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Introduction

● Supercomputers dominate the High-Performance 
Computing (HPC) environments.

● Used to solve the most diverse problems in 
various fields: biology, chemistry, physics, and 
health sciences.

● Each science domain use a multitude of 
scientific software.

● Supercomputers have to handle mixed 
workloads.
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Introduction

● As the supercomputers increase in size (CPU and 
Mem.), so does the size of the dataset used.

● Data storage is one of the main bottlenecks
○ Performance gap between CPU and I/O
○ Rising concurrency and interference
○ Metadata operations

● Different scientific applications are impacted in 
diverse ways by storage system

● Performance limiting factors
○ Access patterns
○ Load imbalance between storage servers
○ Resource contention
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Introduction

● Parallel File Systems (PFS) are the de-facto file 
system type for HPC systems.

● Decentralized Networked File System
● Provide 

○ High-performance data access
○ Division of files in data blocks (striping)
○ Single namespace
○ Fault-Tolerant
○ Locking
○ Cache coherency

● Lustre is one of the most adopted PFS (≈ 30% of 
the file systems used on IO500 [SC21]).

○ Open-source 
○ Client-server 
○ Object-based
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Introduction

● Our research aims to understand the impact and uncover data storage needs in a 
supercomputer by evaluating the Lustreʼs performance concerning the varied workloads 
from different domains.

● We provide a methodology to visualize performance factors, such as small request sizes, 
load imbalance, resource contention, and metadata utilization. 

● We use the Santos Dumont Supercomputer (SDumont) as a case study.
● Three months of operational data (March to May) from two years (2020 and 2021). 
● The study of the Lustre file system on SDumont was divided into two parts:

○ Analysis of the whole three months period
○ Focus on a specific period of interest
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The Lustre Deployment on SDumont
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The Lustre Deployment on SDumont

● A Supercomputer located at the National 
Laboratory for Scientific Computing (LNCC)

● Chemistry (21.3%), Physics (17.1%), Engineering 
(12.6%), Biological Sciences (10,1%), and 
Computer Science (9.1%).

● 758  nodes (18,424 CPU cores) - 1.1 petaflops
● Lustre PFS ClusterStor 9000 v3.3

○ 1 x MDS & 1 MDT + 10 OSS & 10 OST
○ Max Perf: 45 GiB/s (2,700 GiB/m)
○ stripe_count = 1                          

stripe_size  = 1 MiB
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Related Works

➢ Luu et al. (2015) analyzed Darshan's logs from more than one million jobs on three leading 
HPC supercomputer platforms: Intrepid and Mira at ALCF and Edison at NERSC.

○ Drawbacks: Only use Darshan, lack of server side information
● Lockwood et al. (2018) used TOKIO, benchmarks, and active probing on the PFS of two 

leadership-class HPC centers (NERSC and ALCF). 
○ Drawbacks: Use Darshan, LMT (not supported), and active probing (may cause interference). 

● Patel et al. (2019) developed a tool to analyze the log data of LMT from the Lustre PFS at 
NERSC HPC data center, shared by Edison and Cori supercomputers.

○ Drawbacks: Only use LMT (server side information), need a DBMS (not supported or allowed)
● Sivalingam et al. (2019) used LASSi to analyze application usage and contention caused by 

the use of shared resources on the Lustre PFS deployed at ARCHER supercomputer
○ Drawbacks: MySQL (not supported or allowed)

● Betke and Kunkel (2019) identify anomalies or high workloads from jobs' telemetric data 
through a workflow based on Machine Learning. 

○ Drawbacks: Not mature yet (needs manual adjustment) 11
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Related Works

● We propose:
○ Broader methodology to provide a bigger picture of the whole system's I/O utilization.
○ Continuous analysis from the Storage Devices to the Compute Nodes.
○ Characterize data and metadata usage.
○ Tracking inefficient behavior.
○ Adopted the use of open-source software that does not require administrative 

privileges.
○ Easily implemented and reproduced.
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Analysis and Visualization Methodology
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Analysis and Visualization Methodology
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Analysis and Visualization Methodology

● collectl, an open-source system performance monitoring tool
● Special plugin for Lustre PFS
● Installed on MDS and OSS servers of ClusterStor 
● Installed on 758 SDumont Compute Nodes
● 15 sec. collection interval, stored on local /tmp
● Neglectable overhead (0.1% of CPU).
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Analysis and Visualization Methodology

● Conversion of the daily raw collectl file to an easy to use and transport 
SQLite dataset

● Two datasets: ClusterStor and Compute Nodes
● “Data Cross” process to cross information from:

○ Compute Nodes dataset (utilization metrics) +
○ Slurm Database (jobʼs name, nodes, start and end) + 
○ Administrative Database (Science Domain)
○ = Job Usage dataset: “who, how and why”
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Analysis and Visualization Methodology

● Visualization and analysis tool developed with R+Shiny
● Reproduce the process with dataset from different periods
● WebApp: https://arcarneiro.shinyapps.io/sdumont_lustre
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Analysis and Visualization Methodology
I/O Metrics
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Default collectl metrics

Obtained at Step 1



Analysis and Visualization Methodology
I/O Metrics
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Derived metrics

Generated at Step 2

* The average transfer 
size

* Quality of Operation 
(QO), based on the 

default striping policy 
of SDumont (1MiB). 

