List of publications of Luc GIRAUD

Papers in journal

[1] M. Chanaud, L. Giraud, D. Goudin, J.J. Pesque, and J. Roman.
A Parallel Full Geometric Multigrid Solver for Time Harmonic Maxwell
SIAM J. Scientific Computing, 36(2):C119-C138, 2014.
[2] E. Agullo, L. Giraud, A. Guermouche, A. Haidar, and J. Roman.
Parallel algebraic domain decomposition solver for the solution of
augmented systems.
Advances in Engineering Software, pages 23-30, July 2012.
[3] E. Agullo, L. Giraud, A. Guermouche, and J. Roman.
Parallel hierarchical hybrid linear solvers for emerging computing
Compte Rendu de l’Academie des Sciences – Mecanique,
339(2-3):96-105, 2011.
[4] F. Sourbier, A. Haidar, L. Giraud, H. Ben Hadj Ali, S. Operto, and J. Virieux.
Three-dimensional parallel frequency-domain visco-acoustic wave
modelling based on a hybrid direct/iterative solver.
Geophysical Prospecting, 59(5):834-856, 2011.
[5] I. Tarrass, L. Giraud, and P. Thore.
New curvilinear scheme for elastic wave propagation in presence of
curved topography.
Geophysical Prospecting, 59(5):889-906, 2011.
[6] L. Giraud, A. Haidar, and S. Pralet.
Using multiple levels of parallelism to enhance the performance of
domain decomposition solvers.
Parallel Computing, 36(5-6):285-296, 2010.
[7] L. Giraud, S. Gratton, X. Pinel, and X. Vasseur.
Flexible GMRES with deflated restarting.
SIAM J. Scientific Computing, 32(4):1858-1878, 2010.
[8] L. Giraud, A. Haidar, and Y. Saad.
Sparse approximations of the Schur complement for parallel
algebraic hybrid linear solvers in 3D.
Numerical Mathematics: Theory, Methods and Applications,
3(3):276-294, 2010.
[9] M. Baboulin, L. Giraud, S. Gratton, and J. Langou.
Parallel tools for solving incremental dense least squares problems.
application to space geodesy.
Journal of Algorithms and Computational Technology,
3(1):117-133, 2009.
Also appeared as LAPACK Working Note 179, September 2006.
[10] L. Giraud and A. Haidar.
Parallel algebraic hybrid solvers for large 3D convection-diffusion
Numerical Algorithms, 51(2):151-177, 2009.
[11] J. Virieux, S. Operto, H. Ben Hadj Ali, R. Brossier, V. Etienne, F. Sourbier,
L. Giraud, and A. Haidar.
Seismic wave modeling for seismic imaging.
The Leading Edge, 25(8):538-544, 2009.
[12] L. Giraud, A. Haidar, and L. T. Watson.
Parallel scalability study of hybrid preconditioners in three
Parallel Computing, 34:363-379, 2008.
[13] A. El Ghazi, S. El Hajji, L. Giraud, and S. Gratton.
Newton’s method for the common eigenvector problem.
Journal of Computational and Applied Mathematics,
219(2):398-407, 2008.
[14] V. Fraysse, L. Giraud, and S. Gratton.
Algorithm 881: A set of FGMRES routines for real and complex
arithmetics on high performance computers.
ACM Trans. Math. Softw., 35(2):1-12, 2008.
[15] M. Baboulin, L. Giraud, S. Gratton, and J. Langou.
A distributed packed storage for large dense in-core parallel
Concurrency and Computation: Practice and Experience,
19(4):483-502, 2007.
[16] L. Giraud, S. Gratton, and J. Langou.
Convergence in backward error of relaxed GMRES.
SIAM J. Scientific Computing, 29(2):710-728, 2007.
[17] B. Carpentieri, L. Giraud, and S. Gratton.
Additive and multiplicative two-level spectral preconditioning for
general linear systems.
SIAM J. Scientific Computing, 29(4):1593-1612, 2007.
[18] D. Mariano-Goulart, P. Marechal, S. Gratton, L. Giraud, and M. Fourcade.
A priori selection of the regularization parameters in emission
tomography by Fourier synthesis.
Computerized Medical Imaging and Graphics, 31(7):502-509,
[19] S. Operto, J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and
H. Ben Hadj Ali.
3D finite-difference frequency-domain modeling of visco-acoustic
wave propagation using a massively parallel direct solver: A feasibility
Geophysics, 72(5):195-211, 2007.
[20] L. Giraud, S. Gratton, and E. Martin.
Incremental spectral preconditioners for sequences of linear systems.
Applied Numerical Mathematics, 57(11-12):1164-1180, 2007.
[21] L. Giraud, D. Ruiz, and A. Touhami.
A comparative study of iterative solvers exploiting spectral
information for SPD systems.
SIAM J. Scientific Computing, 27(5):1760-1786, 2006.
[22] L. Giraud and S. Gratton.
On the sensitivity of some spectral preconditioners.
SIAM J. Matrix Analysis and Applications, 27(4):1089-1105,
[23] L. Giraud, J. Langou, and G. Sylvand.
On the parallel solution of large industrial wave propagation
Journal of Computational Acoustics, 14(1):83-111, 2006.
[24] G. Alleon, S. Champagneux, G. Chevalier, L. Giraud, and G. Sylvand.
Parallel distributed numerical simulations in aeronautic
Applied Mathematical Modelling, 30:714-730, 2006.
[25] L. Giraud, A. Marrocco, and J.-C. Rioual.
Iterative versus direct parallel substructuring methods in
semiconductor device modelling.
Numerical Linear Algebra with Applications, 12(1):33-53, 2005.
