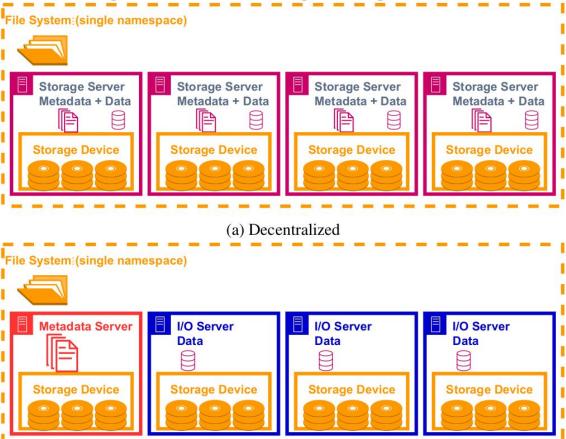
Figure 2.2 – Networked File System. Workstation Workstation Workstation Workstation Network File System **Storage Server** Storage Device

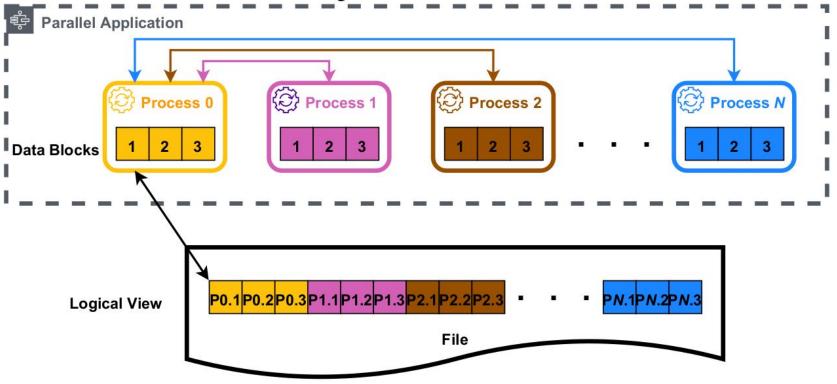
Source: Author

Figure 2.3 – Parallel File System. Workstation Workstation Workstation Workstation Network File System (single namespace) **Storage Server** Storage Server **Storage Server** Storage Device Storage Device Storage Device

Source: Author

Figure 2.4 – Metadata Management Representation.




Figure 2.5 – Parallel File System. File System:(single namespace): /scratch **Metadata Server 1 Metadata Server 2** /scratch (Root Dir) /scratch/intensive /scratch/projects /scratch/documents /scratch/intensive/A /scratch/intensive/B File File File File

Source: Author

Figure 2.6 – Lustre PFS Architecture. CN CN CN CN osc osc osc OSC HighSpeed Network LNET/Ptlrpc Lustre File : System (single namespace) OSS 2 OSS₁ OSS 3 MDS OST 1 LDLM OST 2 LDLM OST 3 LDLM LDLM MDT

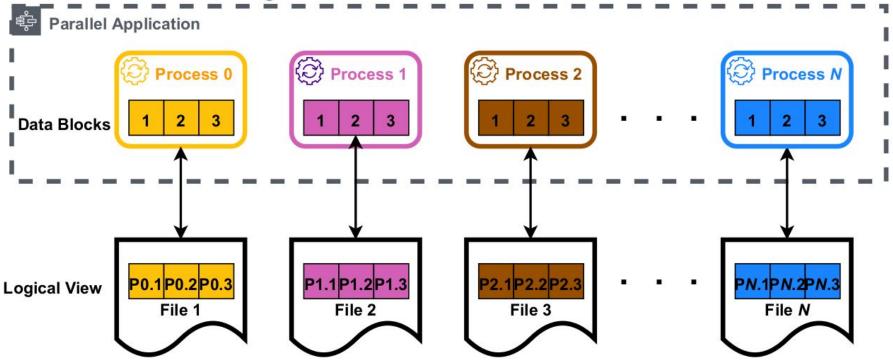

Source: Author

Figure 3.1 – Serial I/O.

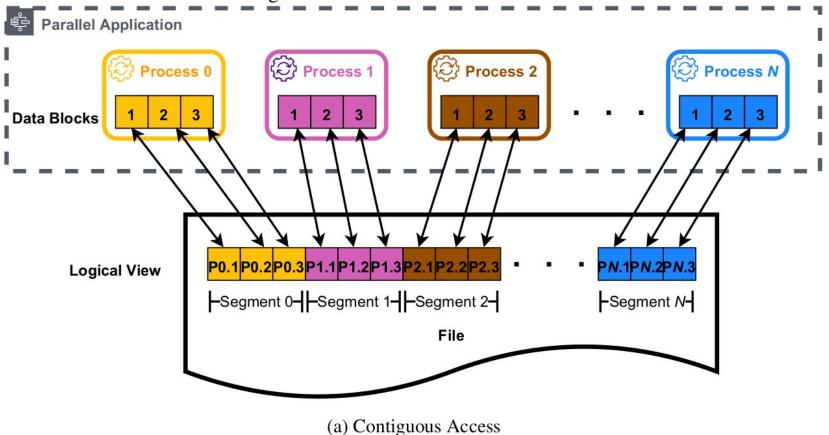

Source: Author, inspired by Ching et al. (2007)

Figure 3.2 – Parallel I/O - File-Per-Process.