    1             50         100   …
Efficient    ->   Inefficient



Analysis and Visualization Methodology
I/O Metrics
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Derived metrics

Generated at Step 3

CFbw indicates the 
amount of bandwidth 
that can be attributed 

to a job.
 

LI measures the load 
imbalance among the 

OSTs

SMA3HR is calculated for 
all other metrics and is 

helpful during 
visualization



Analysis and Visualization Methodology
Metadata Counters
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Results - Trimester Analysis
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Results - Trimester Lustre Usage Analysis
I/O - OSS Nodes

● 3 months from the ClusterStor dataset, spanning from March to May, 2020 and 2021. 
● Whole file system (sum of all OSTs)
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2020 2021

Jobs 36,884 145,793 4× ↑

Total Read 1.8 PiB 7.95 PiB 4.7× ↑

Total Write 2.9 PiB 4.1 PiB 1.5× ↑

Read Ops 64.154 B 39.102 B 1.6× ↓

Write Ops 1.234 B 5.297 B 4.3× ↑

Peak Read Throughput 316 GiB/m (≈ 11.7% bw) 1,077 GiB/m (≈ 39.89% bw) 3.4x ↑

Avg. Read Throughput 15.825 GiB/m 66.953 GiB/m 4.2× ↑

Peak Write Throughput 1,127 GiB/m (≈ 41.74% bw) 1,145 GiB/m (≈ 42.41% bw) -

Avg. Write Throughput 25.336 GiB/m 34.452 GiB/m 1.3× ↑



Results - Trimester Lustre Usage Analysis
I/O - OSS Nodes
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Results - Trimester Lustre Usage Analysis
I/O - OSS Nodes
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2020 2021

CDF of the Operation Size (A) and Throughput (B) for the Read (Red) and Write (Blue) operations among OSTs. 

2020 avg: 652 KiB Read and 1729 KiB Write for Size (≃3x), and 1.5 GiB/m Read and 2.2 GiB/m Write for 
Throughput (≃1.6x).

2021 avg: 1043 KiB Read and 1420 KiB Write for Size, and 6.7 GiB/m Read and 3.4 GiB/m Write for Throughput 
(≃2x).



Results - Trimester Lustre Usage Analysis
I/O - OSS Nodes
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2020 2021

Workload distribution by week.

● 2020: Write dominated data movement (61%), Read dominated number of operations (98%)
○ ≃1.6× write-to-read volume / ≃52× read-to-write requests

● 2021: Read dominated both data movement (66%) and number of operations (88%)
○ ≃2× read-to-write volume / ≃7× read-to-write requests



Results - Trimester Lustre Usage Analysis
I/O - OSS Nodes
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2020 2021

SMA3HR of LI for the read (Red) and write (Blue) load. Values below 0.5 can be considered as low imbalance, 
values around 1 are considered as moderate imbalance, and values above are considered severe imbalance. 

2020: 50% below 0.6 / 25% above 1. Avg for reading was 0.92 while for writing was 0.80. 

2021: 50% below 0.6 / 25% above 1. Avg for reading was 0.68 while for writing was 0.58.



Results - Trimester Lustre Usage Analysis
I/O - OSS Nodes

2020 2021
32

SMA3HR of read and write throughput by OST.



Results - Trimester Lustre Usage Analysis
Metadata - MDS Node

● 3 months of data, spanning 
from March to May, 2021. 

● Avg 8,920 ops/s                          
Max 205,016 ops/s.

● Metadata 60% operations   
(67 B MD x 44 B I/O)

● + fopen, fclose, getattr, 
setattr

● “Low” unlink operations
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Results - Period of Interest
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● In-depth analysis with Job Usage dataset
● 2020 - Detailed on the dissertation

○ March 24th and March 28th
○ Read peak throughput of 2020

● 2021
○ March 28th and April 1st
○ Expressive increase in read activity, resulting in load imbalance
○ 845 jobs

● With the SLURMʼs information, we were able to identify eleven different applications:
○ DockThor (36.21%), unknown (17.75%), QUANTUM ESPRESSO (10.06%), LHCB DIRAC (8.88%), 

AMBER (7.57%), GROMACS (6.98%), OpenMPI mpiexec (4.62%), VASP (4.62%), Bash Script (1.3%), 
LAMMPS (0.71%), ORCA (0.47%), SIESTA (0.47%), Python (0.24%), and BIE (0.12%). 