[26] I. S. Duff, L. Giraud, J. Langou, and E. Martin.
Using spectral low rank preconditioners for large electromagnetic
Int J. Numerical Methods in Engineering, 62(3):416-434, 2005.
[27] V. Fraysse, L. Giraud, S. Gratton, and J. Langou.
Algorithm 842: A set of GMRES routines for real and complex
arithmetics on high performance computers.
ACM Trans. Math. Softw., 31(2):228-238, 2005.
[28] M. Baboulin, L. Giraud, and S. Gratton.
A parallel distributed solver for large dense symmetric systems:
applications to geodesy and electromagnetism problems.
Int J. of High Performance Computing Applications,
19(4):353-363, 2005.
[29] L. Giraud, J. Langou, M. Rozlozník, and J. van den Eshof.
Rounding error analysis of the classical Gram-Schmidt
orthogonalization process.
Numerische Mathematik, 101(1):87-100, 2005.
[30] L. Giraud, J. Langou, and M. Rozlozník.
On the loss of orthogonality in the Gram-Schmidt orthognalization
Computer and Mathematics with Applications, 50:1069-1075,
[31] B. Carpentieri, I. S. Duff, L. Giraud, and G. Sylvand.
Combining fast multipole techniques and an approximate inverse
preconditioner for large electromagnetism calculations.
SIAM J. Scientific Computing, 27(3):774-792, 2005.
[32] B. Carpentieri, I. S. Duff, L. Giraud, and M. Magolu monga Made.
Sparse symmetric preconditioners for dense linear systems in
Numerical Linear Algebra with Applications, 11(8-9):753-771,
[33] L. Giraud, S. Gratton, and J. Langou.
A rank-k update procedure for reorthogonalizing the orthogonal
factor from modified Gram-Schmidt.
SIAM J. Matrix Analysis and Applications, 25(4):1163-1177,
[34] B. Carpentieri, I. S. Duff, and L. Giraud.
A class of spectral two-level preconditioners.
SIAM J. Scientific Computing, 25(2):749-765, 2003.
[35] L. Giraud, F. Guevara Vasquez, and R. S. Tuminaro.
Grid transfer operators for highly variable coefficient problems in
two-level non-overlapping domain decomposition methods.
Numerical Linear Algebra with Applications, 10:467-484, 2003.
[36] L. Giraud and J. Langou.
Robust selective Gram-Schmidt reorthogonalization.
SIAM J. Scientific Computing, 25(2):417-441, 2003.
[37] L. Giraud and J. Langou.
When modified Gram-Schmidt generates a well-conditioned set of
IMA Journal of Numerical Analyis, 22(4):521-528, 2002.
[38] L. Giraud.
Combining shared and distributed memory programming models on
clusters of symmetric multiprocessors: Some basic promising experiments.
Int J. of High Performance Computing Applications,
16(4):425-430, 2002.
[39] L. M. Carvalho, L. Giraud, and G. Meurant.
Local preconditioners for two-level non-overlapping domain
decomposition methods.
Numerical Linear Algebra with Applications, 8(4):207-227,
[40] L. M. Carvalho, L. Giraud, and P. Le Tallec.
Algebraic two-level preconditioners for the Schur complement
SIAM J. Scientific Computing, 22(6):1987 – 2005, 2001.
[41] L. Giraud, R. Guivarch, and J. Stein.
Parallel distributed fast 3D Poisson solver for meso-scale
atmospheric simulations.
Int J. of High Performance Computing Applications,
15(1):36-46, 2001.
[42] B. Carpentieri, I. S. Duff, and L. Giraud.
Sparse pattern selection strategies for robust Frobenius-norm
minimization preconditioners in electromagnetism.
Numerical Linear Algebra with Applications, 7(7-8):667-685,
[43] S. Baldini, L. Giraud, J. M. Jimenez, L. M. Matey, and J. G. Izaguirre.
High performance computing in multi-body system design.
Int J. of High Performance Computing Applications,
13(2):99-106, 1999.
[44] L. Giraud and R. S. Tuminaro.
Schur complement preconditioners for anisotropic problems.
IMA J. Numerical Analysis, 19(1):1-17, 1999.
[45] G. Alleon, M. Benzi, and L. Giraud.
Sparse approximate inverse preconditioning for dense linear systems
arising in computational electromagnetics.
Numerical Algorithms, 16:1-15, 1997.
[46] L. Giraud and G. M. Manzini.
Parallel implementations of 2D explicit Euler solvers.
Journal of computational physics, 123:111-118, 1996.
[47] L. Giraud.
Block preconditioned conjugate gradient methods on a distributed
virtual shared memory multiprocessor.
Int J. High Speed Computing, 7:161-190, 1995.
[48] L. Giraud and R. S. Tuminaro.
Time dependent solvers on distributed memory computers.
Calculateurs paralleles, 7(3):255-269, 1995.
[49] L. Giraud, J. C. Miellou, and P. Spiteri.
S.S.O.R. preconditioning behaviour with respect to the relaxation
parameter, in case of by plane discretization of 3D-problems.
Intern. J. Computer Math., 40:153-158, 1992.
[50] L. Giraud and P. Spiteri.
Resolution parallele de problemes aux limites
Modelisation Mathematique et Analyse Numerique,
25(4):579-606, 1991.
[51] L. Giraud and P. Spiteri.
Resolution par des algorithmes de relaxation paralleles des
equations d’Hamilton-Jacobi-Bellman discretisees et
Publication Mathematiques de Besancon, pages 31-46,

Comments are closed.