Source: Author, inspired by Ching et al. (2007)

Figure 3.3 – Parallel I/O - Shared-File.

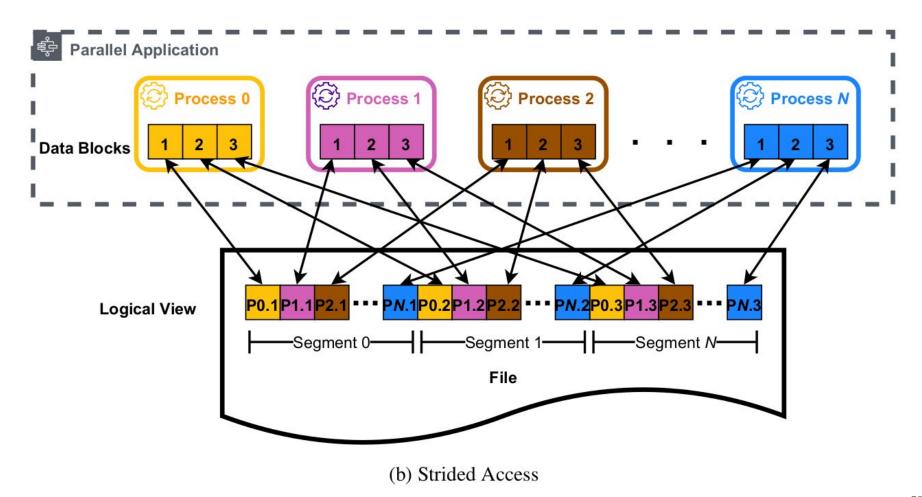
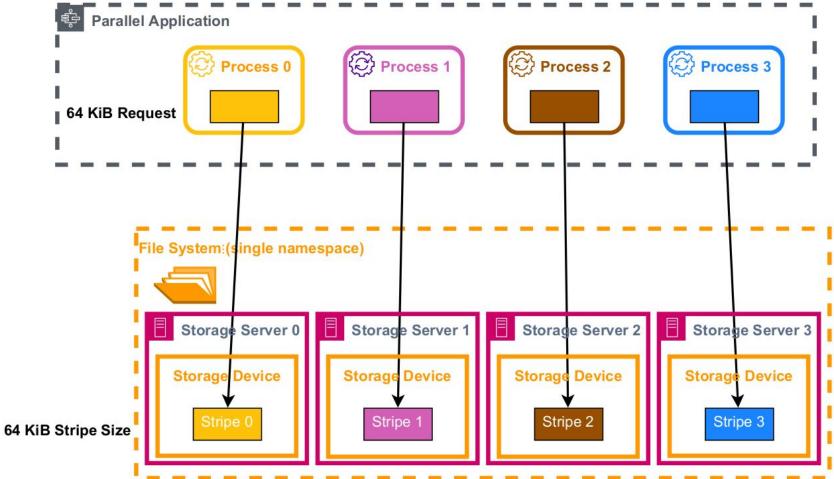
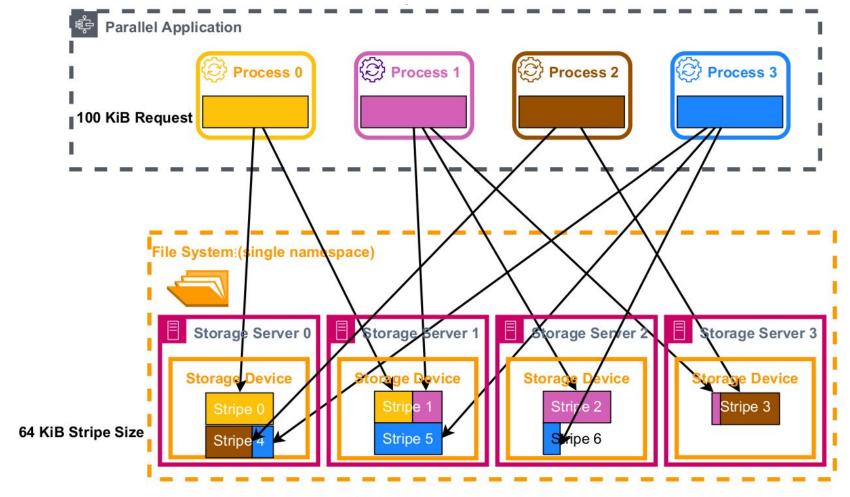




Figure 3.4 – Stripe Access.

