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Scientific Research context (10-15 lines): 
High-dimensional problems are encountered in many areas of practical interest like in 
stochastic equations,	uncertainty quantification problems, quantum and vibrational chemistry, 
optimization, machine learning, ...  Such problems have led to the introduction of numerical 
techniques such as variable reduction, reduced modeling, and randomized algorithms. 
However, the typical dimension of these problems makes unaffordable the existing standard 
techniques. In the last decades, the theoretical study [1, 2] of low-rank tensor methods has 
developed and reached a satisfactory level of maturity to be applied on such domains.  A new 
approach particularly well suited is to seek a hierarchical low-rank tensor format that captures 
the algebraic structure of the system. Formats such as hierarchical Tucker [2] and tensor train 
[1] have become the convention, and proved to provide efficient and stable data sparse 
representation for extremely high-dimensional systems. However, accessible and general 
high-performance parallel software has not yet emerged despite the obvious and its crucial 
need. We wish to develop new computational tools designed to achieve high-performance for 
high dimension problems on supercomputing platforms. This entails the development of 
specialized high-performance, more scalable, robust and further accurate algorithms than 
contemporary designs. 	
 
Post- doctoral researcher work description (10-15 lines): 
The first stage will be dedicated to identify and implement tools to compute fast matrix-vector 
products with the tensor arithmetic in the context of iterative solvers such as eigensolvers or 
Krylov methods. Many questions have to be addressed namely 1) which hierarchical tensor 
format should be used 2) how we compute the rank of tensor and 3) what is the best stable 
algorithm to project the resulting vector in the hierarchical format.	
In the second step we will develop new parallel algorithms to reduce the complexity and  
boost their performance. The test bed for the numerical validation and benchmark of these 
kernels will be the computation	of	vibrational	spectra	of	molecules in dimension’s space 
12 ([4])	 and 20. Other domains like biodiversity or machine learning will likely be 
considered as second application domain. This research action falls within the 
upcoming research agenda of the HiePACS team with initiatives at the national and 
the European scale to foster collaboration and exchanges. 



 
 
Required Knowledge and background: 
Candidates	should	have	a	strong	background	in scientific computing with a PhD in 
computational sciences (applied mathematics, numerical linear algebra, numerical algorithms, 
… ). 
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Keywords (max 5-6): 
Tensor decomposition, high-dimensional, low rank approximation, eigensolver, matric vector 
products. 
 
Duration: 
 12 months or 16 months	