● The system was used by twelve different Science Domains:
○ Astronomy, Biodiversity, Biological Sciences, Chemistry, Computer Science, Engineering, 

Geosciences, Health Sciences, Materials Science, Mathematics, Physics, Weather and Climate

Results - Detailed View of a Region of Interest
I/O - Compute Nodes
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Results - Detailed View of a Region of Interest
I/O - Compute Nodes
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Results - Detailed View of a Region of Interest
I/O - Compute Nodes
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CFbw of the jobs. The dots in red, black, and blue represent the Max., Avg. and Min., respectively, of all jobs, 
observed on each timestamp.

Few jobs with elevated throughput consume the bandwidth



Results - Detailed View of a Region of Interest
I/O - Compute Nodes
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2021 Distribution of the Quality of 
Operation (left) and Transfer Size (right).

● Most applications are read inefficient
● “Efficient”

○ GROMACS, OpenMPI mpiexec, and 
Python

● Inefficient
○ Bash Script and BIE



Results - Detailed View of a Region of Interest
I/O - Compute Nodes
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2021 Distribution of the Quality of 
Operation (left) and Transfer Size (right).

● Seldom use sizes larger than 1 MiB.
● < 100 KiB for 75% of the time. 
● 4 MiB limit

○ Default maximum bulk I/O RPC
○ Up to 16 MiB

● OpenMPI biggest sizes 
○ Reads (50% above 1 MiB)             

Writes (75% above 1 MiB)
● ORCA and SIESTA

○ Write above 1.5 MiB for 50%



Results - Detailed View of a Region of Interest
I/O - Compute Nodes
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2021 applicationsʼ workload distribution.

● Most applications are write-intensive
○ AMBER, GROMACS, LAMMPS, 

LHCB DIRAC, QE, SIESTA, VASP
● 4 Read-intensive

○ BIE, OpenMPI mpiexec, Python, 
and unknown

● Others mixed in terms of number of 
operations and data transferred

○ Bash: Lots of smaller writes
○ ORCA: Lots of smaller reads



Results - Detailed View of a Region of Interest
Metadata - Compute Nodes
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2021 applicationsʼ I/O and 
metadata load distribution

● Metadata intensive
○ LHCB DIRAC and Python

● Heavy metadata use
○ AMBER and unknown

● High seek
○ AMBER, Bash, OpenMPI, 

QE, SIESTA, VASP
● High fopen and fclose

○ BIE, ORCA, GROMACS
● High getattr

○ DockThor, LAMMPS, 
Python
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Conclusion

● Proposed a methodology to visualize and analyze performance factors on a Lustre PFS.
● The study used metrics collected from storage servers and compute nodes.
● Provided insights into understanding Lustreʼs usage and the I/O needs.
● Identified:

○ Requirements evolution: How the needs and demands change from one year to another
○ Inefficient read operations: ≈ 52× read-to-write requests / ≈ 3× write-to-read size
○ Demand for Low latency: peak throughput not reaching 50%, but high demand for 

small random operations
○ Imbalance among resources: some severe and lasting cases where the overload 

corresponds to 3× the average OSTsʼ load.
○ High-level libraries: applications seems to not make full use of libraries to aggregate 

requests
○ Problematic applications: BIE, which exhibits the worst readqo and is read-intensive.
○ Demand for metadata operations: 60% of all file system operations.
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Conclusion - Suggestions

● Inefficient read operations: 
○ Adopt I/O forwarding layer

● Demand for Low latency: 
○ Use SSDs (client of servers), Lustreʼs DoM (Data On Metadata)

● Imbalance among resources: 
○ Revise the default striping policy, adopt an automatic load balancer

● High-level libraries and Problematic applications: 
○ “Task force” to overhaul the performance, implement a framework to auto-tune the I/O 

stack 
● Demand for metadata operations: 

○ Use the Lustreʼs DNE (Distributed Namespace)
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Conclusion - Future work

● Improving the application identification:
○ Bash Scripts, OpenMPI mpiexec, Python, and unknown (≃24%) 

● Revise some processes to increase the scalability and performance
○ The data cross process is very time consuming

● Integrate the metrics collection with SLURM
○ Reduce space requirements

● Assess the performance implications of implementing new strategies
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Results - Detailed View of a Region of Interest
I/O - Compute Nodes
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Results - Trimester Lustre Usage Analysis
I/O - OSS Nodes

2020 2021
65Distribution of the Simultaneous Resource Used by each application in readv(red) and write (blue).



Results - Detailed View of a Region of Interest
Metadata - Compute Nodes
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2020 applicationsʼ metadata load distribution. (A) presents the load division between I/O (purple) and metadata 
operations (yellow). (B) presents the division among each metadata operation type.