Growth in Max Score per Client 10500 List

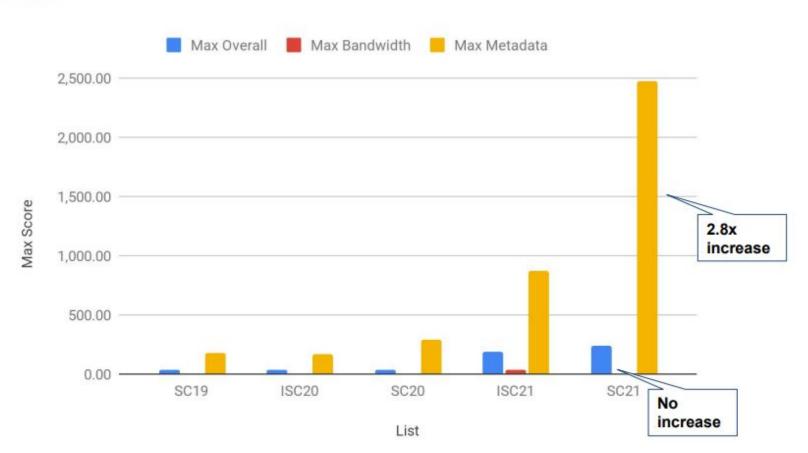
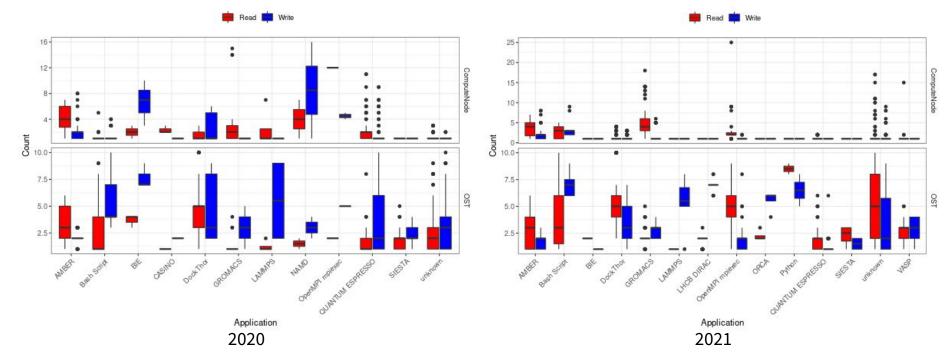
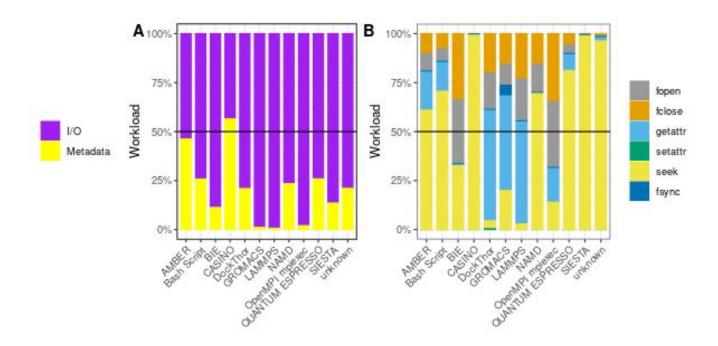


Table 5.2 – Amount of Metadata Operations

Operation	Total	Min ops/s	Avg. ops/s	Max. ops/s
fopen	28, 812, 381, 450	1	3,859	102,291
fclose	25, 369, 943, 340	1	3,398	102,132
getattr	6,733,374,960	1	902	32,698
setattr	3,451,979,850	1	462	8,406
unlink	593, 117, 055	1	87	2,357
getxattr	345, 187, 575	1	47	7,833
statfs	280,998,450	1	38	62
sync	125,075,625	1	76	1,618
mkdir	94,034,205	1	14	1,228
rmdir	41,638,320	1	34	1,041
setxattr	4,354,485	1	83	1,061
link	1,649,205	1	139	2,357


Source: Author


Table 5.4 – Average Data Transfer per Job

Application	Read (GiB)	Write (GiB)
unknown	5, 394	23
BIE	793	60
OpenMPI mpiexec	95	42
AMBER	3	44
QUANTUM ESPRESSO	2	22

Source: Author

Results - Trimester Lustre Usage Analysis I/O - OSS Nodes

2020 applications' metadata load distribution. (A) presents the load division between I/O (purple) and metadata operations (yellow). (B) presents the division among each metadata operation type.